
Theor. Comput. Fluid Dyn. (2020) 34:577–591
https://doi.org/10.1007/s00162-020-00520-4

S.I.: MACHINE LEARNING AND DATA-DRIVEN METHODS IN FLUID DYNAMICS

Katharina Bieker · Sebastian Peitz · Steven L. Brunton ·

J. Nathan Kutz · Michael Dellnitz

Deep model predictive flow control with limited sensor data
and online learning

Received: 17 September 2019 / Accepted: 27 February 2020 / Published online: 12 March 2020
© The Author(s) 2020

Abstract The control of complex systems is of critical importance in many branches of science, engineering,
and industry, many of which are governed by nonlinear partial differential equations. Controlling an unsteady
fluid flow is particularly important, as flow control is a key enabler for technologies in energy (e.g., wind,
tidal, and combustion), transportation (e.g., planes, trains, and automobiles), security (e.g., tracking airborne
contamination), and health (e.g., artificial hearts and artificial respiration). However, the high-dimensional,
nonlinear, and multi-scale dynamics make real-time feedback control infeasible. Fortunately, these high-
dimensional systems exhibit dominant, low-dimensional patterns of activity that can be exploited for effective
control in the sense that knowledge of the entire state of a system is not required. Advances in machine learning
have the potential to revolutionize flow control given its ability to extract principled, low-rank feature spaces
characterizing such complex systems. We present a novel deep learning model predictive control framework that
exploits low-rank features of the flow in order to achieve considerable improvements to control performance.
Instead of predicting the entire fluid state, we use a recurrent neural network (RNN) to accurately predict the
control relevant quantities of the system, which are then embedded into an MPC framework to construct a
feedback loop. In order to lower the data requirements and to improve the prediction accuracy and thus the
control performance, incoming sensor data are used to update the RNN online. The results are validated using
varying fluid flow examples of increasing complexity.

Keywords Optimal control · Model predictive control · Deep learning · Online learning · Flow control

1 Introduction

The robust and high-performance control of fluid flows presents an engineering grand challenge, with the poten-
tial to enable advanced technologies in domains as diverse as transportation, energy, security, and medicine. In
many of these areas, the flows—described by the three-dimensional Navier–Stokes equations—are turbulent
or exhibit chaotic dynamical behavior in the relevant regimes. As a consequence, the control of fluid flows is

Communicated by Maziar S. Hemati.

K. Bieker (B) · S. Peitz · M. Dellnitz
Chair of Applied Mathematics, Paderborn University, Paderborn, Germany
K. Bieker
E-mail: bieker@math.upb.de

S. L. Brunton
Department of Mechanical Engineering, University of Washington, Seattle, WA, USA

N. Kutz
Department of Applied Mathematics, University of Washington, Seattle, WA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00162-020-00520-4&domain=pdf

578 K. Bieker et al.

challenging due to the confluence of strong nonlinearity, high-dimensionality, and multi-scale physics, thus
typically leading to an intractable optimization problem. However, recent advances in machine learning (ML)
are revolutionizing computational approaches for these traditionally intractable optimizations by providing
principled approaches to feature extraction methods with improved optimization algorithms. We develop a
deep learning model predictive control framework that leverages ML methods to achieve robust control per-
formance in a complex fluid system without recourse to the governing equations, and with access to only a
few physically realizable sensors. This sensor-based, data-driven learning architecture is critically important
for practical implementation in control-based engineering applications.

Model predictive control (MPC) [10,23] is among the most versatile and widely used model-based control
approaches, which involves an online optimization of the control strategy over a predictive receding horizon.
Generally, improved models result in better control performance [43], although the online iterative optimization
requires relatively inexpensive models [28,46]. The challenge of MPC for controlling fluid flows is centered on
the high-dimensional nature of spatiotemporal flow fields. Fortunately, these systems often exhibit dominant
patterns of low-dimensional activity. Indeed, it is observed that flying insects, birds, and bats are able to
harness these dominant patterns to execute exceptional control performance. Thus, there is a vibrant field in
reduced-order models [4] that balance accuracy and efficiency to capture essential physical mechanisms, while
discarding distracting features.

A very prominent approach in model reduction for nonlinear systems is the proper orthogonal decom-
position (POD) [38], where the dynamical system is projected onto a lower-dimensional subspace of modes
representing dominant flow structures that are constructed from simulation data. Over the past years, many
control frameworks based on POD have been proposed for fluid flows, see, e.g., [7,13,25,34,36,44]. However,
POD and related methods face difficulties when the system exhibits chaotic behavior, as the dynamics cannot
be restricted to low-dimensional subspaces in that case.

