
Deep Matrix Factorization Models for Recommender Systems∗

Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, Jiajun Chen

National Key Laboratory for Novel Software Technology; Nanjing University, Nanjing 210023, China

Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210023, China

xuehj@nlp.nju.edu.cn, {daixinyu,zjb,huangsj,chenjj}@nju.edu.cn

Abstract

Recommender systems usually make personalized
recommendation with user-item interaction ratings,
implicit feedback and auxiliary information. Ma-
trix factorization is the basic idea to predict a per-
sonalized ranking over a set of items for an indi-
vidual user with the similarities among users and
items. In this paper, we propose a novel matrix
factorization model with neural network architec-
ture. Firstly, we construct a user-item matrix with
explicit ratings and non-preference implicit feed-
back. With this matrix as the input, we present a
deep structure learning architecture to learn a com-
mon low dimensional space for the representations
of users and items. Secondly, we design a new loss
function based on binary cross entropy, in which
we consider both explicit ratings and implicit feed-
back for a better optimization. The experimental
results show the effectiveness of both our proposed
model and the loss function. On several bench-
mark datasets, our model outperformed other state-
of-the-art methods. We also conduct extensive ex-
periments to evaluate the performance within dif-
ferent experimental settings.

1 Introduction

In the era of information explosion, information overload is
one of the dilemmas we are confronted with. Recommender
systems (RSs) are instrumental to address this problem as
they help determine which information to offer to individual
consumers and allow online users to quickly find the person-
alized information that fits their needs [Sarwar et al., 2001;
Linden et al., 2003]. RSs are nowadays ubiquitous in e-
commerce platforms, such as recommendation of books at
Amazon, music at Last.com, movie at Netflix and reference
at CiteULike.

Collaborative filtering (CF) recommender approaches are
extensively investigated in research community and widely
used in industry. They are based on the simple intuition that

∗Xin-Yu Dai is the corresponding author. This work was
supported by the 863 program(2015AA015406) and the NSFC
(61472183,61672277).

if users rate items similarly in the past, they are likely to rate
other items similarly in the future [Sarwar et al., 2001; Linden
et al., 2003]. As the most popular approach among various
collaborative filtering techniques, matrix factorization (MF)
which learns a latent space to represent a user or an item be-
comes a standard model for recommendation due to its scal-
ability, simplicity, and flexibility [Billsus and Pazzani, 1998;
Koren et al., 2009]. In the latent space, the recommender
system predicts a personalized ranking over a set of items for
each individual user with the similarities among the users and
items.

Ratings in the user-item interaction matrix are explicit
knowledge which have been deeply exploited in early rec-
ommendation methods. Because of the variation in rating
values associated with users on items, biased matrix factor-
ization [Koren et al., 2009] are used to enhance the rat-
ing prediction. To overcome the sparseness of the ratings,
additional extra data are integrated into MF, such as social
matrix factorization with social relations [Ma et al., 2008;
Tang et al., 2013], topic matrix factorization with item
contents or reviews text [McAuley and Leskovec, 2013;
Bao et al., 2014], and so on.

However, modeling only observed ratings is insufficient to
make good top-N recommendations [Hu et al., 2008]. Im-
plicit feedback, such as purchase history and unobserved rat-
ings, is applied in recommender systems [Oard et al., 1998].
The SVD++ [Koren, 2008] model firstly factorizes the rating
matrix with the implicit feedback, and is followed by many
techniques for recommender systems [Rendle et al., 2009;
Mnih and Teh, 2012; He and McAuley, 2015].

Recently, due to the powerful representation learning abil-
ities, deep learning methods have been successfully applied
including various areas of Computer Vision, Audio Recogni-
tion and Natural Language Processing. A few efforts have
also been made to apply deep learning models in recom-
mender systems. Restricted Boltzmann Machines [Salakhut-
dinov et al., 2007] was firstly proposed to model users’ ex-
plicit ratings on items. Autoencoders and the denoising au-
toencoders have also been applied for recommendation [Li et
al., 2015; Sedhain et al., 2015; Strub and Mary, 2015]. The
key idea of these methods is to reconstruct the users’ ratings
through learning hidden structures with the explicit historical
ratings. Implicit feedback is also applied in this research line
of deep learning for recommendation. An extended work pre-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3203

sented a collaborative denoising autoencoder (CDAE) [Wu et
al., 2016] to model user’s preference with implicit feedback.
Another work of neural collaborative filtering (NCF) [He et
al., 2017] was proposed to model the user-item interactions
with a multi-layer feedforward neural network. Two recent
works above exploit only implicit feedback for item recom-
mendations instead of explicit rating feedback.

