
Deep Metric Learning via Facility Location

Hyun Oh Song1, Stefanie Jegelka2, Vivek Rathod1, and Kevin Murphy1

1Google Research, 2MIT
1{hyunsong,rathodv,kpmurphy}@google.com, 2stefje@csail.mit.edu

Abstract

Learning image similarity metrics in an end-to-end fash-

ion with deep networks has demonstrated excellent results

on tasks such as clustering and retrieval. However, current

methods, all focus on a very local view of the data. In this

paper, we propose a new metric learning scheme, based on

structured prediction, that is aware of the global structure

of the embedding space, and which is designed to optimize

a clustering quality metric (NMI). We show state of the art

performance on standard datasets, such as CUB200-2011

[37], Cars196 [18], and Stanford online products [30] on

NMI and R@K evaluation metrics.

1. Introduction

Learning to measure the similarity among arbitrary

groups of data is of great practical importance, and can be

used for a variety of tasks such as feature based retrieval

[30], clustering [10], near duplicate detection [41], verifica-

tion [3, 4], feature matching [6], domain adaptation [27],

video based weakly supervised learning [38], etc. Fur-

thermore, metric learning can be used for challenging ex-

treme classification settings [23, 5, 40], where the number

of classes is very large and the number of examples per class

becomes scarce. For example, [2] uses this approach to per-

form product search with 10M images, and [25] shows su-

perhuman performance on face verification with 260M im-

ages of 8M distinct identities. In this setting, any direct clas-

sification or regression methods become impractical due to

the prohibitively large size of the label set.

Currently, the best approaches to metric learning employ

state of art neural networks [19, 31, 28, 9], which are trained

to produce an embedding of each input vector so that a cer-

tain loss, related to distances of the points, is minimized.

However, most current methods, such as [25, 2, 30, 29], are

very myopic in the sense that the loss is defined in terms of

pairs or triplets inside the training mini-batch. These meth-

ods don’t take the global structure of the embedding space

into consideration, which can result in reduced clustering

and retrieval performance.

Furthermore, most of the current methods [25, 2, 30, 29]

in deep metric learning require a separate data preparation

stage where the training data has to be first prepared in pairs

[8, 2], triplets [39, 25], or n-pair tuples [29] format. This

procedure has very expensive time and space cost as it of-

ten requires duplicating the training data and needs to re-

peatedly access the disk.

In this paper, we propose a novel learning framework

which encourages the network to learn an embedding func-

tion that directly optimizes a clustering quality metric (We

use the normalized mutual information or NMI metric [21]

to measure clustering quality, but other metrics could be

used instead.) and doesn’t require the training data to be

preprocessed in rigid paired format. Our approach uses a

structured prediction framework [35, 14] to ensure that the

score of the ground truth clustering assignment is higher

than the score of any other clustering assignment. Follow-

ing the evaluation protocol in [30], we report state of the art

results on CUB200-2011 [37], Cars196 [18], and Stanford

online products [30] datasets for clustering and retrieval

tasks.

2. Related work

The seminal work in deep metric learning is to train a

siamese network with contrastive loss [8, 4] where the task

is to minimize the pairwise distance between a pair of ex-

amples with the same class labels, and to push the pairwise

distance between a pair of examples with different class la-

bels at least greater than some fixed margin.

One downside of this approach is that it focuses on ab-

solute distances, whereas for most tasks, relative distances

matter more. For this reason, more recent methods have

proposed different loss functions. We give a brief review of

these below, and we compare our method to them experi-

mentally in Section 4.

15382

. . .

F̃

(!

F̃

(! (!

y
∗∗ =

F̃F
(!

(!

∗ =y1

F̃F
(! (!

∗ =yn

∆(y1, y
∗)

∆(yn, y
∗)

{

n

...

n

(

score

n
| {z }

CNN

Figure 1. Overview of the proposed framework. The network first computes the embedding vectors for each images in the batch and learns

to rank the clustering score F̃ for the ground truth clustering assignment higher than the clustering score F for any other assignment at

least by the structured margin ∆(y, y∗).

