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Abstract

This paper investigates problems of image style, aes-

thetics, and quality estimation, which require fine-grained

details from high-resolution images, utilizing deep neural

network training approach. Existing deep convolutional

neural networks mostly extracted one patch such as a down-

sized crop from each image as a training example. However,

one patch may not always well represent the entire image,

which may cause ambiguity during training. We propose

a deep multi-patch aggregation network training approach,

which allows us to train models using multiple patches gen-

erated from one image. We achieve this by constructing

multiple, shared columns in the neural network and feeding

multiple patches to each of the columns. More importantly,

we propose two novel network layers (statistics and sorting)

to support aggregation of those patches. The proposed deep

multi-patch aggregation network integrates shared feature

learning and aggregation function learning into a unified

framework. We demonstrate the effectiveness of the deep

multi-patch aggregation network on the three problems, i.e.,

image style recognition, aesthetic quality categorization,

and image quality estimation. Our models trained using

the proposed networks significantly outperformed the state

of the art in all three applications.

1. Introduction

Problems of image styles, aesthetics, and quality es-

timation have been actively investigated over the past

decade [17, 24, 26, 18], with the goal of endow comput-

ers with the capability of perceiving aesthetics, style, and

visual quality as human vision systems. Potential usage

of methods developed for these three tasks could be fore-

seen towards wide applications from intelligent computer

systems to real-time, mobile applications. Unlike tasks of

image classification and object detection, the key of these

problems is to capture both the holistic information and

fine-grained high resolution details, as presented in [17]

and [24], respectively.

Deep convolutional neural network has demonstrated ef-

fectiveness for various image classification tasks, but most

of the work ignored fine-grained high resolution details in

images. Such fine-grained details has been shown highly

useful in applications such as image quality estimation [17],

image aesthetics categorization, and image style classifica-

tion [24]. Learning fine-grained details is challenging, as

that information locates in original, relatively high resolu-

tion images (e.g., 1024×768, 2560×1920). Deep convolu-

tional neural networks are often trained with 256× 256× 3
inputs (for color images), and training deep networks with

large-size input dimensions requires much longer training

time and a significantly larger network structure, training

dataset, and hardware memory.

To learn fine-grained details using deep network train-

ing approaches, previous studies [24, 17] represented each

image with one randomly cropped patch, and paired the

patch with the label of the image as one training example.

Such approach generates ambiguity in training examples as

aesthetics/style/quality attributes in one patch may not well

represent the fine-grained information in the entire image.

To address this issue, we formulate the learning problem

by representing an input image with a small set or bag of

patches cropped from it and associating the set with the im-

age’s training label, and propose novel deep neural network

architectures to solve the problem. Instances in a bag are or-

derless and the central idea is to perform aggregation of the

instances. In this work, we propose a deep multi-patch ag-

gregation network architecture (DMA-Net) to support fine-

grained details learning utilizing multiple patches cropped

from one image.

Designing an optimal network structure that supports

both feature learning and aggregation function learning si-

multaneously is nontrivial. In this paper, we propose two

novel layers: statistics layer and sorting layer to enable

aggregation of multiple input sources. The statistics layer

leverages common statistical functions to let the output be
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independent of the input order, and the sorting layer lever-

ages a sorting function to achieve the same goal. Building

upon the two novel layers, we develop two different ag-

gregation structures embedded in deep neural networks to

support deep multi-patch aggregation network training. We

demonstrate the effectiveness of the models trained with the

proposed neural network architectures in three applications:

image style classification, aesthetic quality categorization,

and image quality estimation.

Our main contributions are three-fold.

• We introduce novel neural network architectures to

support learning from multiple patches. In particular,

we propose two novel network layers and their aggre-

gation strategies to support multi-patch aggregation.

• We apply our proposed neural network-based approach

to three vision applications that greatly depend on fine-

grained details and demonstrate significant improve-

ment over the state of the art.

• By leveraging both the holistic information of the im-

age and the extracted fine-grained details using DMA-

Net, we further boost the performance in image style

classification and image aesthetics categorization.

2. Related Work

2.1. Deep Neural Networks

The success made by the deep neural network approach

for image classification [21] has inspired many follow-on

studies on deep learning and their applications to vision.

