
Deep Mixtures of Factor Analysers

Yichuan Tang tang@cs.toronto.edu

Ruslan Salakhutdinov rsalakhu@cs.toronto.edu

Geoffrey Hinton hinton@cs.toronto.edu

Department of Computer Science, University of Toronto, Toronto, Ontario, CANADA

Abstract

An efficient way to learn deep density models
that have many layers of latent variables is to
learn one layer at a time using a model that
has only one layer of latent variables. After
learning each layer, samples from the poste-
rior distributions for that layer are used as
training data for learning the next layer. This
approach is commonly used with Restricted
Boltzmann Machines, which are undirected
graphical models with a single hidden layer,
but it can also be used with Mixtures of
Factor Analysers (MFAs) which are directed
graphical models. In this paper, we present
a greedy layer-wise learning algorithm for
Deep Mixtures of Factor Analysers (DMFAs).
Even though a DMFA can be converted to an
equivalent shallow MFA by multiplying to-
gether the factor loading matrices at different
levels, learning and inference are much more
efficient in a DMFA and the sharing of each
lower-level factor loading matrix by many
different higher level MFAs prevents overfit-
ting. We demonstrate empirically that DM-
FAs learn better density models than both
MFAs and two types of Restricted Boltzmann
Machine on a wide variety of datasets.

1. Introduction

Unsupervised learning is important for revealing struc-
ture in the data and for discovering features that can
be used for subsequent discriminative learning. It is
also useful for creating a good prior that can be used
for tasks such as image denoising and inpainting or
tracking animate motion.

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

A recent latent variable density model based on
Markov Random Fields is the Gaussian Restricted
Boltzmann Machine (GRBM) (Hinton & Salakhutdi-
nov, 2006). A GRBM can be viewed as a mixture of
diagonal Gaussians with the number of components
exponential in the number of hidden variables, but
with a lot of parameter sharing between the exponen-
tially many Gaussians. In (Hinton et al., 2006), it was
shown that a trained RBM model can be improved by
using a second RBM to create a model of the “aggre-
gated posterior” (Eq. 9) of the first RBM, where the
aggregated posterior is the equally weighted average of
the posterior distributions over the hidden units of the
first RBM for each training case. The second RBM is
then used to replace the prior over the hidden units of
the first RBM that is implicitly defined by the weights
and biases of the first RBM. With mild assumptions
on how training is performed at the higher layer, it
was proven that a variational lower bound on the log-
likelihood is guaranteed to improve. The second level
RBM can do a better job of modeling the first RBM’s
aggregated posterior than the first level RBM because
its parameters are not also being used to model the
conditional distribution of the data given the states of
the units in the first hidden layer.

A rival model for real-valued high-dimensional data
is the Mixture of Factor Analyzers (MFA) (Ghahra-
mani & Hinton, 1996). MFAs simultaneously perform
clustering and dimensionality reduction of the data
by making locally linear assumptions (Verbeek, 2006).
Unlike RBMs, MFAs are directed graphical models
where a multivariate standard normal prior is speci-
fied for the latent factors for all components. Learning
typically uses the EM algorithm to maximize the data
log-likelihood. Each FA in the mixture has an isotropic
Gaussian prior over its factors and a Gaussian pos-
terior for each training case, but when the posterior
is aggregated over many training cases it will typi-
cally be non-Gaussian. We can, therefore, improve a
variational lower bound on the log probability of the
training data by replacing the prior of each FA by a

Deep Mixtures of Factor Analysers

separate, second-level MFA that learns to model the
aggregated posterior of that FA better than it is mod-
eled by an isotropic Gaussian. Empirically, the average
test log-likelihood also increases for models of both low
and high-dimensional data.

While it is true that a two layer MFA can be collapsed
back into a standard one layer MFA, learning the two
models is nevertheless quite different due to the shar-
ing of factor loadings among the second layer compo-
nents of the Deep MFA. Parameter sharing helps to
reduce overfitting and greatly reduces the computa-
tional cost of learning. The EM algorithm also bene-
fits from an easier objective function due to the greedy
layer-wise learning, so it is less likely to get stuck in
poor local optima.

