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ABSTRACT

Statistical parametric speech synthesis (SPSS) using deep neural net-

works (DNNs) has shown its potential to produce naturally-sounding

synthesized speech. However, there are limitations in the current im-

plementation of DNN-based acoustic modeling for speech synthesis,

such as the unimodal nature of its objective function and its lack of

ability to predict variances. To address these limitations, this paper

investigates the use of a mixture density output layer. It can esti-

mate full probability density functions over real-valued output fea-

tures conditioned on the corresponding input features. Experimental

results in objective and subjective evaluations show that the use of

the mixture density output layer improves the prediction accuracy of

acoustic features and the naturalness of the synthesized speech.

Index Terms— Statistical parametric speech synthesis; hidden

Markov models; deep neural networks; mixture density networks;

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) [1] based on hidden

Markov models (HMMs) [2] offers various advantages over concate-

native speech synthesis [3]. However, the naturalness of the synthe-

sized speech from SPSS is still as not as good as that of the best

samples from concatenative speech synthesizers. One of the major

factors that degrades the naturalness is the accuracy of the acoustic

models [1]. There have been many attempts to improve the accuracy,

such as trajectory HMMs [4], autoregressive HMMs [5], minimum

generation error (MGE) training [6], product of experts (PoEs) [7,8],

Gaussian process regression (GPR) [9], and restricted Boltzmann

machines (RBMs) [10, 11].

Recently, deep neural networks (DNNs) [12], which are feed-

forward artificial neural networks (ANNs) with many hidden layers,

have achieved significant improvement in many machine learn-

ing areas. They were also introduced as acoustic models for

SPSS [13–15]. In SPSS, a number of linguistic features that affect

speech, including phonetic, syllabic, and grammatical ones, have

to be taken into account in acoustic modeling to achieve naturally

sounding synthesized speech. In a typical implementation, there are

normally around 50 different types of linguistic features [16], which

is much more than those used in acoustic modeling for speech recog-

nition. Effective modeling of these complex context dependencies

is one of the most critical problems for SPSS. In DNN-based SPSS,

a DNN is trained to represent the mapping function from linguistic

features (inputs) to acoustic features (outputs), which are modeled

by decision tree-clustered context-dependent HMMs in HMM-based

SPSS [2]. DNN-based acoustic models offer an efficient and dis-

tributed representation of complex dependencies between linguistic

and acoustic features [17] and have shown the potential to produce

naturally-sounding synthesized speech [13, 15].

However, there are limitations in DNNs used for acoustic mod-

eling in speech synthesis. This paper addresses the following two

limitations:

� It is known that the distributions of acoustic features given

linguistic features can be multimodal since humans can speak

the same text in many different ways. It is also known that the

outputs of an ANN trained by minimizing the squared loss

function approximates the conditional mean of the outputs in

the training data [18,19]. This is problematic as the average of

the outputs (acoustic features) may actually be close to none

of the modes of the distribution. The DNN-based acoustic

model in [13], which uses the mean squared error (MSE) as

its objective function to optimize its weights, does not have

the power to model distributions of outputs any more complex

than a unimodal Gaussian distribution.

� The outputs of an ANN provide the mean values only. The

speech parameter generation algorithm [20], which has been

used in SPSS, uses both the means and variances of acous-

tic features to find the most probable acoustic feature trajec-

tories under the constraints between static and dynamic fea-

tures. Although it has been shown experimentally that hav-

ing precise variances had less impact on the naturalness of

the synthesized speech than having precise means in HMM-

based SPSS [21], variances are still useful to generate better

acoustic feature trajectories. Furthermore, advanced genera-

tion algorithms such as the speech parameter generation al-

gorithm considering global variance [22] relies more heavily

on the variance information.

To address these limitations, this paper investigates the use of

a mixture density network (MDN) [18] as an acoustic model for

SPSS. MDNs can give full probability density functions over real-

valued output features conditioned on the corresponding input fea-

tures. This is achieved by modeling the conditional probability dis-

tribution of output features given input features with a Gaussian

mixture model (GMM), where its parameters are generated using

an ANN trained with a log likelihood-based loss function. The use

of the MDNs allows us to do multimodal regression as well as to

predict variances. In the speech synthesis-related area, MDNs have

been successfully applied to articulatory-acoustic inversion mapping

[23, 24].

The rest of this paper is organized as follows. Section 2 de-

scribes the MDN. Experimental results in objective and subjective

evaluations are presented in Section 3. Concluding remarks are

shown in the final section.
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Fig. 1. Overview of the proposed SPSS framework using a deep MDN (DMDN). The red, blue, and green circles are the input, hidden, and

output units, respectively. The DMDN in this example has 3 hidden layers with 4 units per hidden layer, and a mixture density output layer

with 2 Gaussian components.

