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Abstract

Reconstructing the 3D mesh of a general object from a

single image is now possible thanks to the latest advances of

deep learning technologies. However, due to the nontrivial

difficulty of generating a feasible mesh structure, the state-

of-the-art approaches [16, 32] often simplify the problem by

learning the displacements of a template mesh that deforms

it to the target surface. Though reconstructing a 3D shape

with complex topology can be achieved by deforming mul-

tiple mesh patches, it remains difficult to stitch the results

to ensure a high meshing quality. In this paper, we present

an end-to-end single-view mesh reconstruction framework

that is able to generate high-quality meshes with complex

topologies from a single genus-0 template mesh. The key to

our approach is a novel progressive shaping framework that

alternates between mesh deformation and topology modifi-

cation. While a deformation network predicts the per-vertex

translations that reduce the gap between the reconstructed

mesh and the ground truth, a novel topology modification

network is employed to prune the error-prone faces, en-

abling the evolution of topology. By iterating over the two

procedures, one can progressively modify the mesh topology

while achieving higher reconstruction accuracy. Moreover,

a boundary refinement network is designed to refine the

boundary conditions to further improve the visual quality of

the reconstructed mesh. Extensive experiments demonstrate

that our approach outperforms the current state-of-the-art

methods both qualitatively and quantitatively, especially for

the shapes with complex topologies.

1. Introduction

Image-based 3D reconstruction plays a fundamental role

in a variety of tasks in computer vision and computer
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Figure 1. Given a single image of an object (a) as input, the exist-

ing mesh-deformation based learning approaches [9] can not well

capture the complex topology, regardless of a single (b) or multiple

template meshes (c). In contrast, our proposed method is capable

of updating the topologies dynamically by removing faces in the

initial sphere mesh and achieves better reconstruction results (d).

graphics, such as robot perception, autonomous driving,

virtual/augmented reality, etc. Conventional approaches

mainly leverage the stereo correspondence based on multi-

view geometry but are restricted to the coverage provided

by the input views. Such requirement renders single-view

reconstruction particularly difficult due to the lack of cor-

respondence and large occlusions. With the availability of

large-scale 3D shape dataset [3], shape priors can be effi-

ciently encoded in a deep neural network, enabling faith-

ful 3D reconstruction even from a single image. While a

variety of 3D representations, e.g. voxels [6, 30, 34] and

point cloud [7, 35], have been explored for single-view re-

construction, triangular mesh receives the most attentions

as it is more desirable for a wide range of real applications

and capable of modeling geometric details.

Recent progresses in single-view mesh reconstruc-

tion [32, 9] propose to reconstruct a 3D mesh by deforming

a template model based on the perceptual features extracted

from the input image. Though promising results have been
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achieved, the reconstructed results are limited to the iden-

tical topological structure with the template model, leading

to large reconstruction errors when the target object has a

different topology (cf. Figure 1 (b)). Although it is pos-

sible to approximate a complex shape with non-disk topol-

ogy by deforming multiple patches to cover the target sur-

face, there remain several drawbacks that limit its practi-

cal usability. Firstly, the reconstructed result is composed

of multiple disconnected surface patches, leading to severe

self-intersections and overlaps that require tedious efforts to

remove the artifacts. Secondly, as obtaining a high-quality

global surface parameterization remains a challenging prob-

lem, it is nontrivial to generate a proper atlas that can cover

the surface with low distortion, only based on a single im-

age. Lastly, it is difficult to determine an appropriate num-

ber of surface patches that adapts to varying shapes.

In this work, we strive to generate the 3D mesh with

complex topology from a single genus-0 template mesh.

Our key idea is a mechanism that dynamically modifies the

topology of the template mesh by face pruning, targeting

at a trade-off between the deformation flexibility and the

output meshing quality. The basic model for deformation

learning is a cascaded version of AtlasNet [9] that predicts

per-vertex offsets instead of positional coordinates. Starting

from an initial mesh M0, we first apply such deformation

network and obtain a coarse output M1. Then, the key prob-

lem is to determine which faces on M1 to remove. To this

end, we propose to train an error-prediction network that es-

timates the reconstruction error (i.e. distance to the ground

truth) of the reconstructed faces on M1. The faces with

large error would be removed to achieve better reconstruc-

tion accuracy. However, it remains nontrivial to determine

a proper pruning threshold and to guarantee the smooth-

ness of the open boundaries introduced by the face prun-

ing. Towards this end, we propose two strategies to address

these issues: 1) a progressive learning framework that alter-

nates between a mesh deformation network, which reduces

the reconstruction error, and a topology modification net-

work that prunes the faces with large approximation error;

2) a boundary refinement network that imposes smoothness

constraints on the boundary curves, to refine the boundary

conditions. Both qualitative and quantitative evaluations

demonstrate the superiority of our approach over the exist-

ing methods, in terms of both the reconstruction accuracy

and the meshing quality. As seen in Figure 1, the proposed

method is able to better capture the complex topology with

a single sphere template mesh while achieving better mesh-

ing quality compared to the state-of-the-art AtlasNet [9].