Multilayer factor analysis was also part of the model
in (Chen et al., 2011). However, that work mainly
focused on learning convolutional features with non-
parametric Bayesian priors on the parameters. By us-
ing max-pooling and decimation of the first layer fac-
tors, their model was designed to learn discriminative
features, rather than a top-down generative model of
pixel values.

2. Mixture of Factor Analysers

Factor analysis was first introduced in psychology as a
latent variable model to find the “underlying factor”
behind covariates. The latent variables are called fac-
tors and are of lower dimension than the covariates.
Factor analyzers are linear models as the factor load-
ings span a linear subspace within the vector space of
the covariates. To deal with non-linear data distribu-
tions, Mixtures of Factor Analyzers (MFA) (Ghahra-
mani & Hinton, 1996) can be used. MFAs approximate
nonlinear manifolds by making local linear assump-
tions.

Let x ∈ R
D denote the D-dimensional data, {z ∈ R

d :
d ≤ D} denote the d-dimensional latent variable, and
c ∈ {1, . . . , C} denote the component indicator vari-
able of C total components. The MFA is a directed
generative model, defined as follows:

p(c) = πc,
C
�

c=1

πc = 1, (1)

p(z|c) = p(z) = N (z;0, I), (2)

p(x|z, c) = N (x;Wcz + µc,Ψc), (3)

where I is the d × d identity matrix. The parameters
of the c-th component include a mixing proportion πc,
a factor loading matrix Wc ∈ R

D×d, mean µc, and

a diagonal matrix Ψc ∈ R
D×D, which represents the

independent noise variances for each of the variables.

By integrating out the latent variable z, a MFA model
becomes a mixture of Gaussians with constrained co-
variance:

p(x|c) =

�

z

p(x|z, c)p(z|c)dz = N (x;µc,Γc) (4)

Γc = WcW
T

c +Ψc

p(x) =

C
�

c=1

πc N (x;µc,Γc). (5)

Inference

For inference, we are interested in the posterior:

p(z, c|x) = p(z|x, c)p(c|x) (6)

The posterior over the components can be found using
Bayes rule:

p(c|x) =
p(x|c)p(c)

�C

γ=1 p(x|γ)p(γ)
(7)

Given component c, the posterior over the latent fac-
tors is also a multivariate Gaussian:

p(z|x, c) = N (z;mc,V
−1
c), (8)

where

Vc = I+WT

c Ψ
−1
c Wc,

mc = V−1
c WT

c Ψ
−1
c (x− µ).

Maximum likelihood learning of a MFA model is
straightforward using the EM algorithm. During the
E-step, Eqs. 7, 8 are used to compute the poste-
rior over the latent variables given the current set-
ting of the model parameters. During the M-step,
the expected complete-data log-likelihood is maxi-
mized with respect to the model parameters θ =
{πc,Wc,µc,Ψc}

C
c=1:

Ep(z,c|x;θold)[log p(x, z, c; θ)]

3. Deep Mixtures of Factor Analysers

After MFA training reaches convergence, the model
can be improved by increasing the number C of mix-
ture components or the dimensionality d of the latent
factors per component. This amounts to adjusting
the conditional distributions p(x|z, c). However, as we
demonstrate in our experimental results, this approach

Deep Mixtures of Factor Analysers

Figure 1. Left: The aggregated posterior of a single component may not be Gaussian distributed. Middle: Illustration
of our model for 2D data with each ellipse representing a Gaussian component. The first layer MFA has two components
colored blue (c = 1) and red (c = 2). Their mixing proportions are given by πc. For the blue component, we further
learn a second layer MFA with three components. For the red component, we learn a separate second layer MFA with
two components. We also introduce the second layer component indicator variable kc = 1, . . . ,Kc, where Kc is the total
number of the second layer components associated with the first layer component c. Kc is specific to the first layer
component and need not be same for all c. In our example, K1 = 3 and K2 = 2. Right: Graphical model of a DMFA.
Best viewed in color.

quickly leads to overfitting, particularly when model-
ing high-dimensional data.

