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Abstract

With the development of convolutional neural networks (CNN), the semantic understanding of

remote sensing scenes has been significantly improved based on their prominent feature encoding

capabilities. Whereas many existing deep-learning models focus on designing different architectures,

only few works in the remote sensing field have focused on investigating the performance of the

learned feature embeddings and the associated metric space. In particular, two main loss functions have

been exploited: the contrastive and the triplet loss. However, the straightforward application of these

techniques to remote sensing images may not be optimal in order to capture their neighborhood structures

in the metric space, due to the insufficient sampling of image pairs or triplets during the training stage,

and to the inherent semantic complexity of remotely sensed data. To solve these problems, we propose

a new deep metric learning approach, which overcomes the limitation on the class discrimination by

means of two different components: 1) scalable neighborhood component analysis (SNCA), which aims

at discovering the neighborhood structure in the metric space; and 2) the cross entropy loss, which aims

at preserving the class discrimination capability based on the learned class prototypes. Moreover, in

order to preserve feature consistency among all the mini-batches during training, a novel optimization

mechanism based on momentum update is introduced for minimizing the proposed loss. An extensive

experimental comparison (using several state-of-the-art models and two different benchmark datasets)

has been conducted to validate the effectiveness of the proposed method from different perspectives,

including: 1) classification; 2) clustering; and 3) image retrieval. The related codes of this paper will

be made publicly available for reproducible research by the community.

Index Terms
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Deep learning, metric learning, remote sensing scene characterization, dimensionality reduction.

I. INTRODUCTION

With the ongoing development of different Earth Observation missions and programmes, the

semantic understanding of remote sensing (RS) image scenes plays a fundamental role in many

important applications and societal needs [1], including preservation of natural resources [2],

urban and regional planning [3], contingency management [4], land-cover analysis [5] and global

Earth monitoring [6], among others. From a practical perspective, the RS scene recognition

problem consists of predicting the semantic concept associated with a given aerial scene, based

on its own visual content. In this way, scene-based recognition methods are expected to deal

with high intra-class and low inter-class variabilities, since airborne and spaceborne optical

data often comprise a wide variety of spatial structures that lead to a particularly challenging

characterization for RS scenes [7].

In the literature, extensive research has been conducted and a wide variety of scene recog-

nition methods have been presented within the RS field [8], [9]. From hand-crafted feature-

based approaches [10], [11] to more elaborated unsupervised techniques [12], [13], the inherent

complexity of the RS image domain often limits the performance of these traditional schemes

when dealing with high-level semantic concepts [14]. More recently, deep-learning methods have

shown a great potential to uncover highly discriminating features in aerial scenes [15], being the

so-called deep metric learning approach one of the most prominent trends [16]–[18]. Specifically,

deep metric learning aims at projecting semantically similar input data to nearby locations in the

final feature space, which is highly appropriate to manage complex RS data [19]. Nonetheless,

there are multiple factors, e.g. large-scale archives, sensor types or image acquisition conditions,

that still make the semantic understanding of aerial scenes very challenging, thus motivating the

development of new models to effectively learn discriminative CNN-based characterizations for

unconstrained land cover scenes [9].

In order to address all these challenges, this paper proposes a new RS scene characterization

approach, which provides a new perspective on the traditional deep embedding scheme typically

used in land cover recognition tasks [16], [17]. The main objective of the proposed method

consists of learning a low-dimensional metric space that can properly capture the semantic sim-

ilarities among all the RS scenes based on the CNN-based feature embedding of the whole data

collection. Moreover, the learned feature embedding in such metric space has to be effectively
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generalized by means of out-of-sample RS scenes. To achieve this goal, we first investigate the

scalable neighborhood component analysis (SNCA) [20] and further analyze the limitations of

this recent method on the discrimination of RS scenes. Then, we develop an innovative deep

metric learning approach that has been specifically designed to manage the particular semantic

complexity of the RS image domain. Specifically, two main components are involved in this new

design: 1) SNCA, which aims at discovering the neighborhood structure in the metric space;

and 2) the Cross Entropy (CE) loss, which aims at preserving the class discrimination capability

based on the learned class prototypes. In addition, a novel optimization mechanism (based on the

momentum update for SNCA) is proposed to generate consistent features within each training

epoch. In order to demonstrate the effectiveness of our contribution when characterizing RS

scenes, we conduct a comprehensive experimental comparison, which reveals that our newly

proposed RS scene characterization method provides competitive advantages with respect to

different state-of-the-art models in three different RS applications (scene classification, cluster-

ing, and retrieval), over two benchmark datasets. The main contributions of this paper can be

summarized as follows:

1) To the best of our knowledge, this work investigates for the first time in the literature the

suitability of using the SNCA method for characterizing remotely sensed image scenes

while also analyzing its main limitations in RS.

2) We propose a new deep metric learning model specifically designed to characterize RS

scenes. Our new approach is able to learn a metric space based on CNN models that

preserve the discrimination capability for the highly variant RS semantic concepts.

3) In order to improve the consistency of the feature embeddings generated on the whole

dataset during training, we propose a novel optimization mechanism based on momentum

update for minimizing the SNCA-based losses.

4) Based on three different RS applications, we demonstrate the superiority of our newly

proposed method with respect to several state-of-the-art characterization methods over

different datasets. The related codes will be released for reproducible research inside the

RS community.

The rest of this paper is organized as follows. Section II reviews some related works and

highlights their main limitations when effectively characterizing RS scenes. Section III presents

the proposed deep metric learning model for RS. In Section IV, extensive experiments are
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conducted on several publicly available benchmark datasets. Finally, Section V concludes the

paper with some remarks and hints at plausible future research lines.

II. RELATED WORK

A. RS Scene Characterization

Broadly speaking, three different trends can be identified when characterizing remotely sensed

scenes: (1) low-level feature-based techniques; (2) unsupervised approaches; and (3) deep-

learning methods. A recent work published in [21] reviews the evolution of feature extraction

approaches from shallow to deep by comprehensively evaluating both supervised and unsu-

pervised approaches. The former group of techniques is focused on extracting salient features

from the input images using straightforward visual descriptors, such as color, texture, spectral-

spatial information, or a combination of descriptors. From the simplest low-level feature-based

approaches, which make use of color histograms [10], [22], to the most elaborated techniques,

that consider texture features as well as gradient shape descriptors [11], [23], [24], all these

methods exhibit limitations when dealing with high-level semantic concepts, due to the inherent

complexity of the RS image domain [14], [25].