In summary, our main contributions are:

• The first end-to-end learning framework for single-

view object reconstruction that is capable of modeling

complex mesh topology from a single genus-0 tem-

plate mesh.

• A novel topology modification network, which can be

integrated into other mesh learning frameworks.

• We demonstrate the advantage of our approach over

the state-of-the-arts in terms of both reconstruction ac-

curacy and the meshing quality.

2. Related Works

Reconstructing 3D surfaces from color images has been

investigated since the very beginning of the field [27]. To in-

fer 3D structures from 2D images, conventional approaches

mainly leverage the stereo correspondences from multi-

view geometry [11, 8]. Though high-quality reconstruc-

tion can be achieved, stereo based approaches are restricted

to the coverage provided by the multiple views and spe-

cific appearance models that cannot be generalized to non-

lambertian object reconstruction. Hence, learning-based

approaches have stood out as the major trend in recent years

thanks to its scalability to single or few images.

With the success of deep neural network and the

availability of large-scale 3D shape collections, e.g.

ShapeNet [3], deep learning-based 3D shape generation

has made great progress. In order to replicate the success

of 2D convolutional neural network to 3D domain, vari-

ous forms of 3D representations have been explored. As

a natural extension of 2D pixels, volumetric representation

has been widely used in recent works on 3D reconstruc-

tion [29, 30, 34, 6, 13, 31, 36, 10, 33] due to its simplic-

ity of implementation and compatibility with convolutional

neural network. However, deep voxel generators are con-

strained by its resolution due to the data sparsity and com-

putation cost of 3D convolution. As a flexible form of rep-

resenting a 3D structure, point cloud has become another

major alternative for 3D learning [26, 4] and shape genera-

tion [7, 18, 1, 14, 35, 20] due to its high memory efficiency

and simple and unified structure. Though enjoying the flex-

ibility to match 3D shape with arbitrary topology, point

cloud is not a well suited for imposing geometry constraints,

which are critical for ensuring smoothness and appealing

visual appearance of the reconstructed surface. Implicit

field based 3D reconstruction approaches [21, 22, 5, 23, 13]

share the similar advantages with point cloud representa-

tion in providing good trade-offs across fidelity, flexibility

and compression capabilities. Yet it also remains difficult

to regularize the generation of a volumetric implicit field to

achieve specific geometry properties.

In contrast, mesh representation is more desirable for

real applications since it can model fine shape details and

is compatible with various geometry regularizers. Due to

the complexity of modifying the mesh topology, most mesh

learning approaches strive to obtain a target shape by de-

forming a template mesh [9, 32, 25, 15, 24] via the learned

shape prior. More recently, the advances in differentiable
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Figure 2. The overview of our pipeline. Given an input image, we first employ multiple mesh deformation and topology modification

modules to progressively deform the mesh vertices and update the topologies to approximate the target object surface. A module of

boundary refinement is then adopted to refine the boundary conditions.

renderer [19, 16] have proposed to train a mesh generator

based on rendering loss, eliminating the need of 3D supervi-

sion. However, no prior approaches can dynamically mod-

ify the topology of the template mesh, while we propose the

first topology modification network that is able to generate

meshes with complex topologies from a genus-0 3D model.

3. Topology-adaptive Mesh Reconstruction

Overview. Given a single image I of an object, we at-

tempt to reconstruct the surface S of it. We adopt the trian-

gular mesh as a natural and flexible discretization of the tar-

get surface. A mesh is typically defined by M = (V,E, T ),
where V ∈ R

3 is the set of mesh vertices, E is the set of

edges connecting the neighboring vertices, and T is the set

of triangles enclosed by the connected edges. To reconstruct

the triangular mesh representation of an object, one could

choose to deform a template mesh to approximate the tar-

get surface. Nevertheless, the existing deformation-based

mesh reconstruction approaches, such as [32, 9, 16], are

not allowed to update the faces-to-vertices relationships and

thus are restricted by the predefined topology. In order to

overcome this limitation, we propose an end-to-end learn-

ing pipeline, consisting of three modules, to progressively

modify the coordinates and connectivity of the vertices on a

predefined mesh M0. To be specific, the mesh deformation

module is adopted to map the vertices on M0 to the tar-

get surface while maintain the connectivity over them; the

topology modification module is developed to update the

connection relationship between the vertices by pruning the

faces which deviate from the ground truth; the boundary re-

finement module is designed to refine the open boundaries

introduced by face pruning. Note that the mesh deformation

and topology modification are performed in an alternative

manner to gradually recover the overall shape and topology

of the target object.