2.1. Triplet learning with semi-hard negative min-
ing

One improvement over contrastive loss is to use triplet

loss [39, 26]. This first constructs a set of triplets, where

each triplet has an anchor, a positive, and a negative exam-

ple, where the anchor and the positive have the same class

labels and the negative has the different class label. It then

tries to move the anchor and positive closer than the dis-

tance between the anchor and the negative with some fixed

margin. More precisely, it minimizes the following loss:

ℓ(X, y) =
1

|T |

∑

(i,j,k)∈T

[
D2

i,j + α−D2
i,k

]

+
(1)

where T is the set of triples, Di,j = ||f(Xi) − f(Xj)||2
is the Euclidean distance in embedding space, the opera-

tor [·]+ denotes the hinge function which takes the positive

component of the argument, and α denotes a fixed margin

constant.

In practice, the performance of these methods depends

highly on the triplet sampling strategy. FaceNet [25] sug-

gested the following online hard negative mining strategy.

The idea is to construct triplets by associating with each

positive pair in the minibatch a “semi-hard” negative exam-

ple. This is an example which is further away from the an-

chor i than the positive exemplar j is, but still hard because

the distance is close to the i− j distance. More precisely, it

minimizes

ℓ (X,y) =
1

|P|

∑

(i,j)∈P

[

D2
i,j + α−D2

i,k∗(i,j)

]

+

where

k∗ (i, j) = argmin
k: y[k] 6=y[i]

D2
i,k s.t. D2

i,k > D2
i,j

and P is the set of pairs with the same class label. If there

is no such negative example satisfying the constraint, we

just pick the furthest negative example in the minibatch, as

follows:

k∗ (i, j) = argmax
k: y[k] 6=y[i]

D2
i,k

In order to get good results, the FaceNet paper had to

use very large minibatches (1800 images), to ensure they

picked enough hard negatives. This makes it hard to train

the model on a GPU due to the GPU memory constraint.

Below we describe some other losses which are easier to

minimize using small minibatches.

2.2. Lifted structured embedding

Song et al. [30] proposed lifted structured embedding

where each positive pair compares the distances against all

the negative pairs weighted by the margin constraint viola-

tion. The idea is to have a differentiable smooth loss which

incorporates the online hard negative mining functionality

using the log-sum-exp formulation.

ℓ (X,y) =
1

2|P|

∑

(i,j)∈P

[

log

(
∑

(i,k)∈N

exp {α−Di,k}+

∑

(j,l)∈N

exp {α−Dj,l}

)

+Di,j

]2

+

,

(2)

5383

where N denotes the set of pairs of examples with different

class labels.

2.3. N-pairs embedding

Recently, Sohn et al. [29] proposed N-pairs loss which

enforces softmax cross-entropy loss among the pairwise

similarity values in the batch.

ℓ (X,y) =
−1

|P|

∑

(i,j)∈P

log
exp{Si,j}

exp{Si,j}+
∑

k: y[k] 6=y[i]

exp{Si,k}

+
λ

m

m∑

i

||f(Xi)||2,

(3)

where Si,j means the feature dot product between two data

points in the embedding space; Si,j = f(Xi)
⊺f(Xj), m is

the number of the data, and λ is the regularization constant

for the ℓ2 regularizer on the embedding vectors.

2.4. Other related work

In addition to the above work on metric learning, there

has been some recent work on learning to cluster with deep

networks. Hershey et al. [10] uses Frobenius norm on the

residual between the binary ground truth and the estimated

pairwise affinity matrix; they apply this to speech spectro-

gram signal clustering. However, using the Frobenius norm

directly is suboptimal, since it ignores the fact that the affin-

ity matrix is positive definite.

To overcome this, matrix backpropagation [12] first

projects the true and predicted affinity matrix to a metric

space where Euclidean distance is appropriate. Then it ap-

plies this to normalized cuts for unsupervised image seg-

mentation. However, this approach requires computing the

eigenvalue decomposition of the data matrix, which has cu-

bic time complexity in the number of data and is thus not

very practical for large problems.

3. Methods

One of the key attributes which the recent state of the art

deep learning methods in Section 2 have in common is that

they are all local metric learning methods. Figure 2 illus-

trates a case where this can fail. In particular, whenever a

positive pair (such as the two purple bold dots connected by

the blue edge) is separated by examples from other classes,

the attractive gradient signal from the positive pair gets out-

weighed by the repulsive gradient signal from the negative

data points (yellow and green data points connected with

the red edges). This failure can lead to groups of examples

with the same class labels being separated into partitions in

the embedding space that are far apart from each other. This

can lead to degradation in the clustering and nearest neigh-

bor based retrieval performance. For example, suppose we

incorrectly created 4 clusters in Figure 2. If we asked for

the 12 nearest neighbors of one of purple points, we would

retrieve points belonging to other classes.