In order to enhance the visual characterization and generalization, unsupervised feature learn-

ing approaches have been proposed to classify airborne and space optical data. The rationale

behind this kind of methods is based on encoding the low-level features of the input scene into

a higher-level feature space by means of unsupervised learning protocols. For instance, sparse

coding [12], [13], topic modeling [26], [27], manifold learning [28], [29] and auto-encoders [30],

[31] are some of the most recent unsupervised paradigms that have been successfully applied

to the RS field. Despite the fact that these and other methods are able to provide performance

advantages with respect to traditional low-level feature-based techniques, the unsupervised per-

spective of the encoding procedure may eventually reduce the intra-class discrimination ability,

since actual scene classes are not taken into account.

Recently, deep-learning methods have attracted the attention of the RS research community

due to their great potential to uncover highly discriminating features in aerial scenes [15].

More specifically, these approaches aim at projecting the input data onto the corresponding

semantic label space through a hierarchy of nonlinear mappings and layers, which generate a

high-level data characterization useful to classify remotely sensed imagery [32]. For instance,

Yao et al. proposed in [33] a stacked sparse auto-encoder that extracts deep features used to
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effectively classify aerial images. Lu et al. also presented in [34] an unsupervised representation

learning method based on deconvolution networks for RS scene classification. With the increasing

popularity of CNNs, other authors advocate the use of more complex deep-learning architectures

(e.g., AlexNet [35], VGGNet [36] and GoogleNet [37]) to characterize and classify RS scenes.

It is the case of Hu et al. who present in [38] two different scenarios to make use of VGGNet:

(i) one directly using the last fully connected layers as image descriptors; and (ii) another

considering an encoding procedure over the last convolutional layer feature maps. Chaib et al.

also presented in [39] an RS classification method that employs the VGGNet model as feature

extractor mechanism. Specifically, the authors adopt a feature fusion strategy in which each layer

is regarded as a separate feature descriptor. Zang et al. defined in [40] a deep ensemble framework

based on gradient boosting, which effectively combines several CNN-based characterizations.

Analogously, Li et al. proposed in [41] a multi-layer feature fusion framework, which takes

advantage of multiple pre-trained CNN models for RS scene classification. Cheng et al. also

developed in [42] an RS classification approach using a bag of convolutional features obtained by

different off-the-shelf CNN models. For fine-grained land-use classification, Kang et al. exploited

multiple CNN models and categorized different types of buildings based on street view images

[43].

Despite the effectiveness achieved by these and other relevant methods in the literature [44],

multiple research works highlight the benefits of using deep-learning embeddings to characterize

aerial scenes [19]. In general, the so-called deep metric learning approach aims at projecting

semantically similar input datasets to nearby locations in the final feature space, by means of

non-isotropic metrics [45]. As a result, this is a highly appropriate scheme to simplify complex

topological spaces (which are often found in RS data). The unprecedented availability of airborne

and space optical data, together with the constant development of the acquisition technology, are

substantially increasing the complexity of the RS data and consequently its visual interpretation

[1]. In addition, the probability of encountering unseen target scenes increases with the data

complexity, which also makes the embedding strategy appropriate for transferring the knowledge

from the training samples to broader semantic domains [46].

Several works in the most recent RS literature exemplify these facts. For instance, Gong

et al. adopted in [16] the Lifted Structured Feature Embedding approach [47], which defines

a structured objective function based on lifted pairwise distances within each training batch.

The authors introduced an additional diversity-promoting criteria to decrease the metric pa-
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rameter factor redundancy for RS scene classification. Cheng et al. presented in [17] a simple

but effective method to learn highly discriminative CNN-based features for aerial scenes. In

particular, the authors imposed a metric learning regularization term on the CNN features by

means of the contrastive embedding scheme [48], which intrinsically enforces the model to be

more discriminative and to achieve competitive performance. Similarly, Yan et al. proposed in

[18] a cross-domain extension that aims at reducing the feature distribution bias and spectral shift

in aerial shots, considering a limited amount of target samples. Whether the model is created

using network ensembles [40] or more elaborated semantic embeddings [16], [17], the special

particularities of the RS domain still raised some important challenges when classifying aerial

scenes [9]. Specifically, the huge within-class diversity and between-class similarity of RS scenes

motivate the development of new operational processing chains to effectively learn discriminative

CNN-based characterizations that can obtain better semantic generalization for unconstrained

land cover scenes. Note that there are many factors (such as different sensing dates, instrument

positions, lighting conditions and sensor types) that also affect remotely sensed data and hence

their semantic understanding.

B. Deep Metric Learning

Deep metric learning methods aim at learning a low-dimensional metric space based on CNN

models, where the feature embeddings of semantic-similar images should be close and those of

dissimilar images should be separated. The metric space with such characteristics can be learned

by applying proper loss functions. Most of the existing deep metric learning methods can be

categorized based on two types of loss functions [17], [49]–[51]: 1) the contrastive loss [48];

and 2) the triplet loss [52]. Some useful notations, as well as the definitions of these two losses

are given below. Let X = {x1, · · · ,xN} define as a set of N RS images and Y = {y1, · · · ,yN}

is the associated set of label vectors, where each label vector yi is represented by the one-hot

vector, i.e., yi ∈ {0, 1}
C , where C is the total number of classes. If the image is annotated by the

class c, the c-th element of yi is 1, and 0 otherwise. vi ∈ R
D denotes the feature of the i-th image

xi obtained by a complex nonlinear mapping F(xi; θ) based on a CNN model, where the set θ

represents its learnable parameters. D is the dimension of the feature and fi is the normalized

feature on the unit sphere (i.e., fi = vi/‖vi‖2). To train the deep metric learning system, a set

T with M images is extracted from X . According to this notation, the two aforementioned loss

functions can be defined as:
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1) Contrastive Loss:

Lcontrastive =
∑

i,j

lij‖fi − fj‖
2
2

+ (1− lij)h(m− ‖fi − fj‖2)
2,

(1)

where h(·) represents the hinge loss function, i.e., h(x) = max(0, x), m is the predefined margin,

and lij is the label indicator satisfying:

lij =











1, if yi = yj,

0, otherwise.
(2)

Given an image pair (xi,xj), the first term minimizes (during the training) the Euclidean distance

of the two feature embeddings if they share the same class, and the second term is minimized

to separate their distance by a certain margin m if they belong to different classes.