An alternative is to replace the standard multivari-
ate normal prior on the latent factors: p(z|c) =
N (0, I). The “aggregated posterior” is the empiri-
cal average over the data of the posteriors over the
factors: 1

N

�N

n=1

�C

c=1 p(zn, c|xn) and a component-
specific aggregated posterior is:

1

N

N
�

n=1

p(zn, cn = c|xn) (9)

If each factor analyser in the mixture was a perfect
model of the data assigned to it, the component-
specific aggregated posterior would be distributed ac-
cording to an isotropic Gaussian, but in practice,
it is non-Gaussian. Figure 1 (left panel) shows a
component-specific aggregated posterior (with d = 2),
which is highly non-Gaussian. In this case, we wish
to replace a simple standard normal prior by a more
powerful MFA prior:

p(z|c) = MFA(θ(2)
c) (10)

Here, θ(2)
c emphasizes that the new MFA’s parameters

are at the second layer and are specific to component
c of the first layer MFA.

More concretely, the variational lower bound on the

log-likelihood of the model given data x is:

L(x;θ) =
C
�

c=1

�

z

q(z, c|x;θ) log p(x, z, c;θ)dz+H(q)

=
C
�

c=1

�

z

q(z, c|x;θ)
�

log p(x|z, c;θ) (11)

+ log p(z|c) + log πc

�

dz+H(q),

where H(·) is the entropy of the posterior distribu-
tion q and θ represent the first layer MFA parame-
ters. The DMFA formulation seeks to find a better
prior log p(z|c) (using Eq. 10), while holding the first
layer parameters fixed. Initially, when q(z, c|x;θ) ≡

p(z, c|x;θ), the bound is tight. Therefore, any increase
in the bound will lead to an increase in the true like-
lihood of the model. Maximizing the bound of Eq. 11
with respect to θ

(2) is equivalent to maximizing:

C
�

c=1

�

z

q(z, c|x;θ) log p(z|c;θ(2)) (12)

averaged over the training data vectors. This is equiv-
alent to fitting component-specific second-layer MFAs
with vectors drawn from q(z, c|x;θ) as data. The same
scheme can be extended to training third-layer MFAs.
With proper initialization, we are guaranteed to im-
prove the lower bound on the log-likelihood, but the
log-likelihood itself can fall (Hinton et al., 2006).

Fig. 1 (middle panel) shows a schematic representation

of our model. Using π
(2)
kc

to denote the second layer

Deep Mixtures of Factor Analysers

mixing proportion of component kc, we have:

∀ c :

Kc
�

kc=1

π
(2)
kc

= 1 (13)

A DMFA replaces the old MFA prior pMFA(z, c) =
p(c)p(z|c) with a better prior:

pDMFA(z, c) = p(c)p(kc|c)p(z|kc) (14)

Therefore, when sampling from a DMFA, we first sam-
ple c using πc, followed by sampling the second layer

component kc using π
(2)
kc

. Finally, we can sample z

using the Gaussian of component kc, as in Eq. 4.

A simpler, but completely equivalent DMFA formu-
lation is to enumerate over all possible second layer
components kc. We use a new component indicator
variable s = 1, . . . , S to denote a specific second layer
component, where S =

�C

c=1 Kc. The mixing propor-

tions are defined as π
(2)
s = p(c(s))p(kc(s)|c(s)), where

c(s) and kc(s) denotes the first and second layer com-
ponents c and kc to which s corresponds. For example
c(2) = 1 and c(5) = 2. We note that the size of S
is exponential in the number of DMFA layers. The
generative process of this formulation is very intuitive
and we shall use it throughout the remaining sections.

Fig. 1 (right panel) shows the graphical model for a 2
layer DMFA. Specifically,

p(s) = π(2)
s (15)

p(z(2)|s) = N (z(2); 0, I) (16)

p(z(1)|z(2), s) = N
�

z(1);W(2)
s z(2) + µ

(2)
s ,Ψ(2)

s

�

(17)

c ← c(s), (deterministic) (18)

p(x|z(1), c) = N
�

x;W(1)
c z(1) + µ

(1)
c ,Ψ(1)

c

�

(19)

Eq. 18 is fully deterministic as every s belongs to one

and only one c. z(1) ∈ R
d(1)

, z(2) ∈ R
d(2)

, W
(1)
c ∈

R
D×d(1)

, W
(2)
s ∈ R

d(1)
×d(2)

, µ
(1)
c ∈ R

d(1)

, and µ
(2)
s ∈

R
d(2)

. Finally, Ψ(1)
c and Ψ

(2)
s are d(1)×d(1) and d(2)×

d(2) diagonal matrices of the first and second layers
respectively.