We review the studies that are closely related to our work.

Recent work [9, 30, 17, 22] focused on adapting deep

neural network training to various vision applications. They

mostly were able to show some improvement with slight

modification of the network structures (e.g., adding a layer

or adding a column) or changing the training strategy (e.g.,

fine-tuning). Beside the useful techniques such as ReLU,

dropout, and data augmentation introduced in [21], we no-

tice two key ideas that have led to promising results in clas-

sification problems:

(i) Multiple Image Resolutions. Different vision appli-

cations require information from different image resolution.

In image classification, deep convolutional neural network

(CNN) achieved great success by training on 256× 256× 3
images. However, in image quality estimation, image aes-

thetics, and image style classification, training deep neu-

ral networks on relatively high-resolution images helps im-

prove the performance significantly [24, 17].

When using imagenet feature as a generic image descrip-

tor for recognition tasks, researchers found that aggregat-

ing descriptors from different image resolutions helps boost

the classification performance. In [27, 20, 15], researchers

computed ImageNet features (i.e., features extracted by the

neural network trained in the ImageNet Challenge [21])

from multi-scale image pyramid for object recognition,

scene recognition, and object detection. In [10], Gong et al.

improved the geometric invariance of imagenet activations

by pooling features extracted from multi-resolution patches.

In addition, recent study has demonstrated the significance

of maintaining the aspect ratio of images through spatial

pyramid pooling [12] in object detection.

In [24, 17], a single randomly cropped patch was used to

represent the entire image. In [27, 20, 15, 10], the neural

networks are trained on small downsized images and ap-

plied to multi-resolution images in the testing stage.

In this paper, the key idea is to represent the original

high-resolution input image using multiple patches and con-

struct the deep multi-patch aggregation network to directly

learn from the bags of multiple patches.

(ii) Multi-Column Neural Network. Multi-column

neural network [5, 1, 24] has been demonstrated as an ef-

ficient approach to improve performance of single-column

neural networks in various classification problems. Moti-

vated by part-based approaches (e.g., [7, 16, 29, 3]), re-

cent studies attempt to train multiple convolutional neu-

ral networks on aligned parts. Zhang et al. trained pose-

normalized CNNs on semantically aligned part patches,

whose learned features are associated with certain parts un-

der specific poses [39]. A similar approach has been applied

to fine-grained category detection in [38]. Bourdev et al. ap-

plied trained CNN to extract features on poselet patches [4].

In addition to aligned patches, multi-column neural net-

works were trained with heterogenous inputs in [24].

In multi-column neural networks, one could also con-

strain the multi-column structures to share weights and ag-

gregate multi-column outputs using max-pooling. Wei et

al. probed the image multi-labeling problem using such a

network structure [32]. Whereas our work follows a sim-

ilar strategy of constraining the multi-column structures to

share weights, our work is different in three aspects: 1) Wei

et al. implicitly assume that each cropped patch is associ-

ated with one of the image labels in a multi-labeled image

classification problem, while we take the entire set of mul-

tiple patches as one training sample in the proposed deep

framework. 2) Wei et al. applied the max-pooling only on

the final labeling layer of activations. In contrast, we take

multiple randomly cropped patches as inputs and conduct

patch aggregation in an intermediate layer through the two

proposed patch aggregation structures, which better utilize

the interactions of patch features; 3) The activation aggrega-

tion in the earlier work is hand-designed to be max pooling,

whereas we propose two novel network layers to learn the

aggregation from training data.
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2.2. Multiple Instance Learning

Our work is related to the multiple-instance learning

(MIL) paradigm, under which the training set consists of

bags of instances and the goal is to train a bag classifier.

In binary classification settings, a standard assumption in

MIL states that a bag is labeled as positive with at least

one positive instance, and a bag is labeled as negative if

all instances in the bag are negative. According to the as-

sumption, probability measures such as Noisy-OR [13, 25]

and ISR [19] are designed for multiple instance aggrega-

tion, following which various cost functions were proposed

to learn a function that maps the multiple-instances as a

whole to the label. Recent studies on MIL targeted mani-

fold assumptions on feature distributions of instances in a

bag [2], instance selection for MIL [8], and vision applica-

tions, such as object detection [37, 23], content-based im-

age retrieval [36], multi-class image classification [40], and

very high-resolution satellite imagery [31].