In the recent past, data-driven methods have provided an increasingly successful alternative for model reduc-
tion in nonlinear systems. Among machine learning algorithms, deep learning [11,21,22] has seen unprece-
dented success in a variety of modeling tasks across industrial, technological, and scientific disciplines. It is no
surprise that deep learning has been rapidly integrated into several leading control architectures, including MPC
and reinforcement learning. Deep reinforcement learning [27,35] has been widely used to learn games [27,37],
and more recently for physical systems, for example to learn flight controllers [17,41] or the collective motion
of fish [42]. A combination of the representational power of deep neural networks with the flexible optimiza-
tion framework of MPC, called DeepMPC, is also a promising strategy. There exist various approaches for
using data-driven surrogate models for MPC (e.g., based on the Koopman operator [15,16,20,31–33]), and
DeepMPC has considerable potential [3,24,30]. The ability of DeepMPC to control the laminar flow past a
circular cylinder was recently demonstrated in [30]; the flow considered in this work is nearly linear and may be
well approximated using more standard linear modeling and control techniques. However, this study provides
an important proof of concept. In this work, we extend DeepMPC for flow control in two key directions: (1) We
apply this architecture to control significantly more complex flows that exhibit broadband phenomena; and (2)
we develop our architecture to work with only a few physically realizable sensors, as opposed to earlier studies
that involve the assumption of full flow field measurements. There is a significant gap between academic flow
control examples and industrially relevant configurations. The present work takes a step toward complexity
and importantly develops a data-driven, sensor-based architecture that is likely to scale to harder problems.
More importantly, one rarely has access to the full flow field, and instead control must be performed with
very few measurements [26]. Biological systems, such as flying insects, provide proof by existence that it is
possible to enact extremely robust control with limited flow measurements [29]. In this work, we design our
learning approach to leverage time histories of limited sensors (i.e., measurable body forces), providing a more
direct connection to engineering applications. In order to improve the prediction accuracy and thus the control
performance, incoming sensor data— which needs to be collected with a relatively high frequency within the
MPC framework—is used to perform batch-wise online learning. Finally, we provide a physical interpretation
for the learned control strategy, which we connect to the underlying symmetries of the dynamical system.

2 Model predictive control of complex systems

Our main task is to control a complex nonlinear system in real time. We do this by using the well-known MPC
paradigm, in which an open-loop optimal control problem is solved in each time step using a model of the
system dynamics:

Deep Model Predictive Flow Control 579

Fig. 1 Structure of the control scheme, where a classical MPC controller based on a model for the full system state is shown in
green and a controller using a surrogate model in orange (color figure online)

min
(u0,...,uN−1)∈RN

N−1
∑

i=0

‖ f (yi+1) − zref
i+1‖

2
2 + α|ui |

2 + β|ui − ui−1|
2

s.t. yi+1 = �(yi , ui).

(1)

Here, f (y) = z is the observation of the time (and potentially space) dependent system state y that has to
follow a reference trajectory zref , and α and β are regularization parameters penalizing the control input as
well as its variation. The time-T map � of the system dynamics describes how the system state evolves over
one time step given the current state and control input. Problem (1) is then solved repeatedly over a fixed
prediction horizon N and the first entry is applied to the real system. As the initial condition in the next time
step, the real system state is used such that a feedback behavior is achieved. Note that u−1 is the control input
that was applied to the system in the previous time step. The scheme is visualized in Fig. 1, where the MPC
controller based on the full system dynamics is shown in green.

MPC has successfully been applied to a very large number of problems. However, a major challenge is the
real-time requirement, i.e., (1) has to be solved within the sample time �t = ti+1 − ti . In order to achieve this,
linearizations are often used. Since even these can be too expensive to solve for large systems, we will here
use a surrogate model which does not model the entire system state but only the control relevant quantities. In
a flow control problem, these can be the lift and drag coefficients of a wing, for instance. Such an approach
has successfully been used in combination with surrogate models based on dynamic mode decomposition [33]
or clustering [31]. We thus aim at directly approximating the dynamics � for the observable z = f (y) and
replacing the constraint in Problem (1) by a surrogate model. Following Takens embedding theory [39], we
will use delay coordinates, an approach which has been successfully applied to many systems [8]. Therefore,
we define

ẑi = [zi−d , zi−d+1, . . . , zi], ûi = [ui−d , ui−d+1, . . . , ui],

where d is the number of delays. Given a history of states z and controls u, the reduced dynamics � then yield
the state at the next time instant. This allows us to replace Problem (1) by the following surrogate problem:

min
(u0,...,uN−1)∈RN

N−1
∑

i=0

‖zi+1 − zref
i+1‖

2
2 + α|ui |

2 + β|ui − ui−1|
2

s.t. ẑi+1 = �(ẑi , ûi).

(2)

The resulting MPC controller is visualized in Fig. 1 in orange.

Remark 1 Note that another advantage of modeling only the quantities relevant to the control part is that we
depend much less strongly on the scales of the flow field (i.e., grid size and time step), as integral quantities
such as body forces may evolve on their own (and possibly somewhat slower) time scale.

580 K. Bieker et al.

2.1 Related work

The main challenge in flow control—the construction of fast yet accurate models—has been addressed by
many researchers in various ways. We here give a short overview of alternative methods (mostly related to the
cylinder flow) and relate them to our approach.

From a control-theoretical standpoint, the best way to compute a control law is via the exact model, i.e.,
the full Navier–Stokes equations. Using such a model in combination with an adjoint approach, a significant
drag reduction could be achieved for the cylinder flow in [12] for Reynolds numbers up to 1000. However,
this approach is too expensive for real-time control. To this end, several alternatives have been proposed, the
most intuitive and well known being linearization around a desired operating point, cf. [18] for an overview.
As a popular alternative, proper orthogonal decomposition (POD) [38] has emerged over the past decades,
where the full state is projected onto a low-dimensional subspace spanned by orthogonal POD modes which
are determined from snapshots of the full system. The resulting Galerkin models have successfully been used
for control of the cylinder wake, see, e.g., [7,13]. Balanced truncation POD models can be obtained for linear
[44] or linearized systems [36]. In order to ensure convergence to an optimal control input, the POD model
can be updated regularly within a trust-region framework [6]. Alternative approaches that are similar in spirit
are moment matching [1] and linear–quadratic–Gaussian (LQG) balanced truncation [5].