DMFA has an equivalent shallow form, which is ob-
tained by integrating out the latent factors. If we in-
tegrate out the first layer factors z(1), we obtain:

p(x|z(2), s) = N
�

x;W(1)
c (W(2)

s z(2) + µ
(2)
s) + µ

(1)
c ,

Ψ
(1)
c +W(1)

c Ψ
(2)
s W(1)

c

T

) (20)

By further integrating out z(2):

p(x|s) = N (x;W(1)
c µ

(2)
s + µ

(1)
c , (21)

Ψc +W(1)
c (Ψ(2)

s +W
(2)
d W

(2)
d

T

)W(1)
c

T

)

From Eq. 20, we can see that a DMFA can be re-
duced to a standard MFA where z(2) are the factors
and s indicates the mixture component. This “col-
lapsed” MFA is regularized due to its parameter shar-
ing. In particular, the means of the components s
with the same first layer component c all must lie on a

hyperplane spanned by W
(1)
c . The covariance of these

components all share the same outer product factoriza-

tion (W
(1)
c W

(1)
c

T

) but with different “core matrices”

(Ψ
(2)
s +W

(2)
s W

(2)
s

T

).

Assuming that the number of the second layer compo-
nents are equal, i.e. ∀c : Kc = K, a standard shallow
MFA with S = C × K mixture components and d(1)

factors per component would require O(DKd(1)C) pa-
rameters. A DMFA with two layers, on the other hand,
would require O(Dd(1)C + d(1)d(2)CK) = O((D +
d(2)K)d(1)C) parameters. Note that a DMFA requires
a much smaller number of effective parameters than an
equivalent shallow MFA, since d(2) << D. As we shall
see in Sec. 4.1, this sharing of parameters is critical for
preventing overfitting.

3.1. Inference

Exact inference in a collapsed DMFA model is of order
O(CK) since the data likelihood must be computed for
each mixture component. We can incur a lower cost
by using an approximate inference, which is O(C +
K). First, we compute the posterior p(z(1), c|x) =
p(z(1)|x, c)p(c|x) using Eq. 7. This posterior is exact
if we had a standard normal prior over z(1), but it is
an approximation of the exact posterior of the DMFA
model. The entropy of the posterior p(c|x) is likely to
be very low in high dimensional spaces. We therefore
make a point estimate by selecting the component c
with maximum posterior probability:

ĉ = argmax
c

p(c)p(c|x) (22)

p(z(1)|x) =
�

c

p(z(1)|x, c)p(c|x)dc

≈ p(z(1)|x, ĉ) (23)

For the second layer, we treat ĉ and z(1) as data, and
compute the posterior distribution p(z(2), s|z(1), ĉ) in
a similar fashion.

3.2. Learning

A DMFA can be trained efficiently using a greedy
layer-wise algorithm. The first layer MFA is trained in
a standard way. We then use Eq. 23 to infer the com-
ponent ĉ and the factors associated with that com-
ponent for each training case {xn}. We then freeze
the first layer parameters and treat the sampled first

Deep Mixtures of Factor Analysers

Algorithm 1 Learning DMFAs

Given data: X = {x1,x2, . . . ,xN}.
//Layer 1 training
Train 1st layer MFA on X with C components and
d factors using EM → MFA1.

//Layer 2 training
Create dataset Yc for each of the C components.
Yc ← ∅

for i = 1 to N do

for c = 1 to C do

compute p(c|xi) and p(z(1)|xi, c), Eqs. 7 & 8.
end for

Find ĉ = argmaxc p(c|xi).

Sample z
(1)
i from N (z(1);mĉ,V

−1
ĉ).