In this paper, to make use of both explicit ratings and
implicit feedback, we propose a new neural matrix factor-
ization model for top-N recommendation. We firstly con-
struct a user-item matrix with both explicit ratings and non-
preference implicit feedback, which is different from other
related methods using either only explicit ratings or only im-
plicit ratings. With this full matrix (explicit ratings and zero
of implicit feedback) as input, a neural network architecture is
proposed to learn a common latent low dimensional space to
represent the users and items. This architecture is inspired by
the deep structured semantic models which have been proved
to be useful for web search [Huang et al., 2013], where it can
map the query and document in a latent space through multi-
ple layers of non-linear projections. In addition, we design a
new loss function based on cross entropy, which includes the
considerations of both explicit ratings and implicit feedback.

In sum, our main contributions are outlined as follows.

• We propose novel deep matrix factorization models with
a neural network that map the users and items into a
common low-dimensional space with non-linear projec-
tions. We use a matrix including both explicit ratings
and non-preference implicit feedback as the input of our
models.

• We design a new loss function to consider both explicit
ratings and implicit feedback for better optimization.

• The experimental results show the effectiveness of our
proposed models which outperform other state-of-the-
art methods in top-N recommendation.

The organization of this paper is as follows. Problem state-
ment is introduced in Section 2. In Section 3, we present the
architecture and details of the proposed models. In Section
4, we give empirical results on several benchmark datasets.
Concluding remarks with a discussion of some future work
are in the final section.

2 Problem Statement

Suppose there are M users U = {u1, ..., uM}, N items
V = {v1, ..., vN}. Let R ∈ R

M×N denote the rating ma-
trix, where Rij is the rating of user i on item j, and we mark
unk if it is unknown. There are two ways to construct the
user-item interaction matrix Y ∈ R

M×N from R with im-
plicit feedback as,

Yij =

{

0, if Rij = unk

1, otherwise
(1)

Yij =

{

0, if Rij = unk

Rij , otherwise
(2)

Most of the existing solutions for recommendation apply
Equation 1 to construct the interaction matrix of Y [Wu et

al., 2016; He et al., 2017]. They consider all observed rat-
ings the same as 1. In this paper, we construct the matrix of
Y with the Equation 2. The rating Rij of user ui on item
vj is still reserved in Y . We think that the explicit ratings in
Equation 2 is non-trivial for recommendation because they in-
dicate the preference degree of a user on an item. Meanwhile,
we mark a zero if the rating is unknown, which is named as
non-preference implicit feedback in this paper.

The recommender systems are commonly formulated as
the problem of estimating the rating of each unobserved en-
try in Y , which are used for ranking the items. Model-based
approaches [Koren, 2008; Salakhutdinov and Mnih, 2007] as-
sume that there is an underlying model which can generate all
ratings as follows.

Ŷij = F (ui, vj |Θ) (3)

where Ŷij denotes the predicted score of interaction Yij

between user ui and item vj , Θ denotes the model parameters,
and F denotes the function that maps the model parameters to
the predicted scores. Based on this function, we can achieve
our goal of recommending a set of items for an individual
user to maximize the user’s satisfaction.

Now, the next question is how to define such a function F .
Latent Factor Model (LFM) simply applied the dot product

of pi, qj to predict the Ŷij as follows [Koren et al., 2009].
Here, pi and qj denote the latent representations of ui and vj ,
respectively.

Ŷij = FLFM (ui, vj |Θ) = pTi qj (4)

Recently, neural collaborative filtering (NCF) [He et al.,
2017] presented an approach with a multi-layer perceptron to
automatically learn the function of F . The motivation of this
method is to learn the non-linear interactions between users
and items.