2) Triplet Loss:

Ltriplet =
∑

i

h(‖fai − f
p
i ‖

2
2 − ‖f

a
i − fni ‖

2
2 +m), (3)

where fai , f
p
i , and fni are the feature embeddings of an anchor image xa

i , a positive image x
p
i ,

and a negative image xn
i . Normally, the positive image shares the same class with the anchor

image, and the class of the negative image is different from that of the anchor image. Given a

triplet (fai , f
p
i , f

n
i ), the triplet loss is minimized to push the negative image away from the anchor

image so that the distance is larger than the distance of the positive pair with a certain margin.

C. Current Limitations in RS Scene Characterization

Most existing deep-learning based methods for RS scene characterization focus on developing

different CNN architectures for improving the classification performance based on the semantic

labels predicted by the CNN models. However, only few works in the RS field have addressed the

problem of how to analyze the performance of the learned feature embeddings and the associated

metric space. One of such pioneer works is [17], which introduced a novel loss function composed

of the contrastive loss and the CE loss for learning discriminative features from RS images. The

contrastive loss was also exploited in [53] for encoding Synthetic Aperture Radar (SAR) scene

images into low-dimensional features. In [54], an RS image retrieval method was proposed

based on the learned metric space by utilizing the triplet loss. Normally, the optimization of

CNN models with respect to the contrastive or triplet loss functions is conducted stochastically
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with mini-batches. For the contrastive loss, negative and positive pairs are usually constructed

for training the CNN models within each mini-batch. Nonetheless, this scheme has an important

limitation when considering the inherent semantic complexity of the RS image domain. For

example, we assume that each RS image can be seen once during one epoch of training and

xi exists in one mini-batch for the current training iteration. The positive and negative images

with respect to xi in this mini-batch can be only seen during the current iteration of training.

However, CNN models cannot capture all the other positive and negative images with respect

to xi outside the current mini-batch during this training epoch, which may lead to insufficient

learning due to the particularly high intra-class and low inter-class variability of RS images.

For the triplet loss, one should build the whole set of possible triplets when training the CNN

models, where the number of possible triplets is in the order of O(|X |3) [55]. When considering

a large-scale dataset (which is often the case in RS problems), sufficiently training CNN models

will inevitably lead to a practically unaffordable computational cost.

III. PROPOSED DEEP METRIC LEARNING FOR RS

Our newly proposed end-to-end deep metric learning model for RS scene characterization

consists of three main parts. First, a backbone CNN architecture is considered in order to generate

the corresponding feature embedding space for the input images. In this work, we make use of

the ResNet [56] architecture due to its good performance to classify RS scenes [57]. Second,

a new loss function, which contains a joint CE term and an SNCA term, is used to optimize

the proposed model in order to address the within-class diversity and between-class similarity

inherent to RS scenes. Third, a novel optimization mechanism based on momentum update is

proposed. Our mechanism can preserve the feature consistency within each training epoch better

than the memory-bank based mechanism in [20]. Figure 1 provides a graphical illustration of

our newly proposed deep metric learning approach. In the following sections, we describe in

more detail the newly defined loss function and the considered optimization algorithm.

A. Loss Function

The neighborhood component analysis (NCA) [58] is a supervised dimensionality reduction

method to learn a metric space through a linear projection of the input data such that the leave-

one-out KNN score is stochastically maximized in the metric space. The SNCA [20], built upon

the NCA, aims to find a metric space that can preserve well the neighborhood structure based
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+

Fig. 1. Graphical illustration of the proposed end-to-end deep metric learning model, which is optimized using our newly

defined loss function. With the proposed approach, we aim to encode RS images into the learned metric space through a CNN

model, where the intra-class feature embeddings are grouped together, and the inter-class feature embeddings are separated.

on deep models with scalable datasets. Given a pair of images (xi,xj) from the training set T ,

their similarity sij in the metric space can be modeled with the cosine similarity:

sij = fTi fj. (4)

This means that the image xi selects the image xj as its neighbor in the metric space with a

probability pij as:

pij =
exp(sij/σ)

∑

k 6=i exp(sik/σ)
, pii = 0, (5)

where σ is the temperature parameter controlling the concentration level of the sample distribution

[59]. When i = j, pii = 0 indicates that each image cannot select itself as its own neighbor

in the metric space. When i 6= j, pij indicates the probability that the image xj can be chosen

as a neighbor of the image xi in the metric space and inherited the class label from xi. The

higher the similarity between xi and xj , the higher the opportunity that xj can be selected as

a neighbor of xi in the metric space and inherited the class label from xi as compared to the

other images xk. This probability is often termed as leave-one-out distribution on T . Based on

this, the probability that xi can be correctly classified is:

pi =
∑

j∈Ωi

pij, (6)

where Ωi = {j|yi = yj} is the index set of training images sharing the same class with xi.