Add z
(1)
i to dataset Yĉ: Yĉ = Yĉ ∪ {z

(1)
i }.

end for

d(2) and Kc: # of 2nd layer factors and components.
for c = 1 to C do

Train a separate 2nd layer MFA on Yc with
d(2) factors and Kc components using EM →

MFA2{c}.
end for

layer factor values for every component
�

{z
(1)
n }c

�

as
training data for the second layer MFAs. Algorithm 1
details this layer-wise training algorithm. After greedy
learning, “backfitting” by collapsing a DMFA and run-
ning additional EM steps is also possible. However,
more care is needed to prevent overfitting.

4. Experiments

We demonstrate the advantages of learning DMFAs on
both low dimensional and high dimensional datasets,
including face images, natural image patches, and
speech acoustic data.
Toronto Face Database (TFD): The Toronto Face
Database is a collection of aligned faces from a
variety of (mostly) publicly available face image
databases (Susskind, 2011). From the original reso-
lution of 108× 108, we downsampled to resolutions of
48× 48 or 24× 24. We then randomly selected 30,000
images for training, 10,000 for validation, and 10,000
for testing.
CIFAR-10: The CIFAR-10 dataset (Krizhevsky,
2009) consists of 60,000 32× 32×3 color images of 10
object classes. There are 50,000 training images and
10,000 test images. Out of 50,000 training images,
10,000 were set aside for validation.
TIMIT Speech: TIMIT is a corpus of phonemically
and lexically transcribed speech of American English

speakers of different sexes and dialects1. The corpus
contains a 462-speaker training set, a 50-speaker vali-
dation set, and a 24-speaker core test set. For our pur-
poses, we extracted data vectors every 10-ms from the
continuous speech data. Each frame analyzes a 25-ms
Hamming window using a set of filter banks based on
the Fast Fourier Transform. Concatenating 11 frames,
we obtain 1353 dimensional input vectors. We ran-
domly selected 30,000 vectors for training, 10,000 for
validation, and 10,000 for testing.
Berkeley Natural Images: The Berkeley segmenta-
tion database (Martin et al., 2001) contain 300 images
from natural scenes. We randomly extracted 2 million
8 × 8 image patches for training, 50,000 patches for
validation, and 50,000 for testing.
UCI: We used 4 datasets from the UCI reposi-
tory (Murphy & Aha, 1995). These are low dimen-
sional datasets and have relatively few training exam-
ples. These were the only UCI datasets we tried.

For all image datasets, the DC component of each im-
age was removed: x ← x−mean(x). This removes the
huge illumination variations across data samples. No
other preprocessing steps were used. For the TIMIT
and UCI datasets, we normalize input vectors to zero
mean and scale the entire input by a single number
to make the average standard deviation be one. For
evaluating the log probabilities of DMFAs, we always
first collapsed it to a shallow MFA in order to obtain
the exact data log-likelihood.

4.1. Overfitting

We first trained a 20 component MFA on 24 × 24
faces until convergence2, which took 33 iterations. The
number of factors was set to half of the input di-
mensionality, d(1) = D/2 = 288. Fig. 2 shows the
corresponding training and validation log-likelihoods3.
We next stacked a second MFA layer with five second
layer components (Kc = 5) for each of the first layer
components and d(2) = 50 second layer factors. The
DMFA (MFA2) model improved as learning continued
for an additional 20 iterations (see red and blue lines
in Fig. 2). As a comparison, immediately after we ini-
tially formed the two-layer MFA, we collapsed it into
its equivalent shallow representation and performed
additional training (magenta and black lines in Fig. 2).
Observe that the shallow MFA starts overfitting due to
its extra capacity (5 times more parameters). MFA2,

1
www.ldc.upen.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

2Convergence is achieved when the log-likelihood
changed by less than 0.01% from the previous EM iter-
ation.

3Similar results were obtained for different numbers of
components and factors.

Deep Mixtures of Factor Analysers

Figure 2. DMFA improves over MFA. Overfitting occurs
during further training of a shallow MFA with increased
capacity. Best viewed in color.

on the other hand, shows improvements on both the
training and validation data. We note that training a
shallow MFA with 100 components from random ini-
tialization is significantly worse (see Table. 1).