Recent studies have attempted to unify deep learning and

the MIL framework for many applications. In [35] and

[14], deep learning features were incorporated into a MIL

framework, and used to perform medical image analysis

and object detection, respectively. In [28], the MIL-based

training of CNN was discussed and applied to object de-

tection. In [34], the learned deep features were unified in

the MIL framework and applied to image classification and

auto-annotation.

Although our work is related to MIL [6, 33, 11, 40, 37,

23, 36, 19, 8, 2, 31], the proposed network architecture is a

generalized deep learning framework, which is not limited

to using max as the aggregation function.

3. Convolutional Neural Network

Before introducing our Deep Multi-Patch Aggregation

Networks, we first review the deep convolutional neural net-

work (CNN) training approach [21] that uses a single image

patch as input. As a supervised learning approach, CNN is

commonly adopted to learn a function f : X → Y , from

a collection of training examples {(xn, yn)}n∈[1,N ], where

N is the size of the training set, xn is the image, and yn
is the associated label. During each training epoch, CNN

takes one patch pi extracted from each xn as input, where

pn has a similar size with xn (e.g., cropping 224× 224× 3
patches from 256 × 256 × 3 images). Suppose we use the

output from the second last layer as the feature dn of patch

pn, the training of the last layer is done by maximizing the

following log likelihood function:

l(W) =

N
∑

n=1

∑

c∈Y

I(yn = c) log p(yn = c | dn,wc) , (1)

where N is the number of training images, W = {wc}c∈Y

is the set of model parameters, and I(x) = 1 iff x is true.

The probability p(yn = c | dn,wc) is expressed as

p(yn = c | dn,wc) =
exp (wT

c dn)
∑

c′∈Y
exp (wT

c′dn)
. (2)

To efficiently train the deep networks, the size of xn can-

not be too large (e.g., a typical size is 256 × 256 × 3).

Given fixed settings in the convolutional layers (e.g., num-

ber of layers, filter size, and pooling patch size), larger-size

training images result in larger weight matrix in the fully-

connected layers. Therefore, increasing the input size of

CNN would require significantly more training data, larger

hardware memory, and longer training duration. Real-world

high-resolution images are typically transformed to smaller

size through global functions such as warping [24], center-

crop [21] and padding [24]. To predict the class label of an

image, the same global transform has to be performed first.
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Figure 1. Convolutional Neural Network (CNN).

The problem of training CNN on downsized input im-

ages is that the network fails to encode fine-grained infor-

mation existing in original-resolution images, which results

in information loss. Alternatively, prior work [24, 17] re-

placed each image xn with a randomly cropped patch pn of

xn during training, and adopted multi-view test, i.e., CNN

takes patches of images (and their horizontal flips) as in-

put and aggregates the final output. As discussed in Sec-

tion 1, a single patch is likely not informative enough or,

even worse, ambiguous for any learning method to train a

reliable model.

In all the aforementioned situations, CNNs are learned

based on a training set where each patch has an associated

class label. We refer to such network as Convolutional Neu-

ral Network (CNN), as illustrated in Figure 1.

4. Deep Multi-Patch Aggregation Network

We represent each image with a bag of instances

(e.g., patches) and associate the set with the image’s la-

bel. The training data become {Pn, yn}n∈[1,N ] where Pn =
{pnm}m∈[1,M ] is the set of M patches cropped from each

image. Our objective is to estimate a function f : Z → Y ,

where Z is the domain of bags. The mapping function f

sequentially performs three steps: extracting features of in-

dividual patches in a bag, aggregating the features and pre-

dicting the label of the bag.
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Figure 2. Deep Multi-Patch Aggregation Network (DMA-Net).

DMA-Net aligns magnitude of individual patch outputs using

shared CNNs1 and conducts aggregation on orderless patch out-

puts.

We propose a novel deep neural network, Deep Multi-

Patch Aggregation Network (DMA-Net), which conducts

feature extraction and aggregation function learning jointly.