To overcome this problem, we propose a method that

learns to embed points so as to minimize a clustering loss,

as we describe below.

Figure 2. Example failure mode for local metric learning methods.

Whenever a positive pair (linked with the blue edge) is separated

by negative examples, the gradient signal from the positive pair

(attraction) gets outweighed by the negative pairs (repulsion). Il-

lustration shows the failure case for 2D embedding where the pur-

ple clusters can’t be merged into one cluster.

Figure 3. Proposed clustering loss for the same embedding layout

in figure 2. Nodes highlighted in bold are the cluster medoids. The

proposed method encourages small sum of distances within each

cluster, while discouraging different clusters from getting close to

each other.

3.1. Facility location problem

Suppose we have a set of inputs Xi, and an embedding

function f(Xi; Θ) that maps each input to a point in some

K dimensional space. Now suppose we compress this set of

points by mapping each example i to its nearest point from

a chosen set of landmarks S ⊆ V , where V = {1, . . . , |X|}
is the ground set. We can define the resulting function as

follows:

F (X,S; Θ) = −
∑

i∈|X|

min
j∈S

||f(Xi; Θ)− f(Xj ; Θ)||, (4)

This is called the facility location function, and has been

widely used in data summarization and clustering [20, 34].

5384

The idea is that this function measures the sum of the travel

distance for each customer in X to their respective nearest

facility location in S. In terms of clustering, data points in

S correspond to the cluster medoids, and the cluster assign-

ment is based on the nearest medoid from each data point.

Maximizing equation 4 with respect to subset S is NP-hard,

but there is a well established worst case optimality bound

of O
(
1− 1

e

)
for the greedy solution of the problem via sub-

modularity [17].

Below we show how to use the facility location problem

as a subroutine for deep metric learning.

3.2. Structured facility location for deep metric
learning

The oracle scoring function F̃ measures the quality of

the clustering given the ground truth clustering assignment

y
∗ and the embedding parameters Θ:

F̃ (X,y∗; Θ) =

|Y|
∑

k

max
j∈{i: y∗[i]=k}

F
(
X{i: y∗[i]=k}, {j}; Θ

)
,

(5)

where {i : y
∗[i] = k} denotes the subset of the elements in

V with the ground truth label equal to k.

We would like the clustering score of the oracle cluster-

ing assignment to be greater than the score for the maxi-

mally violating clustering assignment. Hence we define the

following structured loss function:

ℓ (X, y∗) =

[

max
S⊂V

|S|=|Y|

{

F (X,S; Θ) + γ ∆(g(S), y∗)

︸ ︷︷ ︸

(∗)

}

− F̃ (X,y∗; Θ)

]

+

(6)

We will define the structured margin ∆(y, y∗) below.

The function y = g(S) maps the set of indices S to a set

of cluster labels by assigning each data point to its nearest

facility in S:

g(S)[i] = argmin
j

||f(Xi; Θ)− f(X{j| j∈S}; Θ)|| (7)

Intuitively, the loss function in Equation 6 encourages

the network to learn an embedding function f (·; Θ) such

that the oracle clustering score F̃ is greater than the cluster-

ing score F for any other cluster assignments g(S) at least

by the structured margin ∆(y, y∗). Figure 1 gives the pic-

torial illustration of the overall framework.

The structured margin term ∆(y, y∗) measures the

quality of the clustering. The margin term outputs 0 if the

clustering quality of y with respect to the ground truth clus-

tering assignment y∗ is perfect (up to a permutation) and 1
if the quality is the worst. We use the following margin term

∆(y, y∗) = 1− NMI (y, y∗) (8)

where NMI is the normalized mutual information (NMI)

[21]. This measures the label agreement between the two

clustering assignments ignoring the permutations. It is de-

fined by the ratio of mutual information and the square root

of the product of entropies for each assignments:

NMI(y1,y2) =
MI(y1,y2)

√

H(y1)H(y2)
(9)

The marginal and joint probability mass used for computing

the entropy and the mutual information can be estimated as

follows:

P (i) =
1

m

∑

j

I[y[j] == i]

P (i, j) =
1

m

∑

k,l

I[y1[k] == i] · I[y2[l] == j],

(10)

where m denotes the number of data (also equal to |X|).
Figure 3 illustrates the advantages of the proposed algo-

rithm. Since the algorithm is aware of the global landscape

of the embedding space, it can overcome the bad local op-

tima in figure 2. The clustering loss encourages small in-

tra cluster (outlined by the dotted lines in figure 3) sum of

distances with respect to each cluster medoids (three data

points outlined in bold) while discouraging different clus-

ters from getting close to each other via the NMI metric in

the structured margin term.