In this paper, we follow the Latent Factor Model which
uses the inner product to calculate the interactions between
users and items. We do not follow the neural collaborative
filtering because we try to get the non-linear connection be-
tween users and items through a deep representation learning
architecture.

We give the notations used in the following section. u in-
dicates a user and v indicates an item. i and j index u and v,
respectively. Y denote the user-item interaction matrix trans-
formed by Equation 2, Y + denotes the observed interactions,
Y − means all zero elements in Y and Y −

sampled denotes the

set of negative instances, which can be all (or sampled from)
Y −. Then Y +∪Y −

sampled means all training interactions. We

denote the i-th row of matrix Y by Yi∗, j-th column by Y∗j

and its (i, j)− th element by Yij .

3 Our Proposed Model

In this section, we firstly briefly introduce the deep structure
semantic model which inspires us to propose our method.
Then, we present our proposed architecture to represent the
users and items in a latent low-dimensional space. Lastly, we
give our designed loss function for optimization, followed by
the model training algorithm.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3204

3.1 Deep Structure Semantic Model

Deep Structured Semantic Models (DSSM) were proposed in
[Huang et al., 2013] for web search. It uses a deep neural
network to rank a set of documents for a given query. DSSM
firstly maps the query and the documents to a common lower
semantic space with a non-linear multi-layer projection. And
then for web search ranking, the relevance of query to each
document is calculated by cosine similarity between the low
dimensional vectors of query and document. The deep neural
network are discriminatively trained to maximize the condi-
tional likelihood of the query and matched documents.

DSSM has been applied for users modeling [Elkahky et
al., 2015]. Different from our work, it focused on modeling
the user with rich extra features, such as the web browsing
history and search queries. We only use the observed ratings
and observed feedback since we focus on the traditional top-
N recommendation problem.

3.2 Deep Matrix Factorization Models (DMF)

As mentioned in Section 2, we form a matrix Y according to
the Equation 2. With this matrix Y as the input, we propose
an architecture of deep neural network to project users and
items into a latent structured space. Figure 1 illustrates our
proposed architecture.

Figure 1: The architecture of Deep Matrix Factorization Models

From the matrix Y , each user ui is represented as a high-
dimensional vector of Yi∗, which represents the ith user’s rat-
ings across all items. Each item vj is represented as a high-
dimensional vector of Y∗j , which represent the jth item’s
ratings across all users. In each layer, each input vector is
mapped into another vector in a new space. Formally, if we
denote the input vector by x , the output vector by y , the
intermediate hidden layers by li, i = 1, ..., N − 1, the ith
weight matrix by Wi, the ith bias term by bi, and the final
output latent representation by h. We have

l1 = W1x
li = f(Wi−1li−1 + bi), i = 2, ..., N − 1

h = f(WN lN−1 + bN)
(5)

where we use the ReLU as the activation function at the
output layer and the hidden layers li, i = 2, ..., N − 1:

f(x) = max(0, x) (6)

In our architecture, we have two multi-layer networks
to transform the representations of u and v respectively.
Through the neural network, the user ui and item vj are fi-
nally mapped to a low-dimensional vector in a latent space as
shown in Equation 7. The similarity between the user ui and
item vj is then measured according to the Equation 8.

pi = fθU

N

(...fθU

3
(WU2fθU

2
(Yi∗WU1))...)

qj = fθI

N

(...fθI

3
(WV 2fθI

2
(Y T

∗jWV 1))...)
(7)

Here WU1 and WV 1 are the first layer weighting matrix
for U and V , respectively, and WU2 and WV 2 for the second
layer, and so on.

Ŷij = FDMF (ui, vj |Θ) = cosine(pi, qj) =
pTi qj

‖pi‖ ‖qj‖
(8)

In our architecture, besides the multi-layers representation
learning, we want to emphasize again that, to our best knowl-
edge, it is the first time to use the interaction matrix directly
as the input for representation learning. As we mentioned be-
fore, Yi∗ represents a user’s ratings across all items. It can
to some extent indicate a user’s global preference. And Y∗j

represents an item’s ratings by all users. It can to some ex-
tent indicate an item’s profile. We believe that these repre-
sentations of users and items are very useful for their final
low-dimensional representations.