Figure 2 shows the structure of DMA-Net, which contains

two main parts: a set of CNNs1 which extract features from

multiple input patches, and an orderless aggregation struc-

ture which combines the output features from the CNNs.

When designing the network structure, two issues need

to be considered. First, in order for the network to learn

aggregation, features returned from different CNNs should

be comparable. To satisfy this requirement, we force all the

CNN columns to share the same weights.

Second, our network does not make any assumption

about the order of the patches in a bag. There are two

strategies to deal with this “orderless” constraint. The first

and straightforward strategy is to take commonly adopted

statistical functions, where the output is independent of in-

put orders, e.g., min, max, median and mean. We refer to

these functions as orderless statistical functions. To increase

the learning power of our network, an alternative strategy

is to first arrange outputs from the shared CNNs in a cer-

tain order and learn aggregation functions on the ordered

inputs. Here, we adopt both strategies and propose two dif-

ferent structures for multi-patch aggregation: the Statistics

Aggregation Structure and the Fully-Connected Sorting Ag-

gregation Structure. In the first structure, we use orderless

statistical functions to perform aggregation. In the latter

structure, we introduce a sorting layer, which aligns values

from each dimension of patch features, and then aggrega-

tion function is applied to the sorted values.

In the remainder of this section, we will describe the two

aggregation structures in detail. We first introduce some

notations. Let Dn = {dn
m}m∈[1,M ] be the set of patch fea-

tures of bag P output by the shared CNNs, where d
n
m is a

K-dimensional vector. For simplicity, we will omit the in-

dex n in the following. Denote by Tk the set of values of the

1The CNN refers to the convolutional neural networks drawn in Fig-

ure 1 from the input layer to the fc256 layer.

k-th component of all dm ∈ D, i.e., Tk = {dmk}m∈[1,M ].

We use ⊕ as the vector concatenation operator which pro-

duces a column vector.

4.1. Statistics Aggregation Structure

The core and first component of this structure is the

statistics layer, which is comprised of a collection of or-

derless statistical functions, i.e., S = {Su}u∈[1,U ]. Each Su

computes a certain orderless statistics of the set of patch fea-

tures D returned by the shared CNNs. In our experiments,

we have S = {min,max,median,mean}. The outputs of

the functions in S are concatenated and then aggregated by

a fully-connected layer to produce a Vstat-dimensional fea-

ture vector. The whole structure can be expressed as a func-

tion g : {D} → R
Vstat :

g(D) = W ×
(

⊕U
u=1 ⊕

K
k=1 Su(Tk)

)

, (3)

where W ∈ R
Vstat×UK is the parameters of the fully-

connected layer. The left of Figure 3 shows an example of

Statistics Aggregation Structure with M = 5 and K = 3.

In the forward propagation stage, the output oj of each

neuron j at the statistics layer can be expressed as

oj =

M
∑

m=1

K
∑

k=1

rmk→jo
′
mk . (4)

Here rmk→j can be considered as the “contribution” of the

neuron of dmk to the neuron j at the statistics layer. De-

note by δj the error propagated to neuron j at the statistics

layer, the error δ′mk backpropagated to the neuron of dmk is

computed as

δ′mk =
∑

j

rmk→jδj . (5)

4.2. FullyConnected Sorting Aggregation

The learning capacity of the Statistics Aggregation

Structure is limited by the predefined statistical functions

used in the statistics layer. To further generalize the feature

aggregation function, we propose this structure to aggregate

the patch features at each dimension and among different

feature dimensions.

As the fully-connected layer assumes that the input is

ordered, before {Tk}
K
k=1 can be fed into a fully-connected

layer, we need to define an order on the elements in each

of the Tk ∈ {Tk}
K
k=1. A straightforward way is “order

by value”. Let be τ a sorting function, i.e., τ(Tk) =
(d(1)k, d(2)k, . . . , d(M)k) where d(1)k ≤ d(2)k ≤, . . . ,≤
d(M)k. We define the layer that implements τ as the sorting

layer. We then concatenate {τ(Tk)}
K
k=1 into a single vector,

which is then fed into a fully-connected layer:

g(D) = W ×⊕K
k=1τ(Tk) , (6)
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Figure 3. Examples of two multi-patch aggregation structures in DMA-Net. Left: Statistics Aggregation Structure. Right: Fully-Connected

Sorting Aggregation. The input is a bag of M = 5 patch features D = {d1,d2, . . . ,d5} where the feature dimension is K = 3. Not all

the connections are shown between input and statistics/sorting layers for clarity. The figure is best viewed in color.

where W ∈ R
Vs×MK is the parameters of the fully-

connected layer.