2. MIXTURE DENSITY NETWORK

An MDN combines a mixture model with an ANN [18]. This paper

utilizes a Gaussian mixture model (GMM)-based MDN. An MDN

M maps a set of input features x to the parameters of a GMM (mix-

ture weights wm, mean �m, and variance �2
m), which in turn gives a

full probability density function of an output feature y, conditioned

on the input features, p.y j x;M/.1 It takes the form of a GMM

given as

p .y j x;M/ D

M
X

mD1

wm.x/ � N
�

yI �m .x/ ; �2
m .x/

�

; (1)

where M is the number of mixture components and wm.x/, �m.x/,
and �2

m.x/ correspond to the mixture weight, mean, and variance

of the m-th Gaussian component of the GMM, given x. The GMM

parameters can be derived from the MDN as

wm.x/ D
exp

�

z
.w/
m .x;M/

�

PM
lD1 exp

�

z
.w/
l

.x;M/
� ; (2)

�m.x/ D exp
�

z
.�/
m .x;M/

�

; (3)

�m.x/ D z
.�/
m .x;M/; (4)

where z
.w/
m .x;M/, z

.�/
m .x;M/, and z

.�/
m .x;M/ are the activations

of the output layer of the MDN corresponding to the mixture weight,

variance, and mean for the m-th Gaussian component in the GMM,

1For simplicity of notation, here the output feature is assumed to be a
scalar value. The extension to a vector is straightforward.

given x and M, respectively [18]. The use of the softmax function

in Eq. (2) constrains the mixture weights to be positive and sum to 1.

Similarly, Eq. (3) constrains the standard deviations to be positive.

Training of the MDN aims to maximize the log likelihood of M

given the data as

OM D arg max
M

N
X

nD1

T .n/
X

tD1

log p
�

y
.n/
t j x

.n/
t ;M

�

(5)

where

D D
n�

x
.1/
1 ; y

.1/
1

�

; : : : ;
�

x
.1/

T .1/
; y

.1/

T .1/

�

;

: : : ;
�

x
.N /
1 ; y

.N /
1

�

; : : : ;
�

x
.N /

T .N /
; y

.N /

T .N /

�o

; (6)

is the set of input/output pairs in the training data, N is the number

of utterances in the training data, and T .n/ is the number of frames

in the n-th training utterance.

Figure 1 illustrates a speech synthesis framework based on a

deep MDN (DMDN). First, a text to be synthesized is converted to a

sequence of linguistic features fx1; : : : ; xT g. Second, the durations

of each speech unit (e.g., phoneme) are predicted by a duration pre-

diction module. Then probability distributions (GMMs) over acous-

tic features including spectral and excitation parameters and their

dynamic features given linguistic features are predicted by a trained

DMDN using forward propagation. From the sequence of the pre-

dicted GMMs, the speech parameter generation algorithm [20] can

generate smooth trajectories of acoustic features which satisfy the

statistics of both static and dynamic features. Finally, a waveform

synthesis module outputs a synthesized waveform given the acoustic

features.
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3. EXPERIMENTS

3.1. Experimental Conditions

Speech data in US English from a female professional speaker was

used for training speaker-dependent HMM-, DNN-, and DMDN-

based SPSS. The training data consisted of about 33 000 utterances.

The speech analysis conditions and model topologies were similar

to those used for the Nitech-HTS 2005 [25] system. The speech

data was downsampled from 48 kHz to 16 kHz sampling, then 40

mel-cepstral coefficients [26], logarithmic fundamental frequency

(log F0) values, and 5-band aperiodicities (0–1, 1–2, 2–4, 4–6, 6–

8 kHz) [25] were extracted every 5 ms. Each observation vector

consisted of 40 mel-cepstral coefficients, log F0, and 5 band aperi-

odicities, and their velocity and acceleration features (3 � (40 C 1

C 5) D 138). Five-state, left-to-right, no-skip hidden semi-Markov

models (HSMMs) [27] were used. To model log F0 sequences con-

sisting of voiced and unvoiced observations, a multi-space proba-

bility distribution (MSD) was used [28]. The number of questions

for the decision tree-based context clustering was 2 554. The sizes of

decision trees in the HMM-based systems were controlled by chang-

ing the scaling factor ˛ for the model complexity penalty term of the

minimum description length (MDL) criterion [29] (˛ D 1). The

numbers of leaf nodes for mel-cepstrum, log F0, and band aperiod-

icities were 12 578, 32 847, and 436, respectively.