3.3 Loss Function

Another key component for recommendation models is to de-
fine a proper objective function for model optimization ac-
cording to the observed data and unobserved feedback.

A general objective function is as follows.

L =
∑

y∈Y +∪Y −

l(y, ŷ) + λΩ(Θ) (9)

Where l(·) denotes a loss function and Ω(Θ) is the regular-
izer.

For recommender systems, two types of objective func-
tions are commonly used, point-wise and pair-wise, respec-
tively. For simply, we use point-wise objective function in
this paper, and leave the pair-wise version to our future work.

Loss function is the most important part in the objective
function. Squared loss is largely performed in many existing
models [Salakhutdinov and Mnih, 2007; Koren et al., 2009;
Ning and Karypis, 2011; Hu et al., 2008].

Lsqr =
∑

(i,j)∈Y +∪Y −

wij(Yij − Ŷij)
2 (10)

where wij denotes the weight of training instance (i, j). The
use of the squared loss is based on the assumption that obser-
vations are generated from a Gaussian distribution [Salakhut-
dinov and Mnih, 2007]. However, the square loss can not be

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3205

used well with implicit feedback, because for implicit data,
the target value Yij is a binarized 1 or 0 denoting whether i
has interacted with j or not. In what follows, a loss function
which pays special attention to the binary property of implicit
data was proposed by [He et al., 2017] as follows.

(11)L = −
∑

(i,j)∈Y +∪Y −

Yij logŶij +(1−Yij)log(1− Ŷij)

This loss is actually the binary cross-entropy loss (briefly
as ce), addressing the recommendation with implicit feedback
as a binary classification problem.

In sum, square loss pays attention to explicit ratings, while
cross entropy loss pays attention to implicit ratings. In this
paper, we design a new loss function to incorporate the ex-
plicit ratings into cross entropy loss, so that explicit and im-
plicit information can be used together for optimization. We
name our new loss as normalized cross entropy loss (briefly
as nce), which is presented in Equation 12.

(12)

L = −
∑

(i,j)∈Y +∪Y −

(
Yij

max(R)
logŶij

+ (1−
Yij

max(R)
)log(1− Ŷij))

We use the max(R) (5 in a 5-star system) for normaliza-
tion which is the max score in all ratings, so that different
values of Yij have different influences to the loss.

Algorithm 1 DMF Training Algorithm With Normalized
Cross Entropy

Input: Iter: # of training iterations,
neg ratio: Negative sampling ratio,
R: original rating matrix,

Output: WUi(i=1..N-1): weight matrix for user,
WV i(i=1..N-1): weight matrix for item,

1: Initialisation :
2: randomly initialize WU and WV ;
3: set Y ← use Equation 2 with R;
4: set Y +← all none zero interactions in Y ;
5: set Y − ← all zero interactions in Y ;
6: set Y −

sampled← sample neg ratio∗‖Y +‖ interactions

from Y −;
7: set T ← Y + ∪ Y −

sampled;

8: for it from 1 to Iter do
9: for each interaction of User i and Item j in T do

10: set pi, qj ← use Equation 7 with input of Yi∗, Y∗j ;

11: set Ŷ o
ij ← use Equation 8,13 with input of pi, qj ;

12: set L← use Equation 11 with input of Ŷ o
ij , Yij ;

13: use back propagation to optimize model parameters
14: end for
15: end for

3.4 Training Algorithm

For cross entropy loss, because the predicted score of Yij can
be negative, we need to use Equation 13 to transform the orig-
inal predictions. Let µ be a very small number, and we set
1.0e−6 in our experiments.

(13)Ŷ o
ij = max(µ, Ŷij)

We describe the detailed training method in Algorithm 1.

In Algorithm 1, we present the high-level training process
of DMF model. For training the parameters of weight matrix
WU and WV on each layer, we use back propagation to up-
date the model parameters with batches. The complexity of
our algorithm is linear to the size of matrix and the layers of
network.

4 Experiments

In this section, we conduct experiments to demonstrate the
effectiveness of both our proposed architecture and the re-
fined loss function. We also do some extensive experiments
to compare the performance with different experimental set-
tings, such as the negative sampling ratio, number of layers
in network, and so on.