As we can express the output of the sorting layer as the

weighted sum of the outputs from the previous layer, back-

propagation can be performed as Equation 5. We show an

example of this structure in Figure 3 (right).

4.3. Training with Image Details

The patch size is fixed to be 256 × 256 × 3. Training

a DMA-Net consists of two steps. First, CNN is trained2,

then the weights of CNN in the DMA-Nets are initialized

by the weights of the learned CNN, with which we intend to

accelerate weight initialization in DMA-Net training. The

number of patches in a bag is set to be 5. During DMA-

Net training, we randomly extracted 5 patches from each

original-size image in each training epoch, and feed them

to the five CNNs with shared weights in parallel. The initial

learning rate is 0.001 for all layers, and is annealed by 0.1

every time the training loss plateaus. We used weight decay

of 1e − 5 and momentum of 0.9. We used the convnet3

package to train CNN and implemented the two new layers

and the aggregation structures.

5. Experimental Results

We evaluate the proposed DMA-Net4 on three appli-

cations, style classification, aesthetics categorization, and

quality estimation, using real-world photos. This section

introduces the baselines that we compared with, the dataset

we utilized, and our experimental settings, and reports ex-

perimental results.

2We randomly cropped 256×256×3 patches from the original image

as training examples.
3http://code.google.com/p/cuda-convnet/
4In all DMA-Nets, we used random sampling to generate multiple

patches for network training. Sampling patches from four corners and the

center did not result in performance improvement.

5.1. Settings

We denote the DMA-Net using Statistics Aggregation

Structure (Section 4.1) as Ours-DMA-Netstat and Fully-

Connected Sorting Aggregation Structure (Section 4.2)

as Ours-DMA-Netfc. To evaluate the proposed approach,

the DMA-Net (Ours-DMA-Netstat and Ours-DMA-Netfc)

were compared with several baseline methods:

(i) CNN performs single-column CNN training and testing.

One randomly cropped patch from each image was used as

training, and the label of the patch used for training is the

label of the entire image. In SPP5, the entire image was

used as training data, incorporating the SPP [12] layer in

the CNN structure.

(ii) DMA-Netave and DMA-Netmax train deep multi-patch

aggregation network using standard patch pooling scheme.

DMA-Netave performs average pooling and DMA-Netmax

performs max pooling. No aggregation structures were used

in DMA-Netave and DMA-Netmax.

Since our DMA-Nets rely on fine-grained details of the

image by cropping multiple patches, one may argue that the

global view of the entire image would also be useful for

these tasks. Given limited training data in each specific

task, a simple solution for this is to leverage pre-trained

models with external data (e.g., ImageNet features). To

this end, we integrate our approach with ImageNet fea-

tures (ImageNet Fusion): In Alexnet-FTune [21], we fine-

tuned the Alexnet [21] by resizing all the training images to

256× 256× 3 as training data and fine-tuning its last layer

to fit image style labels6. In Ours-DMA-Net-ImgFu, we

averaged the prediction results of DMA-Net and Alexnet-

5We applied the code provided by [12] at:

https://github.com/ShaoqingRen/SPP net.
6Fine-tuning all the layers produces worse results than fine-tuning the

last layer only due to the limited number of training data
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Table 1. Summary of baselines and our approaches

Without
Baselines

(a) Single patch network training
CNN

external

SPP

Data

(b) Deep multi-patch aggregation network training DMA-Netave

with naive aggregation DMA-Netmax

Our approaches (c) Deep multi-patch aggregation network training
Ours-DMA-Netstat

Ours-DMA-Netfc

With Baselines (d) ImageNet fine-tune Alexnet-FTune

external

data Our approaches
(e) Deep multi-patch aggregation network training Ours-DMA-Net-ImgFustat

with ImageNet fusion Ours-DMA-Net-ImgFufc

FTune. We summarize all baseline approaches and our ap-

proaches in Table 1.