Network structure. We propose a progressive structure

to deform a template mesh M0 to fit the target surface S.

In our implementation, M0 is instantiated as a sphere mesh

with 2562 vertices. Figure 2 illustrates the overall pipeline.

We leverage an encoder-decoder network for shape gen-

eration. On the encoder side, the input image is fed into

ResNet-18 [12] to extract a 1024-dimensional feature vec-

tor x. The decoder contains three successive subnets. Each

of the first two subnets consists of a mesh deformation mod-

ule and a topology modification module, and the last subnet

comprises a single boundary refinement module. Note that

each mesh deformation module predicts the per-vertex off-

set, which can be added to the input mesh to obtain the re-

constructed result. The topology modification module then

estimates the reconstruction error of the outcome of the

preceding deformation module and removes the faces with

large error in order to update the mesh topology. Finally,

the boundary refinement module enhances the smoothness

of the open boundaries to further improve the visual quality.

3.1. Mesh DeformNet

Our mesh deformation module consists of a single multi-

layer perceptron (MLP). Specifically, the MLP is composed

of four fully-connected layers of size 1024, 512, 256, 128
with non-linear activation ReLU on the first three layers and

tanh on the final output layer. Given an initial mesh M and

the shape feature vector x that contains the prior knowledge

of the object, we replicate the vector x and concatenate it

with the matrix containing all the vertices of M before feed-

ing them into the MLP. The MLP performs the affine trans-

formation on each vertex of M and generates the vertex dis-

placements. Note that we choose to predict the offsets in-

stead of directly regressing the coordinates. Such a design

paradigm enables more accurate learning of fine geometric

details with even less training time.
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3.2. Topology Modification

To generate objects with various topologies, it is nec-

essary to modify the faces-to-vertices relationship dynam-

ically. Towards this goal, we propose a topology modifi-

cation network that updates the topological structure of the

reconstructed mesh by pruning the faces which deviate sig-

nificantly from the ground truth. The topology modification

network is illustrated in Figure 3, which includes two com-

ponents: error estimation and face pruning.

3.2.1 Error Estimation

To perform face pruning, it is key to locate the triangle faces

that have large reconstruction errors at test time. We pro-

pose an error estimation network that predicts the per-face

errors of the reconstructed mesh from the preceding mesh

deformation network. It leverages a similar architecture

with that of the mesh deformation network. In particular,

we sample points randomly on the faces of the predicted

mesh M and concatenate the replicated shape feature vec-

tor x with the matrix containing all the sampling points. The

MLP takes as input the feature matrix and predicts the per-

point errors (distances to the ground truth). The final error

for each triangle face is obtained by averaging the predicted

errors for all the sampling points of the triangle face.

3.2.2 Face Pruning

Given the estimated error for each triangle face, we then ap-

ply a thresholding strategy that removes the faces whose es-

timated errors are beyond the predefined threshold to update

the mesh topology. However, to obtain a properly pruned

mesh structure, the threshold τ needs to be carefully config-

ured: a higher value of τ tends to generate reconstructions

with higher errors while a low decision threshold may re-

move too many triangles and destroy the surface geometry

of the generated mesh. To this end, we propose a progres-

sive face pruning strategy that removes error-prone faces in

a coarse-to-fine fashion. In particular, we set a higher value

for τ at the first subnet and decrease it by a constant factor

at the subsequent subnet. Such a strategy enables the face

pruning to be performed in a much more accurate manner.