4.1 Experimental Settings

Datasets

We evaluate our models on four widely used datasets
in recommender systems: MovieLens 100K(ML100k),
MovieLens 10M(ML1m), Amazon music(Amusic), Amazon
movies(Amovie). They are publicly accessible on the web-
sites 1 2. For MovieLens dataset we do not process it be-
cause it was already filtered, and for Amazon dataset we
filtered the dataset, so that similar to the MovieLens data,
only those users with at least 20 interactions and items
with at least 5 interactions are retained [Wu et al., 2016;
He et al., 2017]. The statistics of the four datasets are given
in Table 1.

Statistics ML100k ML1m Amusic Amovie

of Users 944 6,040 844 9,582
of Items 1,683 3,706 18,813 92,221

of Ratings 100,000 1,000,209 46,468 766,759
Rating Density 0.06294 0.04468 0.00292 0.00087

Table 1: Statistics of the Four Datasets

Evaluation for Recommendation

To evaluate the performance of item recommendation, we
adopted the leave-one-out evaluation, which has been widely
used in the literatures [He et al., 2016; Kingma and Ba, 2014;
He et al., 2017]. We held-out the latest interaction as a
test item for every user and utilize the remaining dataset for
training. Since it is too time-consuming to rank all items
for every user during evaluation, following [Koren, 2008;
He et al., 2017], we randomly sample 100 items that are not
interacted by the users. Among the 100 items together with
the test item, we get the ranking according to the prediction.
We also use Hit Ratio (HR) and Normalized Discounted Cu-
mulative Gain (NDCG) [He et al., 2015] to evaluate the rank-
ing performance. In our experiments, we truncated the ranked

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3206

Datasets Metrics
Methods DMF Improvement of

ItemPop ItemKNN eALS NeuMF-p DMF-2-ce DMF-2-nce DMF-2-nce vs. NeuMF-p

ML100k
NDCG 0.231 0.334 0.356 0.395 0.405 0.409 3.5%

HR 0.406 0.600 0.621 0.670 0.679 0.687 2.5%

ML1m
NDCG 0.263 0.372 0.425 0.440 0.442 0.451 2.5%

HR 0.472 0.637 0.709 0.722 0.720 0.732 1.4%

Amusic
NDCG 0.242 0.345 0.374 0.371 0.403 0.397 7.0%

HR 0.423 0.493 0.521 0.527 0.570 0.563 6.8%

Amovie
NDCG 0.386 0.403 0.455 0.512 0.533 0.550 7.4%

HR 0.620 0.652 0.693 0.739 0.765 0.773 4.6%

Table 2: NDCG@10 and HR@10 Comparisons of Different Methods

list at 10 for both metrics. As such, the HR intuitively mea-
sures whether the test item is present on the top-10 list, and
the NDCG measures the ranking quality which assigns higher
scores to hits at top position ranks.

Detailed Implementation

We implemented our proposed methods based on Tensor-
flow3, which will be released publicly upon acceptance. To
determine hyper-parameters of DMF methods, we randomly
sampled one interaction for each user as the validation data
and tuned hyper-parameters on it. When training our models,
we sampled seven negative instances per positive instance.
For neural network, we randomly initialized model parame-
ters with a Gaussian distribution (with a mean of 0 and stan-
dard deviation of 0.01), optimizing the model with mini-batch
Adam [Kingma and Ba, 2014]. We set the batch size to 256,
and set the learning rate to 0.0001.

4.2 Performance Comparison

In this subsection, we compare the proposed DMF with the
following methods. As our proposed methods aim to model
the relationship between users and items, we mainly compare
with user-item models. We leave out the comparison with
item-item models, such as SLIM [Ning and Karypis, 2011] ,
CDAE [Wu et al., 2016] because the performance difference
may be caused by the user models for personalization. We
also leave out the comparison with MV-DSSM [Elkahky et
al., 2015] because it uses a lot of auxiliary extra data and
evaluates on its own datasets.

ItemPop It ranked the items by their popularity judged
by the number of interactions. It is a non-personalized
method whose performance is usually used as the baseline
for personalized methods.