The above-mentioned methods have as their main drawback that they quickly become prohibitively expen-
sive with increasing Reynolds number. This is due to the fact that linearizations are less efficient or that the
dynamics no longer live in low-dimensional subspaces that can be spanned by a few POD modes. Furthermore,
all approaches require knowledge of the entire velocity (and potentially pressure) field, at least for the model
construction. Both issues can be avoided when not considering the entire velocity field but only sensor data,
which results in purely data-driven models or feedback laws. Several machine learning-based approaches have
been presented in this context, for instance cluster-based surrogate models (cf. [31], where the drag of an
airplane wing was reduced), feedback control laws constructed by genetic programming [45], or reinforcement

learning controllers [35]. These approaches are often significantly faster, rendering real-time control feasible.
The approach presented in the following falls into this category as well.

3 DeepMPC: model predictive control with a deep recurrent neural network

In order to solve (2), the surrogate model � for the control relevant system dynamics is required. For this
purpose, we will use a deep RNN architecture which is implemented in TensorFlow [2]. Once the model is
trained and can predict the dynamics of z (at least over the prediction horizon), the model can be incorporated
into the MPC loop.

3.1 Design of the RNN

As previously mentioned, the surrogate model is approximated using a deep neural network similar to [3].
Each cell of the RNN predicts the system state for one time step. In order to capture the system dynamics
using few observations only, we use the delay coordinates introduced above. Consequently, each RNN cell
takes as input a sequence of past observations ẑi as well as corresponding control inputs ûi . The RNN consists
of an encoder and a decoder (cf. Fig. 2a), where the decoder performs the actual prediction task and consists
of N cells—one for each time step in the prediction horizon. This means that a single decoder cell computes
ẑi+1 = �(ẑi , ûi). The state information ẑi+1 is then forwarded to the next cell to compute the consecutive
time step. In order to take long-term dynamics into account, an additional latent state lk+1 is computed based
on past state information and forwarded from one cell to another. To properly compute this state for the first
decoder cell, an encoder with M cells, whose cells only predict this latent state, is prepended to the decoder.
As the encoder cell only predicts the latent state, it is a reduced version of the decoder cell which additionally
contains elements for predicting the current and future dynamics, cf. Fig. 2a, b.

More precisely, the decoder cells are divided into three functional parts capturing different parts of the
dynamics, i.e., long term (which is equivalent to an encoder cell) and current dynamics as well as the influence
of the control inputs (see Fig. 2b). Therefore, the input (ẑk, ûk) of each cell k is divided into three parts, two time
series zk−2b+1,...,k−b and zk−b+1,...,k of the observable with the corresponding control inputs uk−2b,...,k−b−1,
and uk−b,...,k−1 and a separate sequence of control inputs uk−b+1,...,k . The input length b is thus related to the
delay via d = 2b. In summary, the inputs (ẑk, ûk) = (zk−2b,...,k, uk−2b,...,k) are required.

Deep Model Predictive Flow Control 581

(a)

(b)

Fig. 2 a Unfolded RNN consisting of encoder (red) and decoder (yellow). b Layout of a single RNN cell. An encoder cell only
consists of the blue area. A decoder cell, on the other hand, contains the entire green cell (color figure online)

As shown in Fig. 2b, the encoder and decoder consist of different smaller sub-units, represented by gray
boxes. Each of the gray boxes represents a fully connected neural network. The encoder cell consists of three
parts, hl,past, hl,current and hlatent. In hl,past and hl,current latent variables for the last k − 2b + 1, . . . , k − b and
k − b + 1, . . . , k time steps are computed, respectively. The current latent state lk+1 can be computed based
on the information given by hl,past, hl,current and the latent variable of the last RNN cell lk . In a decoder cell,
the future state zk+1 is additionally computed. Therefore, the latent state lk+1 is used as an input for hpast,
and the results of hpast, hcurrent and hfuture are used to calculate the predicted state zk+1 and thus, ẑk+1. The
corresponding equations can be found in Appendix A.

The RNN-based MPC problem (2) is solved using a gradient-based optimization algorithm—in our case
a BFGS method. The required gradient information with respect to the control inputs can be calculated using
standard backpropagation through time. This is represented by the red arrows in Fig. 2b. Since the RNN model
requires temporal information from at least M + 2b time steps (M encoder cells and input sequence of length
2b) to predict future states, there is an initialization phase in the MPC framework during which the control
input is fixed to 0.

582 K. Bieker et al.

3.2 Training of the RNN

The RNN is trained offline with time series data ((z0, u0), . . . , (zn, un)). For the data collection, the system is
actuated with uniformly distributed random yet continuously varying inputs. In order to overcome difficulties
with exploding and vanishing gradients as well as problems with the effect of nonlinearities when iterating
from one time step to another, we use the three-stage approach for learning as proposed in [24] and used in
[3]. First, a conditional restricted Boltzmann machine is used to compute good initial parameters for the RNN
according to the work by [40]. In the second stage, only the model for a single time step is trained as this is
faster and more stable than directly training the entire network, i.e., the model for the entire prediction horizon.
In the final stage, another training phase is performed, this time for the complete RNN with N decoder cells,
improving and making the predictions more robust for the system state over N time steps. Both the individual
RNN cell and the entire network were trained using the ADAM optimizer [19].