3.3. Boundary Refinement

As shown in Figure 2, a naive pruning of triangles will

introduce jagged boundaries that adversely impact the vi-

sual appearance. To prevent such artifacts and further im-

prove the visual quality of the reconstructed mesh, we de-

sign a boundary refinement module to enhance the smooth-

ness of the open boundaries. It is similar to the mesh defor-

mation module but only predicts the displacement with re-

spect to each input boundary vertex. Note that each bound-

ary vertex is only allowed to move on the 2D plane estab-

Error

Estimation

Face

Pruning

Feature Vector

Figure 3. Topology Modification Network. The red color indicates

the sampled points with higher estimated errors.

lished by the two boundary edges that intersect at the ver-

tex. We further propose a novel regularization term which

penalizes the zigzags by enforcing the boundary curves to

stay smooth and consistent. The boundary regularizer is de-

fined as follows:

Lbound =
∑

x∈E

∥

∥

∥

∥

∥

∑

p∈N (x)

(x− p)

‖x− p‖

∥

∥

∥

∥

∥

, (1)

where {x ∈ E} is the set of vertices which lie on the open

boundary and {p ∈ N (x)} is the set of neighboring vertices

of x on the boundary.

3.4. Training Objectives

Our network is supervised by a hybrid of losses. For

mesh deformation and boundary refinement, we employ

the commonly-used Chamfer distance (CD) for measuring

the discrepancy between the reconstructed result and the

ground truth. The error estimation network is trained by the

quadratic loss for regressing the reconstruction errors. The

boundary regularizer is proposed to guarantee the smooth-

ness of the boundary curves. Besides, we also apply a com-

bination of geometry constraints to regularize the smooth-

ness of the mesh surface during mesh deformation.

CD loss. The CD measures the nearest neighbor distance

between two point sets. In our setting, we minimize the

two directional distances between the point set randomly

sampled from the generated mesh M and the ground truth

point set. The CD loss is defined as:

Lcd =
∑

x∈M

min
y∈S

‖x− y‖22 +
∑

y∈S

min
x∈M

‖x− y‖22, (2)

where {x ∈ M} and {y ∈ S} are respectively the point

sets sampled from the generated mesh M and the ground

truth surface S. For each point, CD finds the nearest point

in another point set, and sums the squared distances up.

Error estimation loss. We adopt the quadratic loss to

train our error estimation network, which is defined as:

Lerror =
∑

x∈M

|fe(x)− ex|
2, (3)

where {x ∈ M} is the point set sampled from the generated

mesh M , fe is the error estimation network, and ex is the

corresponding ground truth error.
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Figure 4. Qualitative results. (a) Input image; (b) N3MR; (c) Pixel2Mesh; (d) AtlasNet-25; (e) Baseline; (f) Ours; (g) Ground truth.

Geometry regularizers. For the mesh deformation mod-

ule, since the CD loss does not take into account the connec-

tivity of mesh vertices, the predicted mesh could suffer from

severe flying vertices and self-intersections. To improve the

smoothness of the mesh surface, we add several geometry

regularizers. We employ three regularization techniques de-

fined in [32, 16]: the normal loss Lnormal which measures

the normal consistency between the generated mesh and

ground truth, the smoothness loss Lsmooth which flattens

the intersection angles of the triangle faces and supports the

surface smoothness, and the edge loss Ledge which penal-

izes the flying vertices and overlong edges to guarantee the

high quality of recovered 3D geometry.

The final training objective of our system is defined as:

L = Lcd + λ1Lerror + λ2Lbound + λ3Lnormal

+λ4Lsmooth + λ5Ledge,
(4)

where λi are hyper-parameters weighting the importance of

each loss term.

4. Experiments

Dataset. Our experiments are performed on the 3D mod-

els collected from five categories in the ShapeNet [3]

dataset. To ensure fair comparisons with the existing meth-

ods, we adopt the experiment setup in [9]. We use the ren-

dered images provided by [6] as the inputs, where each 3D

model corresponds to 24 RGB images. For each 3D shape,

10, 000 points are uniformly sampled on the surface as the

ground truth.

Implementation details. The input images all have the

same resolution of 224 × 224. We first train each subnet

separately with fixing other components using a batch size

of 16 with a learning rate of 1e− 3 (dropped to 1e− 4 after
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Category
CD EMD

N3MR Pixel2Mesh AtlasNet-25 Baseline Ours N3MR Pixel2Mesh AtlasNet-25 Baseline Ours

plane 3.550 2.130 1.566 1.433 1.390 10.163 8.859 11.268 8.524 8.371

bench 10.865 3.107 2.239 2.950 2.172 14.101 10.075 9.808 9.828 8.713

chair 15.891 4.787 3.796 4.325 3.064 17.246 13.498 11.956 13.313 10.383

table 13.438 5.339 4.647 4.798 3.616 15.697 11.452 11.562 11.837 9.604

firearm 3.230 2.290 1.489 1.145 1.142 13.581 8.590 8.711 8.297 8.226

mean 9.355 3.531 2.747 2.930 2.277 14.158 10.495 10.661 10.360 9.059

Table 1. Quantitative comparison with the state-of-the-art methods. The CD and EMD are computed on 10, 000 points sampled from the

generated mesh after performing ICP alignment with the ground truth. The CD is in units of 10−3 and the EMD is in units of 10−2.