3.3. Backpropagation subgradients

We fit our model using stochastic gradient descent. The

key step is to compute the derivative of the loss, which is

given by the following expression:

∂ ℓ (X,y∗) = I [ℓ (X,y∗) > 0]
(

∇ΘF (X,SPAM; Θ)

−∇ΘF̃ (X,y∗; Θ)
)

(11)

Here SPAM is the solution to the subproblem marked (∗) in

Equation 6; we discuss how to compute this in Section 3.4.

The first gradient term is as follows:

5385

∇ΘF (X,S; Θ) = −
∑

i∈|X|

[

f(Xi; Θ)− f(Xj∗(i); Θ)

||f(Xi; Θ)− f(Xj∗(i); Θ)||

• ∇Θ

(
f(Xi; Θ)− f(Xj∗(i); Θ)

)

]

(12)

where j∗(i) denotes the index of the closest facility location

in the set SPAM. The gradient for the oracle scoring function

can be derived by computing

∇ΘF̃ (X,y∗
i ; Θ) =

∑

k

∇ΘF
(
X{i: y∗[i]=k}, {j

∗(k)}; Θ
)

(13)

Equation 11 is the formula for the exact subgradient and

we find an approximate maximizer SPAM in the equation

(section 3.4) so we have an approximate subgradient. How-

ever, this approximation works well in practice and have

been used for structured prediction setting [20, 34].

3.4. Loss augmented inference

We solve the optimization problem (∗) in Equation 6 in

two steps. First, we use the greedy Algorithm 1 to select

an initial good set of facilities. In each step, it chooses the

element i∗ with the best marginal benefit. The running time

of the algorithm is O
(
|Y|3 · |V|

)
, where |Y| denotes the

number of clusters in the batch and V = {1, . . . , |X|}. This

time is linear in the size of the minibatch, and hence does

not add much overhead on top of the gradient computation.

Yet, if need be, we can speed up this part via a stochastic

version of the greedy algorithm [22].

This algorithm is motivated by the fact that the first term,

F (X,S; Θ), is a monotone submodular function in S. We

observed that throughout the learning process, this term is

large compared to the second, margin term. Hence, in this

case, our function is still close to submodular. For approxi-

mately submodular functions, the greedy algorithm can still

be guaranteed to work well [7].

Yet, since A(S) is not entirely submodular, we refine the

greedy solution with a local search, Algorithm 2. This algo-

rithm performs pairwise exchanges of current medoids S[k]
with alternative points j in the same cluster. The running

time of the algorithm is O
(
T |Y|3 · |V|

)
, where T is the

maximum number of iterations. In practice, it converges

quickly, so we run the algorithm for T = 5 iterations only.

Algorithm 2 is similar to the partition around medoids

(PAM) [15] algorithm for k-medoids clustering, which in-

dependently reasons about each cluster during the medoid

swapping step. Algorithm 2 differs from PAM by the struc-

tured margin term, which involves all clusters simultane-

ously.

The following lemma states that the algorithm can only

improve over the greedy solution:

Algorithm 1: Loss augmented inference for (∗)

Input : X ∈ R
m×d, y∗ ∈ |Y|m, γ

Output : S ⊆ V
Initialize: S = {∅}
Define : A(S) := F (X,S; Θ) + γ∆(g(S), y∗)

1 while |S| < |Y| do

2 i∗ = argmax
i⊆V\S

A (S ∪ {i})−A(S)

3 S := S ∪ {i∗}

4 end

5 return S

Lemma 1. Algorithm 2 monotonically increases the objec-

tive function A(S) = F (X,S; Θ) + γ∆(g(S), y∗).

Proof. In any step t and for any k, let c = S[k] be the

kth medoid in S. The algorithm finds the point j in the kth

cluster such that A((S\{c})∪{j}) is maximized. Let j∗ be

a maximizing argument. Since j = c is a valid choice, we

have that A((S\{c})∪{j∗}) ≥ A((S\{c})∪{c}) = A(S),
and hence the value of A(S) can only increase.