3.3 Online training of the RNN

During system operation, we obtain incoming sensor data in each iteration, i.e., with a relatively high frequency.
In order to improve the prediction accuracy and thus the control performance of the model, these data are used
to perform batch-wise online learning. To this end, we begin with a model which was trained in the offline
phase as previously described. We then collect data over a fixed time interval such that we can update the RNN
via batch-wise training using the ADAM optimizer.

To control the influence of the newly acquired data on the model—i.e., to avoid overfitting while yielding
improved performance—it is important to select the training parameters accordingly, in particular the batch
size and the learning rate. In our experiments, we have observed that the same initial learning rate and the
same batch size as in the offline training phase are typically a good choice. However, the optimal choice of
those parameters highly depends on the initial training data and the data collected during the control process.

4 Results

In order to study the performance of the proposed MPC framework, four flow control problems of increasing
complexity are considered. Instead of a real physical system, we here use a numerical simulation of the full
model as our plant. In all four cases, the flow around one or multiple cylinders (cf. Fig. 3) is governed by the
incompressible 2D Navier–Stokes equations with fluid entering from the left at a constant velocity yin. The
Reynolds number Re = yin/νD (based on the kinetic viscosity ν and the cylinder diameter D) ranges from
100 to 200, i.e., we are in the laminar regime. The full system is solved using a finite volume discretization and
the open-source solver OpenFOAM, cf. [14]. The control relevant quantities are the lift and drag forces (i.e.,
the forces in x2 and x1 direction) acting on the cylinders. These consist of both friction and pressure forces
which can be computed from the system state (or easily measured in the case of a real system). The system
can be controlled by rotating the cylinders, i.e., the control variables are the angular velocities.

4.1 One cylinder

The first example is the flow around a single cylinder, cf. Fig. 3a, which was also studied in [30]. At Re = 100,
the uncontrolled system possesses a periodic solution, the so called von Kármán vortex street. On the cylinder
surface, the fluid and the cylinder velocity are identical (no-slip condition) such that the flow can be steered by
rotating the cylinder. The control relevant quantities are the forces acting on the cylinder—the lift Cl and drag
Cd. We thus set z = (Cl, Cd), and the aim is to control the cylinder such that the lift follows a given trajectory,
e.g., a piecewise constant lift.

In order to create training data, a time series of the lift and the drag is computed from a time series of the
full system state with a random control sequence. To avoid high input frequencies, a random rotation between
u = −2 and u = 2 is selected according to an equal distribution every 0.5 s. The intermediate control inputs
are then computed using a spline interpolation on the grid of the time-T map, where �t = 0.1 s. For the
RNN training, a time series with 110,000 data points is used which corresponds to a duration of 11,000 s. The
concrete parameters for the RNN can be found in Appendix B.

Deep Model Predictive Flow Control 583

Fig. 3 a Single cylinder setup. The system is controlled by setting the angular velocity u of the cylinder. b Setup for the fluidic
pinball, where the forces on all cylinders are observed. The system is controlled by rotating cylinders one and two with the
respective angular velocities u1 and u2

0 10 20 30 40 50
-2

-1

0

1

2

0 10 20 30 40 50

-2

0

2

(a)

0 10 20 30 40 50 60
-2

-1

0

1

2

0 10 20 30 40 50 60
-4

-2

0

2

4

(b)

Fig. 4 System with one cylinder at Re = 100. a Results for the prediction by the RNN for a given control input sequence. The
prediction for the next 5 time steps for lift and drag (at each ti) is shown in brightening red or blue tones. b Results of the control
task. The aim is to force the lift to +1, 0 and −1 for 20 s, respectively (color figure online)

Remark 2 In the first experiments, we use abundant measurement data in order to rule out this source of
insecurity. The chosen amount significantly exceeds the amount that is required for a good performance, as
we will see below. Considering the uncontrolled system, the fluidic time scale is in the range of seconds, and
even in the actuated situation, a much smaller amount of data is sufficient, in particular in combination with
the stochastic gradient descent optimization which selects random subsets of the data set in each iteration.

In a first step, the quality of the RNN prediction is evaluated on the basis of an exemplary control input
sequence. As one can see in Fig. 4a, the prediction is very accurate over several time steps for many combinations
of observations z and control inputs u. There are only small regions where the predictions deviate stronger
from the real lift and drag.

The good prediction quality enables us to use the RNN in the MPC framework, where the aim is to force
the lift to +1, 0 and −1 for 20 s, respectively. This results in the following realization of (2):

584 K. Bieker et al.

(a)

0 20 40 60 80 100

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(b)

0 20 40 60 80 100

-0.2

-0.1

0

0.1

0.2

0.3

(c)

Fig. 5 Simulation of the uncontrolled system (u1 = u2 = 0) at three different Reynolds numbers: a Re = 100, b Re = 140, c
Re = 200

min
u∈[−2,2]5

4
∑

i=0

∣

∣

∣

∣z1,i+1 − C ref
l,i+1

∣

∣

∣

∣

2

2
+ β|ui − ui−1|

2

s.t. ẑi+1= �(ẑi , ûi).