Intuitively, the image xi can be correctly classified at a higher chance if more images xj sharing
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the same class with xi are located as its neighbors in the metric space. Then, the objective of

SNCA is to minimize the expected negative log likelihood over T with the definition:

LSNCA = −
1

|T |

∑

i

log(pi). (7)

The gradient of LSNCA with respect to fi is given by:

∂LSNCA

∂fi
=

1

σ

∑

k

pikfi −
1

σ

∑

k∈Ωi

p̃ikfk, (8)

where p̃ik = pik/
∑

j∈Ωi
pij is the normalized distribution of the ground-truth class. Based on the

gradient in (8), an optimal solution of (7) will be reached when the probability pik of negative

images (i.e. k /∈ Ωi) equals 0. In other words, the similarities between xi and some of positive

images (k ∈ Ωi) can also be very low in the metric space, as long as there exist other positive

images which are the neighbors of xi. On the one hand, this characteristic can be beneficial to

discover the inherent locality structure among the images in the metric space, especially if there

are intra-class variations in the dataset. On the other hand, there is one limitation of SNCA for

K nearest neighbours (KNN) classification. Since some of the positive images (k ∈ Ωi) do not

need to be close to xi, their feature embeddings may be closer to those of other negative images

in the metric space. As illustrated in Figure 2(a), the classes A and B are separated, and their

intra-class variation can also be discovered, which is represented by the groups of light and dark

points. However, given the presence of some out-of-sample images sharing similar features with

some images from both classes, they cannot be correctly categorized by exploiting the KNN

classifier. One way to solve this problem is to separate the images from the two classes farther

away from each other, which is illustrated in Figure 2(b). With the same feature embeddings as

in Figure 2(a), the out-of-sample images are well recognized by the KNN classifier. To achieve

this goal, we introduce the CE loss for learning the class-wise prototype to align the images

with respect to their associated classes.

The CE loss aims to measure the distance between the distribution of model outputs and the

real distribution. In terms of classification, the CE loss is defined as:

LCE = −
1

|T |

∑

i

∑

c

yci log(p
c
i), (9)

where pci denotes the probability that xi is classified into the class c, formulated as:

pci =
exp(wT

c vi)
∑

j exp(w
T
j vi)

, (10)
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Class A

Class B

Out-of-sample

(a)

Class A

Class B

Out-of-sample

(b)

Fig. 2. Graphical illustration of the main limitation of SNCA. (a) In the metric space produced by SNCA, it will be challenging

for the KNN classifier to distinguish the out-of-sample images located near the border between the two classes. (b) By introducing

CE loss, these two classes are further separated in the metric space, and the same out-of-sample images in (a) can be accurately

categorized by the KNN classifier.

where wc are the learned parameters from class c. Minimizing the CE loss (9) consists of aligning

all the images within the same class with the same vector wc. In that case, images from different

classes are separated.

At this point, by taking advantage of the two losses, we propose a new joint loss function for

learning a low-dimensional metric space, which can preserve the neighborhood structure among

the images and also distinguish the images from different classes. The proposed joint function,

termed as SNCA-CE, is defined as:

L = LCE + λLSNCA, (11)

where λ denotes a penalty parameter to control the balance between these two terms.

B. Optimization via Memory Bank

By applying the chain rule, we can obtain the gradient of the joint loss function with respect

to fi:
∂Li

∂fi
=− yci (1− pci)‖vi‖2wc +

λ

σ

∑

k

pikfk

−
λ

σ

∑

k∈Ωi

p̃ikfk.

(12)

From (12), we can infer that the feature embeddings of the entire dataset are needed for

calculating the gradient. Following [20], we exploit a memory bank to store the normalized

features, i.e., B = {fi, · · · , fM} and we assume that these are up-to-date with regards to the
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CNN parameters θ trained at the t-th iteration, i.e., f
(t)
i ≈ F(xi; θ

(t))/‖vi‖2. At the (t + 1)-th

iteration, the gradient of the joint loss function with respect to fi is:

∂Li

∂fi
=− yci (1− pci)‖v

(t)
i ‖2wc +

λ

σ

∑

k

pikf
(t)
k

−
λ

σ

∑

k∈Ωi

p̃ikf
(t)
k .

(13)

Then, θ can be learned by using the back-propagation technique, and B can be updated by:

f
(t+1)
i ← mf

(t)
i + (1−m)fi, (14)

where m is a parameter used for proximal regularization of fi based on its historical versions.

We term this optimization strategy as SNCA-CE(MB). The associated optimization scheme is

described in Algorithm 1.

Algorithm 1 SNCA-CE(MB)

Require: xi, and yi

1: Initialize θ and B (randomly), along with σ, λ, D and m.

2: for t = 0 to maxEpoch do

3: Sample a mini-batch.

4: Obtain f
(t)
i and v

(t)
i based on CNN with θ(t).

5: Calculate sij with reference to B.

6: Calculate the gradients based on (13).

7: Back-propagate the gradients.

8: Update B via (14).

9: end for

Ensure: θ, B

C. Optimization via Momentum Update

In the SNCA-CE(MB) optimization scheme, the features in B are assumed to be up-to-date

during training. However, this assumption cannot be easily satisfied, especially for scalable

datasets. Suppose the image xi is observed in the first iteration of one training epoch and the

associated feature f
(1)
i –generated by the CNN with the parameters θ(1)– is stored in B. Due to the

training mechanism, this image cannot be observed again within the current epoch. Therefore,
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for the t-th iteration, the feature f
(t)
j associated to image xj –generated by the CNN with θ(t)–

would not be consistent with f
(1)
i , which is generated by a historical state of CNN. Since the

optimization of SNCA-CE requires a look-up of the whole set of stored feature embeddings in

B for each iteration, such inconsistency may lead to a sub-optimal training of the CNN.

To solve this issue, we propose a novel optimization mechanism based on momentum update

[60] for the proposed SNCA-CE, termed as SNCA-CE(MU). Instead of updating the feature

embeddings stored in B, the SNCA-CE(MU) progressively updates the state of the CNN in

order to preserve the consistency of the features among all the mini-batches of each training

epoch. To achieve this, an auxiliary CNN with parameters θaux is adopted, and θaux is updated

by:

θ(t+1)
aux ← mθ(t)aux + (1−m)θ(t), (15)

where m ∈ [0, 1) is a momentum coefficient. It is worth noting that only the CNN with θ is

updated by means of back-propagation. The auxiliary CNN with parameters θaux can evolve

more smoothly than the CNN with θ. To this end, the features in B (encoded by the auxiliary

CNN) are updated by:

f̂
(t+1)
i ← f̂

(t)
i , (16)

where f̂i denotes the features generated by the auxiliary CNN. In other words, the features in

B are replaced by the features encoded by the auxiliary CNN after each training epoch. The

associated optimization scheme is described in Algorithm 2.