In fact, with a small modification and T large enough,

the algorithm is guaranteed to find a local optimum, i.e., a

set S such that A(S) ≥ A(S′) for all S′ with |S∆S′| = 1
(Hamming distance one). Note that the overall problem is

NP-hard, so a guarantee of global optimality is impossible.

Lemma 2. If the exchange point j is chosen from X and

T is large enough that the algorithm terminates because it

makes no more changes, then Algorithm 2 is guaranteed to

find a local optimum.

3.5. Implementation details

We used Tensorflow [1] package for our implementa-

tion. For the embedding vector, we ℓ2 normalize the em-

bedding vectors before computing the loss for our method.

The model slightly underperformed when we omitted the

embedding normalization. We also tried solving the loss

augmented inference using Algorithm 2 with random ini-

tialization, but it didn’t work as well as initializing the algo-

rithm with the greedy solution from Algorithm 1.

For the network architectures, we used the Inception

[32] network with batch normalization [11] pretrained on

ILSVRC 2012-CLS [24] and finetuned the network on our

datasets. All the input images are first resized to square

size (256 × 256) and cropped at 227 × 227. For the data

augmentation, we used random crop with random horizon-

tal mirroring for training and a single center crop for test-

ing. In Npairs embedding [29], they take multiple random

crops and average the embedding vectors from the cropped

5386

Algorithm 2: Loss augmented refinement for (∗)

Input : X ∈ R
m×d, y∗ ∈ |Y|m, Sinit, γ, T

Output : S

Initialize: S = Sinit, t = 0

1 for t < T do

// Perform cluster assignment

2 yPAM = g (S)

// Update each medoids per cluster

3 for k < |Y| do

// Swap the current medoid in

cluster k if it increases the

score.

4 S[k] = argmax
j∈{i: yPAM[i]=k}

F
(

X{i: yPAM[i]=k}, {j}; Θ
)

5 + γ∆(g (S \ {S[k]} ∪ {j}) , y∗)

6 end

7 end

8 return S

images during testing. However, in our implementation of

[29], we take a single center crop during testing for fair

comparison with other methods.

The experimental ablation study reported in [30] sug-

gested that the embedding size doesn’t play a crucial role

during training and testing phase so we decided to fix the

embedding size at d = 64 throughout the experiment (In

[30], the authors report the recall@K results with d = 512
and provided the results for d = 64 to us for fair compari-

son). We used RMSprop [33] optimizer with the batch size

m set to 128. For the margin multiplier constant γ, we grad-

ually decrease it using exponential decay with the decay rate

set to 0.94.

As briefly mentioned in section 1, the proposed method

does not require the data to be prepared in any rigid paired

format (pairs, triplets, n-pair tuples, etc). Instead we simply

sample m (batch size) examples and labels at random. That

said, the clustering loss becomes trivial if a batch of data

all have the same class labels (perfect clustering merging

everything into one cluster) or if the data all have different

class labels (perfect clustering where each data point forms

their own clusters). In this regard, we guarded against those

pathological cases by ensuring the number of unique classes

(C) in the batch is within a reasonable range. We tried three

different settings C
m

= {0.25, 0.50, 0.75} and the choice of

the ratio did not lead to significant changes in the experi-

mental results. For the CUB-200-2011 [37] and Cars196

[18], we set C
m

= 0.25. For the Stanford Online Products

[30] dataset, C
m

= 0.75 was the only possible choice be-

cause the dataset is extremely fine-grained.

4. Experimental results

Following the experimental protocol in [30, 29], we eval-

uate the clustering and k nearest neighbor retrieval [13] re-

sults on data from previously unseen classes on the CUB-

200-2011 [37], Cars196 [18], and Stanford Online Products

[30] datasets. We compare our method with three current

state of the art methods in deep metric learning: (1) triplet

learning with semi-hard negative mining strategy [25], (2)

lifted structured embedding [30], (3) N-pairs metric loss

[29]. To be comparable with prior work, we ℓ2 normalize

the embedding for the triplet (as prescribed by [25]) and our

method, but not for the lifted structured loss and the N-pairs

loss (as in the implementation sections in [30, 29]).