The input features for the DNN- and DMDN-based systems in-

cluded 342 binary features for categorical linguistic contexts (e.g.

phonemes identities, stress marks) and 25 numerical features for nu-

merical linguistic contexts (e.g. the number of syllables in a word,

position of the current syllable in a phrase). In addition to the linguis-

tic contexts-related input features, 3 numerical features for coarse-

coded position of the current frame in the current phoneme and 1

numerical feature for duration of the current segment were used. The

output features were basically the same as those used in the HMM-

based systems. To model log F0 sequences, the continuous F0 with

explicit voicing modeling approach [30] was used; voiced/unvoiced

binary value was added to the output features and log F0 values in

unvoiced frames were interpolated. To reduce the computational

cost, 80% of silence frames were removed from the training data.

The weights of the networks were initialized randomly (no pretrain-

ing was performed), then optimized; The weights of the DNN-based

systems were trained to minimize the mean squared error between

the output features of the training data and predicted values using,

whereas those of the DMDN-based systems were trained to maxi-

mize the log likelihood of the model given the training data. A GPU

implementation of a minibatch stochastic gradient descent (SGD)-

based back-propagation algorithm was used. To schedule the learn-

ing rate of the minibatch stochastic gradient descent (SGD)-based

back-propagation algorithm, AdaDec [31] was used.2 Both input

and output features in the training data were normalized; the input

features were normalized to have zero-mean unit-variance, whereas

the output features were normalized to be within 0.01–0.99 based

on their minimum and maximum values in the training data. The

rectifier linear activation function (ReLU) [33] was used in hidden

layers.3 Linear and mixture density output layers were used for the

DNN- and DMDN-based systems, respectively. In each case a single

2AdaDec is a variant of AdaGrad [32], which can manage the learning rate
on per-parameter basis. Preliminary experiments showed that AdaGrad and
AdaDec gave faster convergence and more stable optimization while training
MDNs, which had heterogeneous parameter types (means, standard devia-
tions, and mixture weights) requiring different learning rates.

3A preliminary experiment showed that DNNs with the ReLU activation
functions in hidden layers achieved better objective measures.

Table 2. Preference scores (%) between speech samples from the

DNN (4 hidden layers, 1024 units per hidden layer) and DMDNs (4

hidden layers, 1024 units per hidden layer, mixture density output

layer with 1, 4, or 16 mixture components).

DNN DMDN

1mix 4mix 16mix Neutral p-value z-score

11.6 17.9 – – 70.5 < 10�3 -3.5

8.8 – – 28.3 62.9 < 10�6 -11.1

– 6.7 16.1 – 77.2 < 10�6 -6.3

– 9.2 – 18.3 72.5 < 10�6 -5.4

network was trained to model both spectral and excitation parame-

ters.

Speech parameters for the evaluation sentences were generated

from the models using the speech parameter generation algorithm

[20].4 The DNN-based systems used the per-dimension variances

computed from all training data whereas the DMDN-based systems

used the ones predicted by the network. While generating the acous-

tic features from the HMMs and DMDNs, the mixture component

that had the highest predicted mixture weight was selected at each

frame.5 Spectral enhancement based on post-filtering in the cepstral

domain [34] was applied to improve the naturalness of the synthe-

sized speech. From the generated speech parameters, speech wave-

forms were synthesized using the source-filter model.

To objectively evaluate the performance of the HMM-, DNN-,

DMDN-based systems, mel-cepstral distortion (dB) [35], linear ape-

riodicity distortion (dB), voiced/unvoiced error rate (%), and root

mean squared error (RMSE) in log F0 were used.6 Phoneme dura-

tions from natural speech were used while performing objective and

subjective evaluations. To subjectively evaluate the performance of

the systems, preference and mean opinion score (MOS) tests were

also conducted. 173 utterances not included in the training data were

used for evaluation. One subject could evaluate a maximum of 30

pairs in the preference tests and 30 stimuli in the MOS tests. Each

pair was evaluated by five subjects in the preference tests, whereas

each stimulus was evaluated by three subjects in the MOS tests. The

subjects used headphones. In the preference tests, after listening to

each pair of samples, the subjects were asked to choose their pre-

ferred one, whereas they could choose “neutral” if they did not have

any preference. In the MOS tests, after listening to a stimulus, the

subjects were asked to rate the naturalness of the stimulus in a 5-

scale score (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).

3.2. Experimental Results

Table 1 shows the objective measures and the mean opinion scores

for all architectures. Table 2 also shows the results of the subjective

preference listening tests to evaluate the effect of the mixture density

output layer.

4The generation algorithm considering global variance [22] was not in-
vestigated in this experiment.

5Although the case 3 algorithm of [20], which is based on the EM algo-
rithm and can marginalize hidden variables, can also be used, a preliminary
experiment showed that the differences in the objective measures between
choosing the most probable mixture component and marginalizing them was
negligible. Furthermore, the case 3 algorithm requires more computations.