To ensure the fair comparison between the proposed ap-

proach and the baselines, we made the following experi-

mental settings.

In training, all networks were initialized with the same

learning rate and all networks were fully-trained (i.e., net-

work training was stopped at the point when training er-

ror stops dropping.). The network structure of CNN

and each column of DMA-Netave, DMA-Netmax, and the

proposed DMA-Net (Ours-DMA-Netstat and Ours-DMA-

Netfc) share exactly the same network architecture up to the

two fully-connected layers in individual CNNs (fc1000 and

fc256). In DMA-Netave, DMA-Netmax, and the proposed

Ours-DMA-Net, 5 patches were used per image.

In testing, we used the same collection of patches among

all baseline approaches and the proposed Ours-DMA-Netstat

and Ours-DMA-Netfc. For each image, 250 patches are

randomly sampled offline, and divided into 50 groups,

5 patches per group. For CNN, 250-time evaluation is

performed on those 250 patches per image, and we av-

eraged the result on each patch as the final result. In

DMA-Netave, DMA-Netmax, the Ours-DMA-Netstat, and

the Ours-DMA-Netfc, for each image, each of the patch

group was evaluated at a time, and the evaluation was re-

peated 50 times using each of the 50 patch groups. The final

result was the averaged result of all patch groups. In SPP

and Alexnet-FTune, the entire image was used for testing.

We conducted 250-view test and averaged the results.

We used the architecture in Figure 1 because it was

demonstrated effective for aesthetics and style classifica-

tion [24]. The CNN includes four convolutional layers, and

two pooling and normalization layers following the first and

second convolutional layers, and two fully-connected layer

of 1000 and 256 neurons respectively. The first and forth

convolutional layers have 64 filters. The second and third

convolutional layers have 32 filters in image style classifi-

cation and image quality estimation and 64 filters in image

aesthetics.

5.2. The Datasets

We test our approach on three datasets:

(i) Image Style Dataset: We used the AVA Style dataset

introduced in [26] to evaluate classification of 14 differ-

ent photographic style labels. The 14 style classes include:

complementary colors, duotones, HDR, image grain, light

on white, long exposure, macro, motion blur, negative im-

ages, rule of thirds, shallow DOF, silhouettes, soft focus,

and vanishing point. The publishers of the dataset provide

a train/test split (11, 000 for training and 2, 573 for test-

ing). Average Precision (AP) and Mean average preci-

sion (mAP) are the evaluation metric.

(ii) Image Aesthetics Dataset: The AVA aesthetics

dataset [26] includes 250, 000 images, where each image

has about 200 aesthetic ratings ranging from one to ten. We

follow the experimental settings in [26], and use the same

collection of training data and testing data: 230, 000 im-

ages for training and 20, 000 images for testing7. Training

images are divided into two categories, i.e., low-aesthetic

images and high-aesthetic images, based on the same crite-

ria as in [26]. Overall Accuracy is the evaluation metric.

(iii) Image Quality Dataset: The problem of image

quality estimation on real-world photos is different from the

conventional problem of no-reference image quality assess-

ment [17]. In no-reference image quality assessment, the

corruption is synthetically added and uniformly distributed

in the entire image. In real-world photos, the situation is

more complicated. This motivates us to study image quality

estimation on real-world photos. This problem is also dif-

ferent from image aesthetic categorization because in real-

world photos the variation of image quality is much larger

than that of professional photographs, which results in a

more complex problem that fires in concert with both the

traditional problems of quality estimation and aesthetics.