200 epochs) for 300 epochs. The entire network is then

fine-tuned in an end-to-end manner. The values of hyper-

parameters used in Equation (4) are λ1 = 1.0, λ2 = 0.5,

λ3 = 1e − 2, λ4 = 2e − 7, λ5 = 0.1. The threshold τ for

face pruning is set to be 0.1 at the first subnet and decreased

by a factor of 2 at the subsequent subnet.

4.1. Comparisons with the Stateofthearts

We first compare the performance of our approach with

three state-of-the-art methods for single view 3D mesh

reconstruction, including Neural 3D Mesh Renderer [16]

(N3MR), Pixel2Mesh [32] and AtlasNet [9] with 25 patches

(AtlasNet-25). We also compare with the baseline approach

which refers to our framework without the topology modi-

fication and boundary refinement module.

Qualitative comparisons. The visual comparison results

are shown in Figure 4. While N3MR can reconstruct the

rough shapes, it fails to capture the fine details of the geom-

etry and is not able to model surface with non-disk topology.

Pixel2Mesh performs generally better than N3MR in terms

of the capability of modeling the fine structures. However,

as Pixel2Mesh employs a similar mesh deformation strat-

egy, it struggles to reconstruct shapes with complex topolo-

gies, especially for the chairs and tables. Our baseline ap-

proach also has the same problem as the topology modifi-

cation module is not applied. Thanks to the use of multiple

squares as the template model, AtlasNet-25 can generate

meshes with various topologies. However, it suffers from

severe self-intersections and overlapping and still fails to

reconstruct some instances with more complex topologies,

e,g, the desk in the third row and the chair in the fifth row.

In comparison, our approach has outperformed the other ap-

proaches in terms of visual quality. We are able to generate

meshes with complex topologies while maintaining high re-

construction accuracy thanks to the topology-modification

modules. In addition, our method scales well to the shapes

with simple topologies. For the objects that can be well

reconstructed from a template sphere (e.g. the plane), the

Method CD EMD

AtlasNet-25 (PSR) 3.430 12.574

Ours (PSR) 2.304 10.415

Table 2. Quantitative comparison with AtlasNet-25 after PSR.

Figure 5. Qualitative comparison with AtlasNet-25 after PSR. (a):

Input images; (b): AtlasNet-25; (c): Ours; (d): Ground truth.

spherical topology is faithfully preserved.

Quantitative comparisons. We adopt the widely used

Chamfer Distance (CD) and Earth Mover’s Distance (EMD)

to quantitatively evaluate the results. Both metrics are com-

puted between the ground truth point cloud and 10, 000
points uniformly sampled from the generated mesh. Since

the outputs of Pixel2Mesh [32] are non-canonical, we align

their predictions to the canonical ground truth by using the

pose metadata available in the dataset. Additionally, we ap-

ply the iterative closest point algorithm (ICP) [2] on all the

results for finer alignment with the ground truth. The quan-

titative comparison results are shown in Table 1. Our ap-

proach consistently outperforms the state-of-the-art meth-

ods in both metrics over all five categories, especially on

the models with complex topologies (e.g. chair and table).

Poisson surface reconstruction. Although our method

can generate visually appealing meshes with smooth sur-

faces and complex topologies, it still has the inherent draw-
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Figure 6. Qualitative comparison with AtlasNet-25 on real images.

(a): Input images; (b): Input masks; (c): AtlasNet-25; (d): Ours.

back of producing open surfaces due to the face pruning

operations. To avoid the above mentioned drawbacks, one

could densely sample the surface and reconstruct the mesh

from the obtained point cloud. In particular, we first sample

100, 000 points, together with their oriented normals, from

the reconstructed surface and then apply Poisson surface re-

construction (PSR) [17] to produce a closed triangle mesh.