6These criteria are not highly correlated to the naturalness of synthesized
speech. However they have been used to objectively measure the prediction
accuracy of acoustic models.
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Table 1. Voiced/unvoiced error rates (%), root mean squared errors (RMSEs) in log F0, mel-cepstral distortions (dB), band aperiodicity

distortions (dB), and 5-scale MOSs of the HMM-, DNN-, and DMDN-based systems with different architectures. In this table, “L � X”

means L hidden layers with X units per hidden layer, and “M mix” means M components at the mixture density output layer.

Number of V/UV error log F0 Mel-cepstral Band aperiodicity

Model Architecture parameters (�106) rates (%) RMSE distortion (dB) distortion (dB) 5-scale MOS

1 mix 3.267 4.293 0.1232 4.820 1.263 3.537 ˙ 0.113

HMM 2 mix 6.548 4.275 0.1275 4.895 1.263 3.397 ˙ 0.115

4�1024 3.673 3.505 0.1243 4.794 1.222 3.635 ˙ 0.127

DNN 5�1024 4.723 3.411 0.1225 4.542 1.199 3.681 ˙ 0.109

6�1024 5.772 3.477 0.1221 4.526 1.198 3.652 ˙ 0.108

7�1024 6.822 3.495 0.1225 4.537 1.200 3.637 ˙ 0.129

1 mix 3.818 3.752 0.1217 4.637 1.204 3.654 ˙ 0.117

DMDN 2 mix 3.962 3.342 0.1191 4.541 1.201 3.796 ˙ 0.107

(4�1024) 4 mix 4.251 3.399 0.1193 4.565 1.200 3.766 ˙ 0.113

8 mix 4.829 3.340 0.1190 4.553 1.202 3.805 ˙ 0.113

16 mix 5.986 3.383 0.1188 4.543 1.203 3.791 ˙ 0.102

3.2.1. Having variances

The effect of having variances can be seen by comparing the DNN

(4 � 1024) and the DMDN (4 � 1024, 1 mix). Although there was

no significant difference between them in the mean opinion scores,

the preference test results show that the DMDN (4 � 1024, 1 mix)

was more preferred to the DNN (4 � 1024). As DNNs were trained

to minimize the squared error between data and predicted values and

DMDNs were trained to maximize the log likelihood of the model

given data, the DMDN had to get worse in the squared error-based

measures. However, it can be seen from the tables that having vari-

ances was helpful in predicting mel-cepstra and band aperiodicity

and improved the naturalness of the synthesized speech. This can be

due to the speech parameter generation algorithm, which determines

smoothly-varying acoustic feature trajectories using both means and

variances. To check this, an additional experiment was conducted.

The variances predicted by the DMDN (4 � 1024, 1 mix) rather

than global ones were used with the means predicted by the DNN

(4 � 1024, 1 mix) as inputs of the speech parameter generation algo-

rithm. Table 3 shows experimental results. It can be seen from the

Table 3. RMSE in log F0, mel-cepstral distortion (dB), and band

aperiodicity distortion (dB) of the DNN-based system (4 � 1024)

with variances predicted by the DMDN-based system (4 � 1024, 1

mix).

log F0 Mel-cepstral Band aperiodicity

RMSE distortion (dB) distortion (dB)

0.1240 4.783 1.221

tables that the use of the variances predicted by the DMDN with the

means predicted by the DNN achieved small improvements. How-

ever, it was not as good as the DMDN.

3.2.2. Having multiple components

The effect of having multiple Gaussian components can be found by

contrasting the DMDN with 1 mixture component and those with

multiple mixture components. It can be seen from the table that hav-

ing multiple components was helpful in predicting log F0 and im-

proved the naturalness of the synthesized speech. This is reasonable

as there can be multiple possible naturally-sounding F0 contours for

the same texts. Having multiple components can help capturing such

phenomena. It can also be seen from the preference and MOS test

results that having multiple components improved the naturalness

of the synthesized speech significantly. The MOS test results also

showed that having mixture density output layer is more efficient

than having more layers. For example, although DNN (5 � 1024)

and DMDN (4 � 1024, 4 mix) had the similar numbers of param-

eters, the DMDN (4 � 1024, 4 mix) achieved better mean opinion

score than the DNN (5 � 1024).

Overall, the DMDN (4 � 1024, 8 mix) achieved 3.803 in the 5-

scale MOS, which was 0.266 better than the standard HMM-based

system.

4. CONCLUSIONS

This paper has extended DNN-based SPSS by introducing mixture

density networks (MDNs). The proposed DMDN-based approach

can relax the limitations in the DNN-based acoustic modeling for

speech synthesis: the lack of variances and the unimodal nature of

the objective function. Objective and subjective evaluations showed

that having variances and multiple mixture components by using a

mixture density output layer was helpful in predicting acoustic fea-

tures more accurately and improved the naturalness of the synthe-

sized speech significantly.

Future work includes exploring better network architectures and

optimization algorithms to train networks. Evaluation of DMDNs

with the speech parameter generation algorithm considering global

variance is also necessary.
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