To give a sense of the computation costs, training the
first layer MFA took 1600 seconds on a multi-core Xeon
machine. The second layer MFA training took an ad-
ditional 580 seconds.

4.2. Qualitative Results

We next demonstrate qualitative improvements of the
samples from a DMFA over a standard MFA model.
As the baseline, we first trained a MFA model on
30,000 24×24 face images from the TFD, with 288 fac-
tors and 100 components. We then trained a DMFA
with 20 first layer components and 5 second layer com-
ponents for each of the 20 first layer components. The
DMFA has the same number of parameters as the base-
line MFA. The two-layer MFA (MFA2) performs better
compared to the standard MFA by around 20 nats on
the test set. Fig 3 further shows samples from the two
models. Qualitatively, the DMFA appears to generate
better samples compared to the shallow MFA model.

4.3. High Dimensional Data

Next, we explore the benefits of DMFAs on the high
dimensional CIFAR and TIMIT datasets. We first
trained a MFA model with the number of factors equal
to half of the input dimensionality. The number of
mixture components was set to 20. For MFA2, 5 com-
ponents with 50 latent factors were used. For the 3rd
layer MFA (MFA3) 3 factors with 30 latent factors
were used.

Table 1 shows the average training and test log-
likelihood. In addition, we provide results for two

Figure 3. Top: training images. Middle: samples from
MFA. Bottom: samples from DMFA.

types of RBM models that are commonly used when
modeling high-dimensional real-valued data, including
image patches and speech. The SSU model is a type of
RBM with Gaussian visible and stepped sigmoid hid-
den units (Nair & Hinton, 2010). By using rectified
linear activations, SSU can be viewed as a mixture of
linear models with the number of components expo-
nential in the number of hidden variables. A simpler
Gaussian RBM (GRBM) model uses Gaussian visible
and binary hidden units. It can also be viewed as a
mixture of diagonal Gaussians with exponential num-
ber of components. For both the GRBM and SSU,
we used Fast Persistent Contrastive Divergence (Tiele-
man & Hinton, 2009) for learning and AIS (Salakhut-
dinov & Murray, 2008) to estimate their log-partition
functions. The AIS estimators have standard errors
of around 5 nats, which are too small to affect the
conclusions we can draw from Table 1.

The number of parameters for the GRBMs and SSU
are matched to the MFA model, which means that
approximately 6,000 hidden nodes are used. Increas-
ing the number of hidden units did not result in any
significant improvements of GRBM and SSU models.
Hyperparameters are selected using the validation set.
After MFA learning converged, a MFA2 model is ini-
tialized. The means of the MFA-2 components were
slightly perturbed from zero so as to break symme-
try. Shallow1 results were obtained by collapsing these
newly initialized MFA2 models and further training us-
ing EM with early stopping. Shallow2 results were ob-
tained by starting at random initialization (with mul-
tiple restarts) with the equivalent number of parame-
ters as the corresponding Shallow1 models. We note
the significant gains by DMFAs for the TIMIT and
TFD-48 datasets.

Fig. 4 displays gains of 2 and 3 layer MFA as we vary
the number of the first layer mixture components. It

Deep Mixtures of Factor Analysers

Dataset GRBM SSU MFA MFA-2 MFA-3 Shallow1 Shallow2 Diff-2 Diff-3
TFD-24 766 859 1312 1368 1380 1325 1506 57.1 ± 0.1 12± 0.2

758 841 1185 1202 1207 1184 1039 18.7 ± 0.2 4.1 ± 0.08
TFD-24-Rot 843 950 1412 1469 1477 1428 1505 56.9 ± 0.1 8.5 ± 0.13

822 929 1283 1305 1306 1284 1125 21.6 ± 0.2 1.4 ± 0.04
TFD-48 2426 3675 6020 6141 6151 6036 6461 119.2 ± 0.4 11.7 ± 0.1

2413 3557 5159 5242 5250 5161 4299 85.3 ± 0.5 5.6 ± 0.1
CIFAR: 2725 2818 4486 4573 4583 4565 4214 86.8 ± 0.4 10.6 ± 0.2

2365 2494 3587 3621 3622 3592 2873 33.2 ± 0.4 0.5 ± 0.06
TIMIT: 1244 1316 2662 2802 2804 2707 3219 133.5 ± 0.2 1.4 ± 0.05

1175 1268 2298 2450 2451 2305 1169 147.2 ± 0.5 0.4 ± 0.07

Table 1. Model performance on various high dimensional datasets (nats). TFD-24-Rot is generated by randomly rotating
24× 24 face images in the range of ±45 deg. Diff-2 and Diff-3 are the gains from going from 1 to 2 layers and from 2 to 3
layers, respectively. For all datasets, Diff-2 and Diff-3 are statistically significant at p = 0.01.