We collected 6, 478 real-world high resolution color pho-

tos (e.g., 1024 × 768 or 2560 × 1920) from the Internet,

and manually labeled them as high quality or low quality

in aspect of lighting, color and quality. Low-quality pho-

7We have 19, 930 test images as some images are no longer existing on

the Web.
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Table 2. Image style classification on the AVA style dataset

Methods AP mAP

CNN 56.99% 56.83%
SPP 44.56% 47.04%

DMA-Netave 54.7% 56.9%
DMA-Netmax 55.71% 57.11%

Ours-DMA-Netstat 62.83% 59.19%
Ours-DMA-Netfc 62.46% 60.01%

Alexnet-FTune 59.09% 58.02%

Ours-DMA-Net-ImgFustat 69.74% 63.95%
Ours-DMA-Net-ImgFufc 69.78% 64.07%

Murray et al. [26] n/a 53.85%
Karayev et al. [18] n/a 58.1%

Lu et al. [24] 56.93% 56.81%

Figure 4. Examples in the real-world photo quality dataset. Left:

low-quality photos. Right: high-quality photos.

tos include images with poor lighting (e.g., over-exposure

and under-exposure), lacking color combination, and infe-

rior sharpness (e.g., blur and strong noise). We obtained

2, 793 negative and 3, 685 positive photos. We show exam-

ple photos in Figure 4. We randomly selected 500 negative

photos and 500 positive ones for testing and used the rest

of photos for training. Our dataset is available for others.

Overall Accuracy is the evaluation metric.

5.3. Results

5.3.1 Style Classification

As shown in Table 2, results of the proposed DMA-Net ap-

proach (Ours-DMA-Netstat and Ours-DMA-Netfc) all out-

performs the single-patch network training approach (CNN

and SPP) in terms of both AP and mAP. The reason that

SPP did not perform well may because the parameters in

the SPP layer is optimized for the image classification task

and for the ImageNet architecture. It may also be limited

by the scarceness of training examples when using the en-

tire image as training data. Meanwhile, the results in the

table show that the multi-patch aggregation network us-

ing simpler pooling strategies of average (DMA-Netave) and

max (DMA-Netmax) performs much worse than the pro-

posed DMA-Net training approach. Such results indicate

that training network on multiple patches generates bet-

ter predicting performance than network training on single

patch.

The DMA-Net approach alone has improved the best

performance on the AVA style dataset for image style clas-

sification (mAP: 58.1%[18], AP: 56.93%[24]). We have

also noticed that ours-DMA-Net without using external data

performs better than Alexnet-FTune using external data and

[18] that utilized the ImageNet feature. It indicates that the

fine-grained information captured by the proposed multiple

patch training strategy is very useful for image style classi-

fication, and the global view itself without the fine-grained

information is not sufficient for such classification task. By

integrating the global view (i.e., ImageNet features), the

performance of the DMA-Net (Ours-DMA-Net-ImgFu) is

further boosted by a large margin, as it effectively integrates

both the global and fine-grained information of the images.
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Ours-DMA-Net
stat 

Ours-DMA-Net
fc 

Figure 5. Performance of DMA-Net using different number of

patches (Left: Ours-DMA-Netstat, Right: Ours-DMA-Netfc). mAP

is denoted by red and AP is denoted by blue. Ours-DMA-Netstat

and Ours-DMA-Netfc were trained and evaluated using 3, 5, and 7

patches, respectively.

To evaluate the performance of the proposed DMA-Net

using different numbers of patches, we trained and eval-

uated Ours-DMA-Netstat and Ours-DMA-Netfc with three,

five, and seven patches, respectively. We present the per-

formance of AP and mAP in Figure 5. As shown in the

Figure, both the performances converge in general as the

number of patches increasing. As more number of patches

requires larger GPU memory and increases training dura-

tion, we used five patches in all the following experiments.

To examine how the proposed architecture contributes

to the performance, we took the Ours-DMA-Netstat as an

example and compared the performance of each individual

aggregation function (i.e., min, max, median and mean).

We took max as an example to present this analytical

process (named as maxft). Using the well-trained Ours-

DMA-Netstat, we disabled the aggregation functions of min,

median and mean, and we fine-tuned the remaining layers

for 10 epochs. The same procedure was adopted to achieve

minft, medianft and meanft. The mAP produced by

minft, maxft, medianft and meanft are 54.96%, 56.69%,

54.29%, 54.21%, respectively. The results indicate that
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Table 3. Image aesthetics categorization on the AVA dataset

Methods Accuracy

CNN 72.32%
SPP 72.85%

DMA-Netave 73.1%
DMA-Netmax 73.9%

Ours-DMA-Netstat 74.44%
Ours-DMA-Netfc 74.46%

Alexnet-FTune 72.3%

Ours-DMA-Net-ImgFustat 75.41%
Ours-DMA-Net-ImgFufc 75.4%

Murray et al. [26] 68%

when training Ours-DMA-Netstat, the aggregation function

of max in the statistics layer contributes most among the

four and average contributes the least.