We used the same train/test split as in [30] for all the

datasets. The CUB200-2011 dataset [37] has 11, 788 im-

ages of 200 bird species; we used the first 100 birds species

for training and the remaining 100 species for testing. The

Cars196 dataset [18] has 16, 185 images of 196 car mod-

els. We used the first 98 classes of cars for training and

the rest for testing. The Stanford online products dataset

[30] has 120, 053 images of 22, 634 products sold online on

eBay.com. We used the first 11, 318 product categories for

training and the remaining 11, 316 categories for testing.

4.1. Quantitative results

The training procedure for all the methods converged at

10k iterations for the CUB200-2011 [37] and at 20k itera-

tions for the Cars196 [18] and the Stanford online products

[30] datasets.

Tables 1, 2, and 3 shows the results of the quantita-

tive comparison between our method and other deep metric

learning methods. We report the NMI score, to measure the

quality of the clustering, as well as k nearest neighbor per-

formance with the Recall@K metric. The tables show that

our proposed method has the state of the art performance

on both the NMI and R@K metrics outperforming all the

previous methods.

NMI R@1 R@2 R@4 R@8

Triplet semihard [25] 55.38 42.59 55.03 66.44 77.23

Lifted struct [30] 56.50 43.57 56.55 68.59 79.63

Npairs [29] 57.24 45.37 58.41 69.51 79.49

Clustering (Ours) 59.23 48.18 61.44 71.83 81.92

Table 1. Clustering and recall performance on CUB-200-2011 [37]

@10k iterations.

4.2. Qualitative results

Figure 4, 5, and 6 visualizes the t-SNE [36] plots

on the embedding vectors from our method on CUB200-

5387

NMI R@1 R@2 R@4 R@8

Triplet semihard [25] 53.35 51.54 63.78 73.52 82.41

Lifted struct [30] 56.88 52.98 65.70 76.01 84.27

Npairs [29] 57.79 53.90 66.76 77.75 86.35

Clustering (Ours) 59.04 58.11 70.64 80.27 87.81

Table 2. Clustering and recall performance on Cars196 [18] @20k
iterations.

NMI R@1 R@10 R@100

Triplet semihard [25] 89.46 66.67 82.39 91.85

Lifted struct [30] 88.65 62.46 80.81 91.93

Npairs [29] 89.37 66.41 83.24 93.00

Clustering (Ours) 89.48 67.02 83.65 93.23

Table 3. Clustering and recall performance on Products [30] @20k
iterations.

2011 [37], Cars196 [18], and Stanford online products [30]

datasets respectively. The plots are best viewed on a mon-

itor when zoomed in. We can see that our embedding does

a great job on grouping similar objects/products despite the

significant variations in view point, pose, and configuration.

Figure 4. Barnes-Hut t-SNE visualization [36] of our embedding

on the CUB-200-2011 [37] dataset. Best viewed on a monitor

when zoomed in.

Figure 5. Barnes-Hut t-SNE visualization [36] of our embedding

on the Cars196 [18] dataset. Best viewed on a monitor when

zoomed in.

5. Conclusion

We described a novel learning scheme for optimizing the

deep metric embedding with the learnable clustering func-

tion and the clustering metric (NMI) in a end-to-end fashion

within a principled structured prediction framework.

Our experiments on CUB200-2011 [37], Cars196 [18],

and Stanford online products [30] datasets show state of the

art performance both on the clustering and retrieval tasks.

The proposed clustering loss has the added benefit that it

doesn’t require rigid and time consuming data preparation

(i.e. no need for preparing the data in pairs [8], triplets [39,

25], or n-pair tuples [29] format). This characteristic of the

proposed method opens up a rich class of possibilities for

advanced data sampling schemes.

In the future, we plan to explore sampling based gradi-

ent averaging scheme where we ask the algorithm to cluster

several random subsets of the data within the training batch

and then average the loss gradient from multiple sampled

subsets in similar spirit to Bag of Little Bootstraps (BLB)

[16].

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

5388

Figure 6. Barnes-Hut t-SNE visualization [36] of our embedding on the Stanford online products dataset [30]. Best viewed on a monitor

when zoomed in.

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,

V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 5

[2] S. Bell and K. Bala. Learning visual similarity for product

design with convolutional neural networks. In SIGGRAPH,

2015. 1

[3] J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah.