(a) Training Data (b) Test Data

Figure 4. Improvements of DMFA over standard MFA on
24 × 24 face images vs. the number of first layer compo-
nents. Gains are observed across different numbers of first
layer components. Surprisingly, while the dataset contains
thousands of different people, more than 10 mixture com-
ponents results in overfitting. Best viewed in color.

is interesting to observe that MFA and DMFA signif-
icantly outperformed various RBM models. This re-
sult suggests that it may be possible to improve many
of the existing deep networks for modeling real-valued
data that use GRBMs for the first hidden layer, though
better density models do not necessarily learn features
that are better for discrimination.

4.4. Low Dimensional Data

DMFAs can also be used with low dimensional data.
Following (Silva et al., 2011), we used 4 continuous
datasets from the UCI repository. We removed the
discrete variables from all datasets. For the Parkin-
sons dataset, one variable from any pair whose Pear-
son correlation coefficient is greater than 0.98 was also
removed (for details see (Silva et al., 2011)). Table 2
reports the averaged test results using 10-fold cross
validation. Compared to the recently introduced Cop-
ula Networks, MFAs give much better test predictive
performance. Adding a second layer produced signifi-
cant gains in model performance. The improvements
from adding a second layer on all datasets were statis-
tically significant using the paired t-test at p = 0.01.

PIX PCA ICA GMM MFA MFA-2
78.3 114.2 115.9 167.2∗ 166.5 169.3

Table 3. Average test log-likelihood (in nats) of various
models learned on 50,000 8 × 8 test patches. PIX: in-
dependent pixels. PCA: Principle Component Analysis.
ICA: Independent Component Analysis. GMM: Mix-
ture of Gaussians with 200 components. MFA Mixture
of Factor Analysers with 200 components. MFA-2 Two
layer DMFA. MFA and MFA-2 results are from our ex-
periments, other numbers are taken from Zoran & Weiss
(2011). GMM’s 167.2∗ is different from the previously re-
ported 164.5 due to the random extraction of test patches.
167.2 was obtained by evaluating the downloaded model
of Zoran & Weiss (2011) on our own test patches.

4.5. Natural Images

One important application of generative models is in
the task of image restoration which can be formulated
as a MAP estimation problem. As confirmed by Zoran
&Weiss (2011), a better prior almost certainly leads to
a better signal to noise ratio of the restored image. In
addition, Zoran & Weiss (2011) have shown that com-
bining a mixture of Gaussians model trained on 8× 8
patches of natural images with a patch-based denois-
ing algorithm, allowed them to achieve state-of-the-art
results. Following their work, we trained a two-layer
MFA on 8×8 patches from the Berkeley database. Two
million training and 50,000 test patches were extracted
from the 200 training and 100 test images, respectively.
Table 3 shows results. Note that the DMFA improves
upon the current state-of-the-art GMMs model of Zo-
ran & Weiss (2011) by about 2 nats, while substan-
tially outperforming other commonly used models in-
cluding PCA and ICA. Finally, we trained a shallow
equivalent to MFA-2 (5 times more parameters than
MFA) from random initialization and achieved only
164.9 nats, thereby demonstrating that DMFAs are
necessary in order to achieve the extra gain.