IV. EXPERIMENTS

A. Dataset Description

In this section, we use two challenging RS image datasets to validate the effectiveness of the

proposed methods. In the following, we provide a detailed description of the considered datasets:

1) Aerial Image Dataset (AID) [61]: This dataset is an important image collection, which

has been specially designed for aerial scene classification and retrieval. In particular, it is

made up of 10 000 RGB images belonging to the following 30 RS scene classes: airport,

bare land, baseball field, beach, bridge, center, church, commercial, dense residential,

desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking,

playground, pond, port, railway station, resort, river, school, sparse residential, square,

stadium, storage tanks and viaduct. Figure 3(a) illustrates some example scenes from this
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Algorithm 2 SNCA-CE(MU)

Require: xi, and yi

1: Initialize θ, θaux and B (randomly), along with σ, λ, D and m.

2: for t = 0 to maxEpoch do

3: Sample a mini-batch.

4: Obtain f
(t)
i and v

(t)
i based on CNN with θ(t).

5: Obtain f̂
(t)
i and v̂

(t)
i based on the auxiliary CNN with θ

(t)
aux.

6: Calculate sij based on f
(t)
i and B.

7: Calculate the gradients based on (13).

8: Back-propagate the gradients of θ.

9: Update the parameters θaux of the auxiliary CNN via (15).

10: Update B via (16).

11: end for

Ensure: θ

dataset. All the images are RGB acquisitions with a size of 600× 600 pixels. In addition,

the number of images per class ranges from 220 to 420, and the spatial resolution also

varies from 8 to 0.5 meters. The AID dataset is publicly available1.

2) NWPU-RESISC45 [9]: This is a large-scale RS dataset, which contains 31 500 images

uniformly distributed in 45 scene types: airplane, airport, baseball diamond, basketball

court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense

residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area,

intersection, island, lake, meadow, medium residential, mobile home park, mountain, over-

pass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout,

runway, sea ice, ship, snow-berg, sparse residential, stadium, storage tank, tennis court,

terrace, thermal power station and wetland. Figure 3(b) shows some sample scenes from

this dataset. All these aerial images are RGB shots with size of 256 × 256 pixels and

spatial resolution ranging from 30 to 0.2 meters. This dataset is also publicly available2.

1AID dataset : http://goo.gl/WrJhu6

2NWPU-RESISC45 dataset: http://goo.gl/7YmQpK
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Fig. 3. Sample images from the two considered benchmark datasets: (a) AID; and (b) NWPU-RESISC45.

B. Experimental Setup

In order to extensively evaluate the effectiveness of the proposed method, we carry out several

experiments from different perspectives, including: 1) image classification based on the KNN

classifier; 2) clustering; and 3) image retrieval.

1) Classification: Given an out-of-sample image x∗, its feature embedding f∗ is obtained by

applying F(·) with the learned parameter set θ. Based on the Euclidean distance between f∗

and the other stored embeddings in B, we can obtain the closest K nearest neighbors, and the

predicted class y∗ can be determined based on their classes via majority voting. To evaluate

classification performance, we adopt the overall accuracy and class-wise F1 score as metrics.

2) Clustering: With the provided set of out-of-sample images, we can generate their feature

embeddings based on F(·). Their quality can be assessed by applying a clustering task, such as

K-means clustering. If the intra-class features are close and the inter-class features are separated

in the metric space, they can be well clustered, and the clustered labels can accurately match

the ground-truth semantic labels. For the evaluation of clustering performance, the first measure

that we use is the Normalized Mutual Information (NMI) [62], defined as:

NMI =
2× I(Y;C)

H(Y) +H(C)
, (17)

where Y represents the ground-truth class labels, and C denotes the cluster labels based on the

clustering method. I(·; ·) and H(·) represent the mutual information and entropy function, re-

spectively. This metric measures the agreement between the ground-truth labels and the assigned
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labels based on the clustering method. We also calculate the unsupervised clustering accuracy

as our second metric, formulated by:

ACC = max
M

∑N

i=1 δ(li =M(ci))

N
, (18)

where li denotes the ground-truth class, ci is the assigned cluster of image xi, and δ(·) represents

the Dirac delta function.M is a function than finds the best mapping between the cluster assigned

labels and the ground-truth labels.

3) Image Retrieval: Image retrieval aims to find the most semantically similar images in the

archive based on their distances with regards to the query images. Such distance is measured by

evaluating the similarity of the feature embdeddings between the query images and the full set

of images in the archive in the given metric space. Given the query image, more relevant images

can be retrieved based on the feature embeddings generated by a more effective metric learning

method. To evaluate the performance in terms of image retrieval, we adopt the Precision-Recall

(PR) curve to substantiate the precision and recall metrics with respect to a variable number of

retrieved images.

For these tasks, we randomly select 70% of the benchmark data for training, 10% for validation,

and 20% for testing. The clustering task is conducted on the feature embeddings of the test sets

generated by the learned CNN model. For image retrieval, the test set is served for querying,

and the training set is the archive. The proposed method is implemented in PyTorch [63]. The

backbone CNN architecture is selected as ResNet18 [56] for all the considered methods. It

is worth noting that other CNN architectures, such as ResNet50, can also be applied with the

proposed loss and optimization mechanism. For the sake of simplicity, we utilize ResNet18 in this

paper. The images are all resized to 256× 256 pixels, and three data augmentation methods are

adopted during training: 1) RandomGrayscale, 2) ColorJitter, and 3) RandomHorizontalFlip. The

parameters D, σ, λ and m are set to 128, 0.1, 1.0 and 0.5, respectively. The Stochastic Gradient

Descent (SGD) optimizer is adopted for training. The initial learning rate is set to 0.01, and it

is decayed by 0.5 every 30 epochs. The batch size is 256 and we totally train the CNN model

for 100 epochs. To validate the effectiveness of the proposed method, we compare it to several

state-of-the-art methods based on deep metric learning, including: 1) D-CNN [17], 2) deep metric

learning based on triplet loss [52], [54] –simply termed as Triplet hereinafter– and 3) SNCA(MB)

[20]. It is worth noting that the original SNCA algorithm is optimized with memory bank, i.e.,

SNCA(MB). In order to validate the effectiveness of the proposed optimization mechanism, we
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also consider our new SNCA(MU) and compare its performance with the original SNCA [20].