5.3.2 Image Aesthetics Categorization

Table 3 reports results on the AVA dataset for image aesthet-

ics categorization. Following the same trends with image

style classification, the proposed DMA-Net approach out-

performs CNN8, SPP, DMA-Netave and DMA-Netmax. Such

results further confirmed our conclusion made in the image

style classification that training network on multiple patches

generates better prediction performance than network train-

ing on a single patch.

ImageNet fusion approach Ours-DMA-Net-ImgFu

slightly boosts the performance of Ours-DMA-Net, and

significantly performs better than Alexnet-FTune. Such re-

sults show that both the global information and fine-grained

information are useful for image aesthetics categorization,

and the proposed DMA-Net approach captures the fine-

grained information in compensate to the global view of

images. The proposed DMA-Net also outperforms recent

studies of image aesthetics on the AVA dataset [26].

5.3.3 Quality Estimation on Real-World Photos

The results of image quality estimation are presented in Ta-

ble 4, where several conclusions can be drawn: (i) Multi-

patch aggregation network training improves the single-

patch network training results: DMA-Netmax improves the

CNN by 1.5%, DMA-Netave improves the CNN by 1%, and

Ours-DMA-Net improves the CNN by 5−6%. (ii) The pro-

posed Ours-DMA-Net performs better than DMA-Netave

and DMA-Netmax. (iii) Interestingly, ImageNet feature does

not help image quality estimation, as Alexnet-FTune per-

forms worse than CNN, and significantly worse than Ours-

DMA-Net, while Ours-DMA-Net-ImgFu performs slightly

8CNN for image aesthetics was presented in the [24]. In [24], the re-

sults were averaged on 50 patches per image during testing. To ensure the

fair comparison, the results we presented were averaged on 50 patches per

image during testing (as discussed in Section 5.1).

Table 4. Image quality estimation on real-world photos

Methods Accuracy

CNN 83.7%
SPP 79%

DMA-Netave 84.7%
DMA-Netmax 85.2%

Ours-DMA-Netstat 88.3%
Ours-DMA-Netfc 89.2%

Alexnet-FTune 82.1%

Ours-DMA-Net-ImgFustat 88.3%
Ours-DMA-Net-ImgFufc 86.8%

worse than Ours-DMA-Net without ImageNet feature fu-

sion. Such results indicate that fine-grained information is

much more useful than the global view of an image in de-

termining the quality of a real-world photo.

5.4. Computational Efficiency

In a single mini-batch, the computing time for the sorting

layer and the statistics layer are negligible in both forward

and backward propagation. Bottleneck for training is at the

convolutional layers and fully-connected layers.

The training time highly depends on the number of train-

ing images and the network architecture. For instance, in

quality estimation, with 5,478 high-resolution images and

proposed DMA-Net architecture, it took 3-4 days to train

from scratch on NVidia Tesla K40. In testing, for instance,

for quality estimation, evaluating an image (5 crops per im-

age) using the DMA-Net takes about 8.25 ms on NVidia

Tesla K40.

6. Conclusions

This paper proposes novel deep neural network archi-

tectures to learn fine-grained details from multiple patches.

With the proposed network architecture, multi-patch aggre-

gation functions can be learned as part of neural network

training. In particular, we developed two novel network lay-

ers (statistics and sorting) and their aggregation strategies

to support orderless path aggregation. We evaluated and

demonstrated the effectiveness of the proposed networks in

image style, aesthetics, and quality estimation on real-world

photos. Meanwhile, the proposed deep multiple patch ag-

gregation network model can be directly applied to many

other computer vision tasks, such as object category recog-

nition, image retrieval, and scene classification, which we

leave as our future work.
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