(3)

The parameter β is set to 0.01 in order to avoid too rapid variations of the input. Furthermore, the control is
bounded by the minimum and maximum control input of the training data (i.e., ±2). We solve the optimization
problem (3) using a BFGS method and with a prediction horizon of length N = 5, as our experiments have
shown that this is a good compromise between accuracy and computing effort. As visualized in Fig. 4b, the
DeepMPC scheme leads to a good performance. Due to the periodic fluctuation of the uncontrolled system, a
periodic control is expected to suppress this behavior which is what we observe.

4.2 Fluidic pinball

In the second example, we control the flow around three cylinders in a triangular arrangement, as shown
in Fig. 3b. This configuration is known as the fluidic pinball, see [9] for a detailed study. The control task
is to make the lift of the three cylinders (Cl,1, Cl,2 and Cl,3) follow given trajectories by rotating the rear
cylinders while the cylinder in the front is fixed. We thus want to approximate the system dynamics of the
forces acting on all three cylinders, i.e., z = (Cl,1, Cl,2, Cl,3, Cd,1, Cd,2, Cd,3). Similar to the single cylinder
case, the system possesses a periodic solution at Re = 100. When increasing the Reynolds number, the system
dynamics become chaotic [9] and the control task is much more challenging. We thus additionally study the
chaotic cases Re = 140 and Re = 200. The behavior of the observables of the uncontrolled flow for the three
cases is presented in Fig. 5. Interestingly, the flow is non-symmetric in all cases. At Re = 100, for instance,
the amplitudes of the oscillations of Cl,2 and Cl,3 are different, and which one is larger depends on the initial
condition.

Deep Model Predictive Flow Control 585

Table 1 Number of iterations, function and gradient evaluations averaged over 140 control steps for different Reynolds numbers

Re = 100 Re = 140 Re = 200

Iterations 19.4 46.8 46.3
Function evaluations 110.7 75.6 83.8
Gradient evaluations 100.2 72.8 80.0

As we now have two inputs and three reference trajectories, we obtain the following realization of prob-
lem (2):

min
u1,u2∈[−2,2]N

N−1
∑

i=0

⎛

⎝

3
∑

j=1

∣

∣

∣

∣

∣

∣
z j,i+1 − C ref

l, j,i+1

∣

∣

∣

∣

∣

∣

2

2
+ β

2
∑

j=1

|u j,i − u j,i−1|
2

⎞

⎠

s.t. ẑi+1= �(ẑi , ûi),

where the value of β is set to 0.1. For Re = 100, the prediction horizon is again N = 5. Since the dynamics
are more complex for Re = 140 and Re = 200, the prediction horizon has to be larger and we experimentally
found N = 10 to be an appropriate choice. The average number of iterations as well as the number of function
and gradient evaluations for the MPC optimization are shown in Table 1 for the three considered cases.

For all three Reynolds numbers, the training data are computed by simulating the system with random
yet smoothly varying control inputs as before, i.e., uniformly distributed random values between u = −2
and u = 2 for each cylinder independently every 0.5 s. Due to the significantly smaller time step of the finite
volume solver for the fluidic pinball, the control is interpolated on a finer grid with step size 0.005 s. Since
the control input has to be fixed over one lag time due to the discrete-time mapping via the RNN, the mean
over one lag time (i.e., over 20 data points) is taken for u. Time series with 150,000, 200,000 and 800,000
data points are used for Re = 100, Re = 140 and Re = 200, respectively. As already mentioned in Remark 2,
the chosen amount of data exceeds the maximum that is required. We will address this below. The concrete
parameters for the RNN can be found in Appendix B.

At Re = 100, where the dynamics are periodic, the control is quite effective, almost comparable to the
single cylinder case, cf. Fig. 6a. In particular, the lift at the bottom cylinder is controlled quite well. The fact
that the two lift coefficients cannot be controlled equally well is not surprising as the uncontrolled case is also
asymmetric, cf. Fig. 5.

In comparison, the error emean for the mildly chaotic case Re = 140 (Fig. 6b) is approximately one order of
magnitude larger. The reference is still tracked, but larger deviations are observed. However, since the system is
chaotic, this is to be expected. It is more difficult to obtain an accurate prediction and—more importantly—the
system is more difficult to control, see also [32].

In order to improve the controller performance, we incorporate system knowledge, i.e., we exploit the
symmetry along the horizontal axis. Numerical simulations suggest that this symmetry results in two metastable
regions in the observation space and that the system changes only occasionally from one region to the other,
analogous to the Lorenz attractor [8]. Therefore, we symmetrize (and double) the training data as follows:

ũ = (−u2, −u1)
⊤ , C̃l =

(

−Cl,2, −Cl,1, −Cl,3

)⊤
, C̃d =

(

Cd,2, Cd,1, Cd,3

)⊤
.

This step is not necessary at Re = 100, since the collected data are already nearly symmetric. Nevertheless,
the amount of training data can be doubled by exploiting the symmetry, and therefore, the simulation time to
generate the training data can be reduced.

In Fig. 6c, the results for Re = 140 with symmetric training data are shown. In this example, the tracking
error is reduced by nearly 50%. In particular, the second lift is well controlled. This indicates that it is advisable
to incorporate known physical features such as symmetries in the data assimilation process. However, we still
observe that the existence of two metastable regions results in a better control performance for one of the
cylinders, depending on the initial condition.