For the triplet loss, the margin parameter is selected as 0.2 and the parameters in D-CNN are set

to the same values as in the original paper. All the experiments are conducted on an NVIDIA

Tesla P100 graphics processing unit (GPU).

C. Experimental Results

1) Classification: Figure 4 plots the curves of classification accuracy versus the number

of training epochs obtained for different learning methods, using the KNN classifier (with

K = 10) as a baseline, and the NWPU-RESISC45 dataset. As Figure 4 shows, in order to

achieve an accuracy of 90%, SNCA(MU), SNCA-CE(MB), and SNCA-CE(MU) require less

than 20 epochs, while the other tested methods require more than 20 epochs. As the learning

curves converge, SNCA(MU), SNCA-CE(MB), and SNCA-CE(MU) reach an accuracy of about

94%, which is around 2% higher than that achieved by the other methods. Among them, the

performances of SNCA-CE(MB) and SNCA-CE(MU) are slightly better than that of SNCA(MU),

and SNCA-CE(MU) achieves the fastest learning speed. By comparing SNCA-CE3 with SNCA,

the introduction of the CE loss can not only increase the learning speed, but also improve the

classification obtained by the KNN classifier.

By comparing the MB and MU optimization mechanisms, we conclude that updating the state

of the CNN model can lead to better results than updating the memory bank. We report the

overall accuracy of all the methods on the considered test sets in Table I, using various values

of K. Consistently with the validation, SNCA-CE(MB) and SNCA-CE(MU) achieve the best

classification performance on the two benchmark datasets. Compared with SNCA-CE(MB), the

classification accuracy of SNCA-CE(MU) is slightly higher on the NWPU-RESISC45 dataset,

while it is slightly lower on the AID dataset. Since the MU optimization mechanism aims

at preserving feature consistency among all the mini-batches through each training epoch, its

advantage over MB is more obvious in a large dataset such as NWPU-RESISC45. For the

AID dataset, there are not many mini-batches within one training epoch, e.g., around 28 when

the batch size is 256. The obtained feature embeddings in B may not vary severely within each

training epoch. Thus, the associated performance is comparable with that of the MU mechanism.

3For simplicity, SNCA-CE refers to both SNCA-CE(MB) and SNCA-CE(MU), and SNCA refers to both SNCA(MB) and

SNCA(MU).
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Fig. 4. Learning curves of different methods on the validation set with respect to the number of training epochs (NWPU-

RESISC45 dataset). The KNN classification accuracy (%) with K = 10 at each epoch is reported.

In turn, SNCA-CE can obtain more accurate performance, with more than 1% improvement

compared with SNCA and more than 2% compared to the other two methods. With the adoption

of momentum update, SNCA(MU) achieves an accuracy improvement of around 0.5% with

regards to SNCA(MB).

Moreover, Table II and Table III show the class-wise F1 scores achieved by the different

learning methods (based on the KNN classifier) in the test sets of the AID and NWPU-RESISC45

datasets, respectively, using K = 10. For the AID dataset, the F1 score of SNCA-CE(MB) on

Resort class achieves more than 5% performance gain than the other methods. For the NWPU-

RESISC45 dataset, we can see that the performances of most classes obtained by SNCA-CE are

the best ones when compared with the others.

In addition, Figure 5(a) and Figure 5(b) illustrate the similarities of the feature embeddings

generated by D-CNN, Triplet, SNCA(MB) and SNCA-CE(MB) on the test sets of the AID

and NWPU-RESISC45 datasets, respectively. The similarity is measured by applying the cosine

distance, i.e. f∗i f
∗
j . As shown by the obtained similarity matrices, higher color contrast between

the diagonal blocks and the background demonstrates higher dissimilarity between the images

from one class and those from the others in metric space. In terms of cosine distance, both

SNCA(MB) and SNCA-CE(MB) achieve better performances than D-CNN and Triplets when

distinguishing between different classes in metric space.

2) Clustering: Table IV displays the NMI scores obtained after applying K-means clustering

(with different learning methods) to the feature embeddings of the considered test sets. It can

be observed that SNCA-CE achieves the best matching between the ground-truth labels and the
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TABLE I

KNN CLASSIFICATION ACCURACIES (%) OBTAINED BY USING DIFFERENT LEARNING METHODS, FOR K = 1, 5, 10.

AID NWPU-RESISC45

1 5 10 1 5 10

D-CNN 93.10 93.70 93.75 91.21 91.62 91.48

Triplet 92.85 93.10 93.25 90.83 91.46 91.43

SNCA(MB) 94.55 94.50 94.60 92.13 92.21 92.14

SNCA(MU) 94.55 94.75 94.75 92.57 92.59 92.68

SNCA-CE(MB) 95.75 95.55 95.45 93.84 93.84 93.79

SNCA-CE(MU) 95.15 95.40 95.15 93.89 93.87 93.97

D-CNN Triplet SNCA(MB) SNCA-CE(MB)

(a)

D-CNN Triplet SNCA(MB) SNCA-CE(MB)

(b)

Fig. 5. Similarity matrices of the feature embeddings in the metric space obtained by different learning methods. The similarity

is measured by the cosine distance. (a) AID and (b) NWPU-RESISC45.

pseudo-labels assigned by K-means clustering, which results in more than 5% performance gain

with regards to the D-CNN. Table V reports the associated ACC scores obtained after using

different learning methods. Consistent with the NMI results, the K-means clustering based on

features generated by SNCA-CE can make the best label assignment unsupervisedly. In order to

obtain further insight on the feature embeddings in the metric space, we exploit the t-distributed

stochastic neighbour embedding (t-SNE) to visualize their projections in a 2D space. Figure 6

shows the t-SNE scatter plots of the feature embeddings obtained for the AID test set using: (a)

D-CNN; (b) Triplet; and (c) SNCA-CE(MB). As illustrated in Figure 6, the intra-class features

are more compact and inter-class features are more isolated in the proposed method. As a result,

December 9, 2020 DRAFT



20

TABLE II

CLASS-WISE F1 SCORES OBTAINED BY THE KNN CLASSIFIER WITH DIFFERENT LEARNING METHODS ON THE AID TEST

SET, FOR K = 10.