Deep Mixtures of Factor Analysers

Dataset dim. size Gaussian Cop. MCDN MFA MFA-2 DMFA gain
Parkinsons 15 5875 -11.65 -3.48 -0.63 -0.33 0.296 ± 0.024
Ionosphere 32 351 -41.10 -27.45 -20.10 -18.53 1.565 ± 0.252
Wine(red) 11 1599 -13.72 -11.25 -10.22 -10.07 0.143 ± 0.015
Wine(white) 11 4898 -13.76 -12.11 -11.02 -10.89 0.121 ± 0.036

Table 2. Test set predictive log-likelihood on 4 UCI datasets (nats). Reported results are from 10-fold cross validation on
each dataset. MFA results are from our experiments. Other results are from (Silva et al., 2011).

4.6. Allocating more components to more

popular factor analysers

Until now, we have given every higher level MFA
the same number of components to model the ag-
gregated posterior of its lower level factor analyser
(∀c : Kc = K). While simple to implement, this is not
optimal. An alternative is to use more second layer
components for the first layer components with bigger
mixing proportions. We tested this hypothesis by first
training a MFA model on 48 × 48 TFD faces, which
achieved an average test log-likelihood of 5159 nats.
For the two-layer MFA, instead of assigning 5 com-
ponents to each of the first layer components, we let
Kc ∝ πc, with min(Kc) = 2 and

�C

c Kc = 5 × C.
With all other learning hyper-parameters held con-
stant, the resulting DMFA achieved 5246 nats on the
test set. Compared to 5242 nats of our previous model
(c.f. Table 1), the new method accounted for a gain
of 4 nats. As another alternative, a measure of Gaus-
sianity of the aggregated posterior could be used to
determine Kc.

5. Discussions

As density models, MFAs significantly outperform
undirected RBM models for real-valued data and by
using second layer MFAs to model the aggregated pos-
terior of each first layer factor analyser, we can achieve
substantial gains in performance. Higher input dimen-
sionality leads to bigger gains from learning DMFAs.
However, adding a third MFA layer appears to be of
little value. Another possible extension of our work
is to train a mixture of linear dynamical systems and
then to train a higher-level mixture of linear dynami-
cal systems to model the aggregated posterior of each
component of the first level mixture.

Acknowledgements

We thank Iain Murray for discussions and Jakob Ver-
beek for sharing his MFA code. This research was
supported by NSERC & CIFAR.

References

Chen, B., Polatkan, G., Sapiro, G., Dunson, D. B., and
Carin, L. The hierarchical beta process for convolutional
factor analysis and deep learning. In ICML, pp. 361–368,
2011.

Ghahramani, Z. and Hinton, G. E. The EM algorithm for
mixtures of factor analyzers. Technical Report CRG-
TR-96-1, University of Toronto, 1996.

Hinton, G. E. and Salakhutdinov, R. Reducing the dimen-
sionality of data with neural networks. Science, 313:
504–507, 2006.

Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning
algorithm for deep belief nets. Neural Computation, 18
(7):1527–1554, 2006.

Krizhevsky, A. Learning multiple layers of features from
tiny images, 2009. URL http://www.cs.toronto.edu/

~kriz/learning-features-2009-TR.pdf.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. A database
of human segmented natural images and its application
to evaluating segmentation algorithms and measuring
ecological statistics. In ICCV, July 2001.

Murphy, P. M. and Aha, D. W. UCI Repository of Machine
Learning Databases. Technical report, Dept of Infor-
mation and Computer Science, University of California,
Irvine, 1995.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of ICML,
2010.

Salakhutdinov, R. and Murray, I. On the quantitative anal-
ysis of deep belief networks. In ICML, volume 25, 2008.

Silva, R., Blundell, C., and Teh, Y. W. Mixed cumulative
distribution networks. In AISTATS, 2011.

Susskind, J.M. The Toronto Face Database. Technical
report, 2011. http://aclab.ca/users/josh/TFD.html.

Tieleman, T. and Hinton, G. E. Using fast weights to im-
prove persistent contrastive divergence. In ICML, vol-
ume 382, pp. 130. ACM, 2009. ISBN 978-1-60558-516-1.

Verbeek, Jakob. Learning nonlinear image manifolds by
global alignment of local linear models. IEEE Trans.
Pattern Analysis and Machine Intelligence, 28:14, 2006.

Zoran, D. and Weiss, Y. From learning models of natural
image patches to whole image restoration. ICCV, 2011.

http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
http://aclab.ca/users/josh/TFD.html