ItemKNN This is a standard item-based collaborative
filtering method used by Amazon commercially [Sarwar et
al., 2001; Linden et al., 2003].

eALS It is a state-of-the-art MF method for recommen-
dation with square loss. It used all unobserved interactions as
negative instances and weighted them non-uniformly by the
item popularity. We tuned its hyper-parameters in the same
way as [He et al., 2016].

NeuMF-p This is a state-of-the-art MF method for item
recommendation with cross entropy loss. It is the most re-
lated work to us. Different from our models, it only used the

3https://www.tensorflow.org

implicit feedback and initialized the representation of users
and items randomly. After that, it leverages a multi-layer per-
ceptron to learn the user-item interaction function. We name
the neural matrix factorization with pretraining as NeuMF-
p which showed the best performance among their proposal
models. We tuned its hyper-parameters in the same way as
[He et al., 2017].

DMF-2-ce This is our proposed deep matrix factoriza-
tion model, with 2 layers in the network and cross entropy
as loss function. We use the matrix including the explicit rat-
ings and implicit feedback as the input of DMF. We name this
model as DMF-2-ce.

DMF-2-nce DMF-2-nce has the same depth of 2 layers
in the network as that in DMF-2-ce except that it uses the
normalized cross entropy loss.

The results of the comparison are summarized in Table 2.
It demonstrate the effectiveness of both our proposed archi-
tecture and the loss function. As for the proposed architec-
ture, on almost all datasets, both of our two models achieve
the best performance in both metics of NDCG and HR, com-
pared to other methods. Even compared to the state-of-the-art
method of NeuMF-p, DMF-2-nce obtain 2.5-7.4% (5.1% av-
erage) and 1.4-6.8% (3.8% average) relative improvements in
NDCG and HR metrics, respectively. As for the loss function,
we compared the performances of our two models. DMF-
2-nce achieves better results than DMF-2-ce, except on the
dataset of Amusic.

4.3 Impact of the Input Matrix for DMF

LFM-nce DMF-1-nce

ML100k
NDCG 0.369 0.386

HR 0.634 0.670

ML1m
NDCG 0.376 0.383

HR 0.641 0.660

Amusic
NDCG 0.311 0.389

HR 0.491 0.572

Amovie
NDCG 0.468 0.520

HR 0.714 0.764

Table 3: Results for different input matrix. LFM-nce initialize the
input matrix randomly. DMF-1-nce use the matrix of Y as input.
They both perform 1-layer projection.

In DMF, we use the interaction matrix Y as the input. If we

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3207

randomly initialize the representation vector of each user and
each item as the input to a one layer DMF model, the model
would be a standard Latent Factorization Model (LFM). To
test the usefulness of the input matrix of Y , we conduct ex-
periments on two models of LFM-nce and DMF-1-nce. They
both have one layer in network and use the same loss func-
tion. From Table 3, we can observe that, with the input
matrix, DMF-1-nce obtains a significant improvement over
LFM-nce.

4.4 Sensitivity to Hyper-Parameters

neg-1 neg-2 neg-5 neg-9 neg-10

ML100k
NDCG 0.393 0.403 0.406 0.401 0.400
HR 0.677 0.687 0.684 0.675 0.667

ML1m
NDCG 0.408 0.432 0.434 0.443 0.438
HR 0.689 0.721 0.723 0.726 0.725

Amusic
NDCG 0.384 0.387 0.386 0.391 0.384
HR 0.569 0.562 0.556 0.567 0.554

Amovie
NDCG 0.521 0.541 0.549 0.548 0.544
HR 0.767 0.778 0.781 0.774 0.776

Table 4: Results for Models with different negative sampling ratio.

Negative Sampling Ratio

In algorithm 1 as shown in Section 3.4, we need to sample
negative instances from unobserved data for training. In this
experiment, we apply different negative sampling ratio to ob-
serve the performance variance (e.g. neg-5 means we set the
negative sampling ratio as 5). From the results in Table 4, we
can find that more negative instances seem useful to improve
performance. For these four datasets, the optimal negative
sampling ratio is around 5 which is consistent with the results
by previous work [He et al., 2017].