D-CNN Triplet SNCA(MB) SNCA(MU) SNCA-CE(MB) SNCA-CE(MU)

Airport 94.52 95.17 97.18 95.83 94.52 94.52

Bare Land 95.93 94.49 88.89 92.06 95.16 94.31

BaseballField 95.56 92.47 96.55 97.73 96.55 97.73

Beach 98.16 97.50 96.30 98.11 99.37 100.00

Bridge 95.77 97.18 99.30 98.61 99.30 97.90

Center 88.46 85.71 88.00 87.38 89.11 88.24

Church 88.66 88.17 94.85 94.95 87.38 93.07

Commercial 95.10 93.71 96.50 92.86 95.04 95.10

Dense Residential 93.33 94.55 98.18 96.34 98.80 96.93

Desert 96.61 93.33 91.67 95.73 97.48 97.48

Farmland 97.96 97.99 97.30 98.67 98.63 99.32

Forest 100.00 100.00 98.00 100.00 100.00 100.00

Industrial 93.75 92.31 91.61 92.81 92.50 93.51

Meadow 98.21 99.10 94.02 98.25 99.12 98.25

Medium Residential 94.83 92.04 97.39 94.12 97.39 94.21

Mountain 100.00 100.00 100.00 100.00 100.00 100.00

Park 82.99 83.33 85.92 87.14 89.05 89.05

Parking 99.35 99.35 98.09 99.35 98.72 98.72

Playground 92.81 92.00 96.73 97.33 95.42 97.37

Pond 97.01 97.04 95.91 97.04 96.55 97.08

Port 93.42 92.31 96.10 95.48 96.15 97.44

Railway Station 93.20 93.07 95.41 91.89 95.24 93.46

Resort 71.70 70.37 71.84 74.55 81.48 75.00

River 96.34 96.93 96.97 97.56 99.39 98.78

School 80.67 75.21 84.75 80.34 80.36 82.05

Sparse Residential 98.33 98.33 99.16 97.48 98.33 98.31

Square 83.33 85.27 89.23 89.39 90.77 85.48

Stadium 92.31 93.58 94.92 97.35 95.65 97.39

Storage Tanks 95.83 96.50 97.26 95.71 96.45 95.04

Viaduct 98.25 98.25 98.81 99.41 99.41 98.82
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TABLE III

CLASS-WISE F1 SCORES OBTAINED BY THE KNN CLASSIFIER WITH DIFFERENT LEARNING METHODS ON THE

NWPU-RESISC45 TEST SET, FOR K = 10.

D-CNN Triplet SNCA(MB) SNCA(MU) SNCA-CE(MB) SNCA-CE(MU)

Airplane 96.82 96.86 98.22 98.57 98.93 98.23

Airport 91.84 92.15 88.32 92.14 95.44 95.41

Baseball diamond 95.00 94.58 97.12 98.21 96.45 96.09

Basketball court 92.59 92.94 96.77 96.80 97.86 97.16

Beach 94.62 96.77 96.35 96.75 97.16 98.55

Bridge 94.58 95.68 95.71 95.68 94.89 96.73

Chaparral 97.90 98.94 98.59 98.59 98.94 99.29

Church 72.46 71.33 74.26 76.47 78.57 76.12

Circular farmland 98.21 98.19 98.22 99.64 99.64 99.64

Cloud 97.20 96.55 94.85 96.50 97.20 96.55

Commercial area 85.22 81.12 87.32 85.11 89.45 88.81

Dense residential 88.00 87.63 87.59 88.81 90.97 91.58

Desert 91.51 93.43 92.68 94.37 94.16 95.37

Forest 94.48 93.52 93.52 95.80 96.50 96.14

Freeway 84.53 87.46 88.06 87.97 89.45 91.58

Golf course 95.68 96.38 97.51 95.68 98.56 98.23

Ground track field 96.17 96.73 96.84 97.16 98.23 98.93

Harbor 98.22 98.56 98.92 98.56 98.58 98.92

Industrial area 85.02 85.51 85.71 86.11 87.77 87.41

Intersection 88.36 92.68 91.17 94.66 94.08 95.47

Island 95.41 94.37 94.58 92.14 95.41 95.77

Lake 90.78 92.25 88.81 88.44 91.53 92.73

Meadow 91.45 90.39 91.76 92.09 94.93 94.24

Medium residential 86.11 83.33 83.92 84.10 86.43 86.33

Mobile home park 93.57 92.25 96.14 95.00 95.77 96.11

Mountain 88.05 91.29 90.34 92.86 92.68 93.29

Overpass 93.62 92.58 94.58 91.17 92.53 93.91

Palace 72.66 67.18 71.59 73.19 75.18 73.19

Parking lot 94.44 95.71 95.74 96.80 96.03 97.84

Railway 85.31 81.94 90.03 90.66 91.61 92.36

Railway station 86.93 83.87 84.59 91.43 88.17 90.00

Rectangular farmland 90.32 89.21 90.65 87.77 91.10 91.58

River 88.89 90.04 88.57 90.11 92.36 93.48

Roundabout 95.24 95.00 95.07 94.77 96.11 96.14
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(a) (b) (c)

Fig. 6. 2D projection of the feature embeddings on the AID test set using t-SNE: (a) D-CNN; (b) Triplet; and (c) SNCA-CE(MB).

TABLE IV

NMI SCORES OF THE FEATURE EMBEDDINGS OF THE TEST SETS PRODUCED BY DIFFERENT LEARNING METHODS.

AID NWPU-RESISC45

D-CNN 88.83 85.30

Triplet 89.87 88.14

SNCA(MB) 92.96 90.20

SNCA(MU) 93.02 90.60

SNCA-CE(MB) 93.98 92.01

SNCA-CE(MU) 93.75 92.28

clustering methods can more easily discover the inherent structure of the feature embeddings

in the metric space produced by the proposed method, resulting in an NMI score that is higher

than the one obtained by the other learning methods.