To evaluate the performance of applying PSR on our results,

we quantitatively compare with AtlasNet-25. Specifically,

for both methods, we randomly selected 20 shapes from the

chair category, and run the PSR algorithm to get the corre-

sponding closed meshes. In Table 2, we show the quantita-

tive comparisons measured in CD and EMD. As seen from

the results, our approach generates more accurate results

under both measurements. We show the visual comparisons

in Figure 5. Note that we generate meshes with significantly

fewer artifacts and correct topologies compared to the At-

lasNet, proving the better meshing quality of our method.

Reconstructing real-world objects. To qualitatively

evaluate the generalization performance of our method on

the real images, we test our network on the Pix3D [28]

dataset by using the model trained on the ShapeNet [3].

Figure 6 shows the results reconstructed by our method and

AtlasNet, where the objects in the images are manually seg-

mented. Our approach is still able to faithfully reconstruct

a variety of objects with complex topologies and achieves

better accuracy compared against AtlasNet, indicating that

our method scales reasonably well on the real images.

4.2. Ablation Studies

Robustness to initial meshes. We first test our approach

with different initial meshes (e.g. sphere and unit square).

As seen from the visualization results in Figure 7, our

Figure 7. Qualitative results with different initial meshes. (a): In-

put images; (b): Unit square; (c): Sphere; (d): Ground truth.

Figure 8. Ablation study on progressive shaping. (a): Input im-

ages; (b): Reconstructions w/o progressive shaping; (c): Recon-

structions with progressive shaping; (d): Ground truth.

method achieves similar performance with the two different

initial meshes, demonstrating the robustness of our method.

Progressive shaping. Our proposed architecture consists

of multiple mesh deformation and topology modification

modules that progressively recover the 3D shape. To val-

idate the effectiveness of such progressive shaping strategy,

we retrain our network with removing the first subnet in the

decoder. Figure 8 shows the visualization results. Without

progressive shaping, the face pruning cannot be performed

in an accurate manner, which could destroy the surface ge-

ometry of the generated mesh.

Face pruning threshold. We investigate the effect of the

threshold τ by using 20% of training samples as the val-

idation set, where Chamfer distance (CD) is used as the

measure that sums two directional reconstruction errors of

Prediction → GT and GT → Prediction (cf. Equa-

tion (2)). Figure 9 plots the results, suggesting that τ ∈
[0.05, 0.2] strikes a good balance between the two direc-

tional distances. We thus set τ = 0.1 in all our experiments.
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GT to prediction, and distance from prediction to GT.

Figure 10. Ablation study on boundary refinement. (a): Input im-

ages; (b): Reconstructions w/o boundary refinement; (c): Recon-

structions with boundary refinement; (d): Ground truth.

Boundary refinement. To demonstrate the effectiveness

of the proposed boundary refinement module, we show

the visualized reconstruction results with and without the

boundary refinement in Figure 10. By using the proposed

boundary refinement module, one can achieve significantly

cleaner mesh with higher visual quality.

4.3. Shape Autoencoding

Besides the single-view 3D reconstruction, our frame-

work can also be applied for 3D shape autoencoding. In

this section, we demonstrate the capability of our approach

to reconstruct meshes from the input point clouds. Toward

this goal, we randomly select 2, 500 points from the ground-

truth point cloud and employ the PointNet [26] to extract

the corresponding latent features. Again, we compare both

the quantitative and qualitative results against the state-of-

the-art AtlasNet [9]. To ensure fair comparisons, we use

the same experiment settings in [9]. The results are shown

in Table 3 and Figure 11. As shown in the results, our

approach achieves superior performance both qualitatively

and quantitatively.

Method CD EMD

AtlasNet-25 (AE) 0.765 8.467

Ours (AE) 0.655 6.754

Table 3. Quantitative results of 3D shape autoencoding. The re-

sults take the means on the five shape categories used in the single-

view reconstruction.

Figure 11. Qualitative results of 3D shape autoencoding. (a):

Ground truth Meshes; (b): AtlasNet-25; (c): Ours.

5. Conclusion

We have proposed an end-to-end learning framework

that is capable of reconstructing meshes of various topolo-

gies from single-view images. The overall framework in-

cludes multiple mesh deformation and topology modifica-

tion modules that progressively recover the 3D shape, and a

boundary refinement module that refines the boundary con-

ditions. Extensive experiments show that our method sig-

nificantly outperforms the existing methods, both quantita-

tively and qualitatively. One limitation of our method is the

inherent drawback of producing non-closed meshes. But it

can be resolved by a post-processing procedure that recon-

structs closed surfaces from densely sampled point clouds.

Future research directions include designing a differentiable

mesh stitching operation to stitch the open boundaries intro-

duced by the face pruning operations.
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