For the final example, the Reynolds number is increased to Re = 200 in order to further increase the
complexity of the dynamics, and symmetric data are used again. Due to the higher Reynolds number, switching
between the two metastable regions occurs much more frequently, and the use of symmetric data yields less
improvement. The results are presented in Fig. 6d, and we see that even though tracking is achieved, the
oscillations around the desired state are larger. In Fig. 7a, the mean and the maximal error for the three
Reynolds numbers are shown. Since the system dynamics become more complex with increasing Reynolds

586 K. Bieker et al.

(a) Re = 100: emean = ∆t
T

∑

T

∆t

i= 4

∆t

1

3

∑

3

j=1

∣

∣

∣

∣
Cl,j,i − Cref

l,j,i

∣

∣

∣

∣

∣

∣

2

2

= 0.016235, with T = 100

emax = max 4

∆t
≤i≤ T

∆t

1

3

∑

3

j=1

∣

∣

∣

∣

∣

∣
Cl,j,i − Cref

l,j,i

∣

∣

∣

∣

∣

∣

2

2

= 0.050267

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

0 20 40 60 80 100

-2

-1

0

1

2

(b) Re = 140: emean = 0.043695, emax = 0.14484

(c) Re = 140 with symmetrized data:
emean = 0.025452, emax = 0.11917

(d) Re = 200 with symmetrized data:
emean = 0.063857, emax = 0.25680

Fig. 6 DeepMPC reference tracking for varying Re and data sets

number, both the prediction by the RNN and the control task itself become more difficult and the tracking error
increases.

In order to study the robustness of the training process as well as the influence of the amount of training
data on the tracking error, 5 identical experiments for Re = 200 have been performed for different amounts
of training data (10%, 50% and 100% of the symmetrized data points), respectively, see Fig. 7b. We observe
no trend with respect to the amount of training data, in particular considering that the standard deviation is
approximately 0.03 for the average and 0.15 for the maximal error. Figure 8 shows a comparison between two
solutions using RNNs trained with 100% and 10% of the data, respectively. Although the solution trained with

Deep Model Predictive Flow Control 587

100 140 200

0

0.02

0.04

0.06

0.08

0

0.1

0.2

0.3

(a)

10% 50% 100%

0

0.05

0.1

0.15

0

0.2

0.4

0.6

(b)

Fig. 7 a Mean (blue) and maximal (red) error for various Reynolds numbers with full data. b Mean and maximal error for different
training data set sizes, both averaged over 5 training runs (Re = 200) (color figure online)

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Full amount of data:
emean = 0.063857, emax = 0.25680

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Only 10% of data:
emean = 0.073693, emax = 0.30

Fig. 8 DeepMPC reference tracking for Re = 200 and different amount of data

less data appears to behave less regularly, its performance is on average almost as good as the solution trained
with 100% of the data. In conclusion, shorter time series already cover a sufficiently large part of the dynamics
and are thus sufficient to train the model. In order to further improve the performance, the size of the RNN as
well as the length of the training process would very likely have to be increased significantly and also, much
smaller lag times would be required.

4.3 Online learning

Since we want to avoid a further increase in computational effort and data collection, we instead use small
amounts of data sampled in the relevant parts of the observation space, i.e., close to the desired state. To this
end, we perform online updates using the incoming sensor data. In our final experiment, we study how the
control performance can be improved by performing batch-wise online updates of the RNN using the incoming
data as described in Sect. 3.3. In the feedback loop, a new data point is collected from the real system at each
time step. Our strategy is to collect new data over 25 s for each update. By exploiting the symmetry, we obtain
a batch size of 500 points within each interval that is used for further training of the RNN. In the right plot of
Fig. 9, we compare the tracking error over several intervals, and we see that it can be decreased very efficiently
within a few iterations by using online learning (see also Fig. 6a for a comparison). Besides reducing the
tracking error, the control cost ||u||2 decreases, which further demonstrates the importance of using the correct
training data. Significant improvements of both the tracking performance as well as the controller efficiency
are obtained very quickly with comparably few measurements.

5 Conclusion and further work

We present a deep learning MPC framework for feedback control of complex systems. Our proposed sensor-
based, data-driven learning architecture achieves robust control performance in a complex fluid system without

588 K. Bieker et al.

0 50 100 150 200

-1

-0.5

0

0.5

1

50 100 150 200

0

0.005

0.01

0.015

1.2

1.25

1.3

1.35

1.4

1.45

Fig. 9 Re = 100 with online learning. The RNN is updated every 25 s (denoted by black lines on the left). On the right the mean
error (blue) and the control cost (red) over each interval are shown (color figure online)

recourse to the governing equations, and with access to only a few physically realizable sensors. In order to
handle the real-time constraints, a surrogate model is built exclusively for control relevant and easily accessible
quantities (i.e., sensor data). This way, the dimension of the RNN-based surrogate model is several orders of
magnitude smaller compared to a model of the full system state. On the one hand, this enables applicability in a
realistic setting since we do not rely on knowledge of the entire state. On the other hand, it allows us to address
systems of higher complexity, i.e., it is a sensor-based and scalable architecture. The approach shows very
good performance for high-dimensional systems of varying complexity, including chaotic behavior. To avoid
prohibitively large training data sets and long training phases, an online update strategy using sensor data is
applied. This way, excellent performance can be achieved for Re = 100. For future work, it will be important
to further improve and robustify the online updating process, in particular for chaotic systems. Furthermore, it
is of great interest to further decrease the training data requirements by designing RNN structures specifically
tailored to control problems.