3) Image Retrieval: Figure 7 shows the PR curves describing the obtained image retrieval

results from a given test set used for querying, where Figure 7(a) and Figure 7(b) respectively

provide the results for the AID, and NWPU-RESISC45 datasets. In order to facilitate the

comparison, a zoomed-in subplot is also highlighted. It can be seen that both SNCA and SNCA-

CE exhibit superior performance with regards to Triplet and D-CNN as the number of retrieved

images increases. As shown in the zoomed-in subplots, the introduction of the CE loss can further

improve the precision and recall performances based on SNCA. For the SNCA-based methods

(SNCA and SNCA-CE), the similarities of the images within one mini-batch during training are

compared with all the other images in the dataset, so that the CNN model can be sufficiently

optimized. As a comparison, for the contrastive loss utilized in D-CNN, the negative and positive
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TABLE V

ACC SCORES OF THE FEATURE EMBEDDINGS OF THE TEST SETS PRODUCED BY DIFFERENT LEARNING METHODS.

AID NWPU-RESISC45

D-CNN 84.50 87.44

Triplet 92.50 88.33

SNCA(MB) 94.65 92.13

SNCA(MU) 94.80 91.22

SNCA-CE(MB) 95.65 93.71

SNCA-CE(MU) 95.25 93.83

image pairs are just sampled within each mini-batch. For the other images outside this mini-

batch, the corresponding negative and positive image pairs cannot be constructed, leading to

insufficient training of the CNN model.

This is actually similar with respect to triplet loss. To make the CNN model capture the

similarity and dissimilarity of all the images, one should make a triplet set with about O(|T |3)

triplets, which is impossible for a scalable dataset. Such limitation of the trained CNN model

based on contrastive and triplet losses may lead to the fact that that some images cannot be

well separated with regards to other images with different classes, or that these images cannot

be effectively grouped together with their relevant ones. This phenomenon can be observed in

Figure 6, where some clusters shown in (a) and (b) are entangled with others. Additionally, this

also leads to the important phenomenon that the image retrieval performance that can be achieved

using both SNCA and SNCA-CE is superior to that of the methods based on the contrastive

and triplet losses. With respect to SNCA, by introducing the CE loss, SNCA-CE can further

improve the image retrieval performance, owing to its enhanced class distinction capability.

Figure 8 gives some retrieval examples with D-CNN, Triplet and the proposed method. Given

two images from the two test sets, we present their top-5 nearest neighbors in the archive. As

shown in Figure 8(a), Park and School are confused with Resort in the Triplet retrieval from the

AID dataset. The freeway in NWPU-RESISC45 is confused with overpass by D-CNN, shown

in Figure 8(b).

4) Parameter Sensitivity Analysis of SNCA-CE: There are three main parameters in the

proposed methods, i.e., D, σ and λ, where D determines the dimensionality of the feature
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Fig. 7. PR curves describing the image retrieval results obtained by different learning methods. The test sets are served for

querying, and the training sets are used as the archives. (a) AID and (b) NWPU-RESISC45.

embeddings in the metric space, σ controls the compactness of the sample distribution, and

λ balances the contributions of two loss terms, i.e., SNCA and CE. Table VI demonstrates

the effectiveness of the KNN classification based on SNCA-CE(MB) with respect to different

values of D, assuming that K = 10. As Table VI shows, the classification performance is robust

to different values of D on both datasets. This is greatly beneficial for embedding large-scale

datasets, since features with small dimensionality can also achieve high-quality classification per-

formance. Based on the KNN classification results with K = 10, we also report the effectiveness

of SNCA-CE(MB) in terms of σ in Table VII. Within a range of values from 0.05 to 0.2, the

classification results are stable. This suggests that the proposed method is relatively insensitive to

the choice of σ (in the range from 0.05 to 0.2) for the two considered datasets. Figure 9 displays

a sensitivity analysis of λ in eq. (11). It can be seen that the KNN classification performs worst

on the both datasets when λ is near zero, i.e., λ = 0.1. This indicates that the optimization of

SNCA term can indeed improve the metric learning performance. When λ is larger than 0.1, the

proposed method shows its insensitivity with respect to the setting of λ.
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Fig. 8. Top-5 nearest neighbors retrieved with respect to the query images using different learning methods. (a) AID and (b)

NWPU-RESISC45.

TABLE VI

SENSITIVITY ANALYSIS OF PARAMETER D.

AID NWPU-RESISC45

D = 32 95.15 94.02

D = 64 95.60 94.13

D = 128 95.45 93.79

V. CONCLUSIONS

In this paper, we introduce a new deep metric learning approach for RS images which improves

scene discrimination by means of two different components: 1) SNCA, which aims at constructing

the neighborhood structure in the metric space; and 2) the CE loss, which aims at preserving

the class discrimination capability. Moreover, we propose a novel optimization mechanism based
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TABLE VII

SENSITIVITY ANALYSIS OF PARAMETER σ.

AID NWPU-RESISC45

σ = 0.05 95.05 93.83

σ = 0.1 95.45 93.79

σ = 0.15 94.80 93.63

σ = 0.2 94.90 93.48
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Fig. 9. Sensitivity analysis of the λ parameter.

on momentum update for SNCA and SNCA-CE. This mechanism is intended to preserve the

consistency among all the stored features during training, which represents a highly innovative

contribution to characterize RS scenes.

The conducted experiments validate the effectiveness of the proposed method from different

perspectives, including RS scene classification, clustering, and retrieval. When compared to

the state-of-the-art models, the newly defined SNCA-CE loss is able to group semantically-

similar RS images better than other existing approaches, due to the effective use of an offline

memory bank. Besides, SNCA-CE can further improve the class discrimination ability based

on its learnable category prototypes. The proposed MU optimization mechanism also makes

the features generated in each mini-batch more consistent within one training epoch than those

generated via the MB mechanism. Such characteristic can be greatly beneficial when processing

scalable datasets.

In addition to characterizing RS scenes, our newly proposed deep metric learning framework
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also exhibits the potential to be used in other tasks, such as dimensionality reduction of RS

hyperspectral images and fine-grained land-use or land-cover classification. As a possible future

work, one can extensively analyze the influence of different backbone networks (e.g., VGG16,

ResNet18, ResNet50, and ResNet101) on the performance of the proposed approach. Addition-

ally, we will explore the adaptation of our method to the aforementioned problems, and also

further evaluate its capacity to perform scene classification with limited supervision.
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