Signature verification using a ”siamese” time delay neural

network. In NIPS, 1994. 1

[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity

metric discriminatively, with application to face verification.

In CVPR, volume 1, June 2005. 1

[5] A. Choromanska, A. Agarwal, and J. Langford. Extreme

multi class classification. In NIPS, 2013. 1

[6] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker. Uni-

versal correspondence network. In NIPS, 2016. 1

5389

[7] A. Das and D. Kempe. Submodular meets spectral: Greedy

algorithms for subset selection, sparse approximation and

dictionary selection. In ICML, 2011. 5

[8] R. Hadsell, S. Chopra, and Y. Lecun. Dimensionality reduc-

tion by learning an invariant mapping. In CVPR, 2006. 1,

7

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. 1

[10] J. R. Hershey, Z. Chen, J. L. Roux, and S. Watanabe. Deep

clustering: Discriminative embeddings for segmentation and

separation. In ICASSP, 2016. 1, 3

[11] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 5

[12] C. Ionescu, O. Vantzos, and C. Sminchisescu. Training deep

networks with structured layers by matrix backpropagation.

In ICCV, 2015. 3

[13] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. In PAMI, 2011. 6

[14] T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training

of structural svms. JMLR, 2009. 1

[15] L. Kaufman and P. Rousseeuw. Clustering by means of

medoids. In Statistical Data Analysis Based on the L1-Norm

and Related Methods, 1987. 5

[16] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan. The

big data bootstrap. In ICML, 2012. 7

[17] A. Krause and D. Golovin. Submodular function maximiza-

tion. Tractability: Practical Approaches to Hard Problems,

3(19):8, 2012. 4

[18] J. Krause, M. Stark, J. Deng, and F.-F. Li. 3d object repre-

sentations for fine-grained categorization. ICCV 3dRR-13,

2013. 1, 6, 7

[19] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS,

2012. 1

[20] H. Lin and J. Bilmes. Learning mixtures of submodular

shells with application to document summarization. In UAI,

2012. 3, 5

[21] C. D. Manning, P. Raghavan, and H. Sch¡9f¿tze. Introduc-

tion to Information Retrieval. Cambridge university press,

2008. 1, 4

[22] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrák,

and A. Krause. Lazier than lazy greedy. In Proc. Conf. on

Artificial Intelligence (AAAI), 2015. 5

[23] Y. Prabhu and M. Varma. Fastxml: A fast, accurate and

stable tree-classifier for extreme multi-label learning. In

SIGKDD, 2014. 1

[24] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. IJCV, 2015. 5

[25] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In CVPR,

2015. 1, 2, 6, 7

[26] M. Schultz and T. Joachims. Learning a distance metric from

relative comparisons. In NIPS, 2004. 2

[27] O. Sener, H. O. Song, A. Saxena, and S. Savarese. Learning

transferrable representations for unsupervised domain adap-

tation. In NIPS, 2016. 1

[28] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 1

[29] K. Sohn. Improved deep metric learning with multi-class

n-pair loss objective. In NIPS, 2016. 1, 3, 5, 6, 7

[30] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep

metric learning via lifted structured feature embedding. In

CVPR, 2016. 1, 2, 6, 7, 8

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[32] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 5

[33] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural Networks for Machine Learning,

2012. 6

[34] S. Tschiatschek, R. Iyer, H. Wei, and J. Bilmes. Learning

mixtures of submodular functions for image collection sum-

marization. In NIPS, 2014. 3, 5

[35] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Al-

tun. Support vector machine learning for interdependent and

structured output spaces. In ICML, 2004. 1

[36] L. van der maaten. Accelerating t-sne using tree-based algo-

rithms. In JMLR, 2014. 6, 7, 8

[37] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-

longie. The caltech-ucsd birds-200-2011 dataset. Technical

Report CNS-TR-2011-001, California Institute of Technol-

ogy, 2011. 1, 6, 7

[38] X. Wang and A. Gupta. Unsupervised learning of visual rep-

resentations using videos. In ICCV, 2015. 1

[39] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric

learning for large margin nearest neighbor classification. In

NIPS, 2006. 1, 2, 7

[40] I. E. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S.

Dhillon. Pd-sparse: A primal and dual sparse approach to

extreme multiclass and multilabel classification. In ICML,

2013. 1

[41] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving

the robustness of deep neural networks via stability training.

In CVPR, 2016. 1

5390