Deep learning MPC is a critically important architecture for real-world engineering applications where
only limited sensors are available to enact control authority. Therefore, in the context of real-world applications
it would be of significant interest how the framework reacts to noisy sensor data. Since neural networks can
in general work well with noisy data, we expect that DeepMPC gives a good noise-robustness. Furthermore,
it should be investigated what happens if the Reynolds number changes slightly from the one used to train the
RNN.

Acknowledgements Open Access funding provided by Projekt DEAL. KB acknowledges support by the German Federal
Ministry of Education and Research (BMBF) within the project “Information-based optimization of surgery schedules (IBOSS)”.

The calculations were performed on resources provided by the Paderborn Center for Parallel Computing (PC2). SLB acknowledges
support from the Army Research Office (ARO W911NF-19-1-0045).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Equations of a single RNN cell

As described in Sect. 3.1, the kth RNN cell takes as input (ẑk, ûk) = (z, u)k−2b,...,k . This input is divided into
three smaller sequences: xpast = (zk−2b+1,...,k−b, uk−2b,k−b−1), xcurrent = (zk−b+1,...,k, uk−b,k−1), ufuture =
uk−b+1,k .

Input: (ẑk, ûk) → xpast, xcurrent, ufuture

http://creativecommons.org/licenses/by/4.0/

Deep Model Predictive Flow Control 589

The equations for the encoder resp. the long term part of the decoder are given by

hl,past = relu(Wl,pastx p + bl,past),

hl,current = relu(Wl,currentxcurrent + bl,current),

lk+1 = hlatent

= relu(Wlatent,h(hl,past ◦ hl,current) + Wlatent,llk + blatent),

where ◦ is the element-wise multiplication of vectors and relu computes the rectified linear, i.e., max(0, x)

for each element in x . The weights and the biases are the variables which are optimized during the training
process and have the following dimensions:

Wl,past, Wl,current ∈ R
Nx ×Nh ,

Wlatent,h ∈ R
Nh×Nl ,

Wlatent,l ∈ R
Nl×Nl ,

bl,past, bl,current ∈ R
Nh ,

blatent ∈ R
Nl ,

where Nl is the size of the latent state lk and Nh the size of the hidden layers. Nl and Nh can be chosen
appropriately depending on the problem, cf. Appendix B for the concrete values as used in our experiments.
Nx is determined by the delay d = 2b, the number of observables no and the number of control inputs nu as
Nx = b(no + nu). For the fluidic pinball, we observe the lift and drag at the three cylinders, and we can adapt
the angular velocity of the two rear cylinders. Therefore, we have no = 6 and nu = 2.

In order to predict the future state, the decoder consists of three additional parts. The equations are given
by

hpast = relu(Wpastlk+1 + bpast),

hcurrent = relu(Wcurrentxcurrent + bcurrent),

hfuture = relu(Wfutureufuture + bfuture),

where

Wpast ∈ R
Nl×Nh ,

Wcurrent ∈ R
Nx ×Nh ,

Wfuture ∈ R
Nu×Nh ,

bpast, bcurrent, bfuture ∈ R
Nh ,

with Nu = bnu . The final output zk+1 is computed via a linear layer:

zk+1 = Wout(hpast ◦ hcurrent ◦ hfuture) + bout,

where Wout ∈ R
Nh×Nout and bout ∈ R

Nout with Nout = no.

B Parameter choice for the RNN

The structure of the RNN is defined by the number of neurons in the hidden layers, i.e., by Nh and Nl ,
the number of encoder cells M and the chosen delay d = 2b. We performed different experiments to find
appropriate values, and in Table 2 we summarize our final choices.

590 K. Bieker et al.

Table 2 Choice of RNN hyper-parameters

Single cylinder Re = 100 Fluidic pinball Re = 100, 140, 200

Nh 200 500
Nl 150 400
M 5 5
d 12 22

References

1. Ahmad, M.I., Benner, P., Goyal, P., Heiland, J.: Moment-matching based model reduction for Navier–Stokes type quadratic-
bilinear descriptor systems. ZAMM J. Appl. Math. Mech. 97(10), 1252–1267 (2017)

2. Abadi et al., M.: Tensorflow: A system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 265–283 (2016)

3. Baumeister, T., Brunton, S.L., Kutz, J.N.: Deep learning and model predictive control for self-tuning mode-locked lasers. J.
Opt. Soc. Am. B 35(3), 617–626 (2018)

4. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical
systems. SIAM Rev. 57(4), 483–531 (2015)

5. Benner, P., Heiland, J.: Lqg-balanced truncation low-order controller for stabilization of laminar flows. In: King, R. (ed.)
Active Flow and Combustion Control 2014, pp. 365–379. Springer International Publishing, Cham (2015)

6. Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD
reduced-order models. J. Comput. Phys. 227(16), 7813–7840 (2008)

7. Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using proper orthogonal decomposition
reduced-order model. Phys. Fluids 17, 1–21 (2005)

8. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat.
Commun. 8, 19 (2017)

9. Deng, N., Noack, B.R., Morzyński, M., Pastur, L.R.: Low-order model for successive bifurcations of the fluidic pinball. J.
Fluid Mech. 884, A37-1–A37-41 (2019)

10. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice—a survey. Automatica 25(3), 335–348
(1989)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
12. He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A., Periaux, J.: Active control and drag optimization for flow past a

circular cylinder: I. Oscillatory cylinder rotation. J. Comput. Phys. 163(1), 83–117 (2000)
13. Hinze, M., Volkwein, S.: Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates

and suboptimal control. In: Benner, P., Sorensen, D.C., Mehrmann, V. (eds.) Reduction of Large-Scale Systems, vol. 45, pp.
261–306. Springer, Berlin Heidelberg (2005)