Depth of Layers in Network

In our proposed model, we map the users and items to
low-dimensional representations through neural network with
multiple hidden layers. We conduct an extensive experi-
ment on the Ml datasets to investigate our model with dif-
ferent number of hidden layers. For detailed comparison,
Figure 2 shows the performance of each iteration by differ-
ent layers. For space limitation, we just present the results
on ML datasets. As shown in Figure 2, on the large ML1m
dataset, our model with 2-layers illustrates the best perfor-
mance. While on the relative small ML100k dataset, 2-layers
almost gets the best performance, but not stably and signif-
icantly. Deeper layers seem not useful, and 3-layers model
even decreases the performance.

Factors of the Final Latent Space

Besides the number of the hidden layers, the factors in each
layer is possibly another sensitive parameter in our model.
For simplicity, we just compare the performance with dif-
ferent number of factors on the top final latent space. We
conduct the experiments to a two-layers model, and set the
number of factors on the top layer from 8 to 128. As shown
in Table 5, the final layer with 64 factors gets the best per-
formance except on the dataset of Amusic. On the Amusic

Figure 2: Results for models with different deep layers. Left:
ML100k; Right: ML1m.

8 16 32 64 128

ML100k
NDCG 0.369 0.389 0.386 0.394 0.393
HR 0.660 0.672 0.675 0.682 0.677

ML1m
NDCG 0.361 0.398 0.406 0.411 0.408
HR 0.637 0.681 0.688 0.690 0.689

Amusic
NDCG 0.357 0.371 0.377 0.374 0.384
HR 0.547 0.560 0.568 0.559 0.569

Amovie
NDCG 0.485 0.514 0.522 0.524 0.521
HR 0.740 0.763 0.767 0.768 0.767

Table 5: Results for models with different factors of the final latent
space.

dataset, the best performance appears with 128 factors. The
final representations with more factors might be more useful
when the dataset is very sparse and small.

5 Conclusion and Future Work

In this paper, we propose a novel matrix factorization model
with a neural network architecture. Through the neural net-
work architecture, users and items are projected into low-
dimensional vectors in a latent space. In our proposed model,
we make full use of both explicit ratings and implicit feed-
back in two ways. The input matrix to our proposed model in-
cludes both explicit ratings and non-preference feedback. In
another way, we also design a new loss function for training
our models in which both explicit and implicit feedback are
considered. The experiments on several benchmark datasets
demonstrate the effectiveness of our proposed model.

In the future, there are two directions to extend our work.
Pairwise objective function is another optional way for rec-
ommender system. We will verify our model with pairwise
objective function. Because of the sparseness and large miss-
ing unobserved data, many works try to incorporate auxiliary
extra data into recommender systems, such as social relation,
review text, browsing history, and so on. This give us another
interesting direction to extend our model with extra data.

References

[Bao et al., 2014] Yang Bao, Hui Fang, and Jie Zhang. Top-
icmf: Simultaneously exploiting ratings and reviews for
recommendation. In AAAI, 2014.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3208

[Billsus and Pazzani, 1998] Daniel Billsus and Michael J
Pazzani. Learning collaborative information filters. In
ICML, 1998.

[Elkahky et al., 2015] Ali Mamdouh Elkahky, Yang Song,
and Xiaodong He. A multi-view deep learning approach
for cross domain user modeling in recommendation sys-
tems. In Proceedings of the 24th International Conference
on World Wide Web, pages 278–288. ACM, 2015.

[He and McAuley, 2015] Ruining He and Julian McAuley.
Vbpr: visual bayesian personalized ranking from implicit
feedback. arXiv preprint arXiv:1510.01784, 2015.

[He et al., 2015] Xiangnan He, Tao Chen, Min-Yen Kan, and
Xiao Chen. Trirank: Review-aware explainable recom-
mendation by modeling aspects. In Proceedings of the
24th ACM International on Conference on Information
and Knowledge Management, pages 1661–1670. ACM,
2015.

[He et al., 2016] Xiangnan He, Hanwang Zhang, Min-Yen
Kan, and Tat-Seng Chua. Fast matrix factorization for
online recommendation with implicit feedback. In Pro-
ceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval,
pages 549–558. ACM, 2016.