14. Jasak, H., Jemcov, A., Tukovic, Z.: OpenFOAM : A C++ library for complex physics simulations. In: International Workshop
on Coupled Methods in Numerical Dynamics pp. 1–20 (2007)

15. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-Driven Discovery of Koopman Eigenfunctions for Control. arXiv:1707.0114
(2017)

16. Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data
limit. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2219), 20180335 (2018)

17. Kim, H.J., Jordan, M.I., Sastry, S., Ng, A.Y.: Autonomous helicopter flight via reinforcement learning. In: Advances in
Neural Information Processing Systems, pp. 799–806 (2004)

18. Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39(1), 383–417 (2007)
19. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 (2014)
20. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control.

Automatica 93, 149–160 (2018)
21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F.,

Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105.
Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-
networks.pdf

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
23. Lee, J.H.: Model predictive control: review of the three decades of development. Int. J. Control Autom. Syst. 9(3), 415–424

(2011)
24. Lenz, I., Knepper, R.A., Saxena, A.: DeepMPC: Learning deep latent features for model predictive control. In: Robotics:

Science and Systems. Rome, Italy (2015)
25. Lorenzi, S., Cammi, A., Luzzi, L., Rozza, G.: POD–Galerkin method for finite volume approximation of Navier–Stokes and

RANS equations. Comput. Methods Appl. Mech. Eng. 311, 151–179 (2016)
26. Manohar, K., Brunton, B.W., Kutz, J.N., Brunton, S.L.: Data-driven sparse sensor placement. IEEE Control Syst. Mag. 38(3),

63–86 (2018)
27. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K.,

Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

28. Mohanty, S.: Artificial neural network based system identification and model predictive control of a flotation column. J.
Process Control 19(6), 991–999 (2009)

http://arxiv.org/abs/1707.0114
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Deep Model Predictive Flow Control 591

29. Mohren, T.L., Daniel, T.L., Brunton, S.L., Brunton, B.W.: Neural-inspired sensors enable sparse, efficient classification of
spatiotemporal data. Proc. Natl. Acad. Sci. 115(42), 10564–10569 (2018)

30. Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. In:
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 31, pp. 9258–9268. Curran Associates Inc., New York (2018)

31. Nair, A.G., Yeh, C.A., Kaiser, E., Noack, B.R., Brunton, S.L., Taira, K.: Cluster-based feedback control of turbulent post-stall
separated flows. J. Fluid Mech. 875, 345–375 (2019)

32. Peitz, S.: Controlling Nonlinear PDEs Using Low-Dimensional Bilinear Approximations Obtained From Data.
arXiv:1801.06419 (2018)

33. Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of PDEs. Automatica 106, 184–191
(2019)

34. Peitz, S., Ober-Blöbaum, S., Dellnitz, M.: Multiobjective optimal control methods for the Navier–Stokes equations using
reduced order modeling. Acta Appl. Math. 161(1), 171–199 (2019)

35. Rabault, J., Kuchta, M., Jensen, A., Réglade, U., Cerardi, N.: Artificial neural networks trained through deep reinforcement
learning discover control strategies for active flow control. J. Fluid Mech. 865, 281–302 (2019)

36. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(3),
997–1013 (2005)

37. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Pan-
neershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature
529(7587), 484–489 (2016)

38. Sirovich, L.: Turbulence and the dynamics of coherent structures part I: coherent structures. Q. Appl. Math. 45(3), 561–571
(1987)

39. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick, Vol. 1980, pp.
366–381. Springer (1981)

40. Taylor, G.W., Hinton, G.E., Roweis, S.T.: Modeling human motion using binary latent variables. In: Schölkopf, B., Platt,
J.C., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1345–1352. MIT Press, Cambridge
(2007)

41. Tedrake, R., Jackowski, Z., Cory, R., Roberts, J.W., Hoburg, W.: Learning to fly like a bird. In: 14th International symposium
on robotics research. Lucerne, Switzerland (2009)

42. Verma, S., Novati, G., Koumoutsakos, P.: Efficient collective swimming by harnessing vortices through deep reinforcement
learning. PNAS 115(23), 5849–5854 (2018)

43. Weisberg Andersen, H., Kümmel, M.: Evaluating estimation of gain directionality. J. Process Control 2(2), 67–86 (1992)
44. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330

(2002)
45. Wu, Z., Fan, D., Zhou, Y., Li, R., Noack, B.R.: Jet mixing optimization using machine learning control. Exp. Fluids 59(8),

131 (2018)
46. Xi, Y.G., Li, D.W., Lin, S.: Model predictive control—status and challenges. Acta Autom. Sin. 39(3), 222–236 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

http://arxiv.org/abs/1801.06419

	Deep model predictive flow control with limited sensor data and online learning
	Abstract
	1 Introduction
	2 Model predictive control of complex systems
	2.1 Related work

	3 DeepMPC: model predictive control with a deep recurrent neural network
	3.1 Design of the RNN
	3.2 Training of the RNN
	3.3 Online training of the RNN

	4 Results
	4.1 One cylinder
	4.2 Fluidic pinball
	4.3 Online learning

	5 Conclusion and further work
	Acknowledgements
	A Equations of a single RNN cell
	B Parameter choice for the RNN
	References