[He et al., 2017] Xiangnan He, Lizi Liao, Hanwang Zhang,
Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collab-
orative filtering. In Proceedings of the 26th International
World Wide Web Conference, 2017.

[Hu et al., 2008] Yifan Hu, Yehuda Koren, and Chris Volin-
sky. Collaborative filtering for implicit feedback datasets.
In Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on, pages 263–272. Ieee, 2008.

[Huang et al., 2013] Po-Sen Huang, Xiaodong He, Jianfeng
Gao, et al. Learning deep structured semantic models for
web search using clickthrough data. In Proceedings of the
22nd ACM international conference on Conference on in-
formation & knowledge management, pages 2333–2338.
ACM, 2013.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In ICLR,
pages 1–15, 2014.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris
Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, IEEE, 42(8):30–37, 2009.

[Koren, 2008] Yehuda Koren. Factorization meets the neigh-
borhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
426–434. ACM, 2008.

[Li et al., 2015] Sheng Li, Jaya Kawale, and Yun Fu. Deep
collaborative filtering via marginalized denoising auto-
encoder. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management,
pages 811–820. ACM, 2015.

[Linden et al., 2003] Greg Linden, Brent Smith, and Jeremy
York. Amazon.com recommendations: Item-to-item col-
laborative filtering. Internet Computing, IEEE, 2003.

[Ma et al., 2008] Hao Ma, Haixuan Yang, Michael R Lyu,
and Irwin King. Sorec: Social recommendation using
probabilistic matrix factorization. In CIKM, 2008.

[McAuley and Leskovec, 2013] Julian McAuley and Jure
Leskovec. Hidden factors and hidden topics: understand-
ing rating dimensions with review text. In RecSys, 2013.

[Mnih and Teh, 2012] Andriy Mnih and Yee W Teh. Learn-
ing label trees for probabilistic modelling of implicit feed-
back. In Advances in Neural Information Processing Sys-
tems, pages 2816–2824, 2012.

[Ning and Karypis, 2011] Xia Ning and George Karypis.
Slim: Sparse linear methods for top-n recommender sys-
tems. In Data Mining (ICDM), 2011 IEEE 11th Interna-
tional Conference on, pages 497–506. IEEE, 2011.

[Oard et al., 1998] Douglas W Oard, Jinmook Kim, et al.
Implicit feedback for recommender systems. In Pro-
ceedings of the AAAI workshop on recommender systems,
pages 81–83, 1998.

[Rendle et al., 2009] Steffen Rendle, Christoph Freuden-
thaler, et al. Bpr: Bayesian personalized ranking from im-
plicit feedback. In Proceedings of the twenty-fifth confer-
ence on uncertainty in artificial intelligence, pages 452–
461. AUAI Press, 2009.

[Salakhutdinov and Mnih, 2007] Ruslan Salakhutdinov and
Andriy Mnih. Probabilistic matrix factorization. In Nips,
volume 1, pages 2–1, 2007.

[Salakhutdinov et al., 2007] Ruslan Salakhutdinov, Andriy
Mnih, and Geoffrey Hinton. Restricted boltzmann ma-
chines for collaborative filtering. In Proceedings of the
24th international conference on Machine learning, pages
791–798. ACM, 2007.

[Sarwar et al., 2001] Badrul Sarwar, George Karypis, et al.
Item-based collaborative filtering recommendation algo-
rithms. In WWW, 2001.

[Sedhain et al., 2015] Suvash Sedhain, Menon, et al. Au-
torec: Autoencoders meet collaborative filtering. In Pro-
ceedings of the 24th International Conference on World
Wide Web, pages 111–112. ACM, 2015.

[Strub and Mary, 2015] Florian Strub and Jeremie Mary.
Collaborative filtering with stacked denoising autoen-
coders and sparse inputs. In NIPS Workshop on Machine
Learning for eCommerce, 2015.

[Tang et al., 2013] Jiliang Tang, Xia Hu, Huiji Gao, and
Huan Liu. Exploiting local and global social context for
recommendation. In IJCAI, 2013.

[Wu et al., 2016] Yao Wu, Christopher DuBois, et al. Col-
laborative denoising auto-encoders for top-n recommender
systems. In Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining, pages 153–
162. ACM, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3209

