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Deep Multi-Scale Fusion Neural Network for
Multi-Class Arrhythmia Detection

Ruxin Wang, Jianping Fan, and Ye Li , Senior Member, IEEE

Abstract—Automated electrocardiogram (ECG) analysis
for arrhythmia detection plays a critical role in early preven-
tion and diagnosis of cardiovascular diseases. Extracting
powerful features from raw ECG signals for fine-grained
diseases classification is still a challenging problem today
due to variable abnormal rhythms and noise distribution.
For ECG analysis, the previous research works depend
mostly on heartbeat or single scale signal segments, which
ignores underlying complementary information of different
scales. In this paper, we formulate a novel end-to-end Deep
Multi-Scale Fusion convolutional neural network (DMSFNet)
architecture for multi-class arrhythmia detection. Our pro-
posed approach can effectively capture abnormal patterns
of diseases and suppress noise interference by multi-
scale feature extraction and cross-scale information com-
plementarity of ECG signals. The proposed method imple-
ments feature extraction for signal segments with different
sizes by integrating multiple convolution kernels with dif-
ferent receptive fields. Meanwhile, joint optimization strat-
egy with multiple losses of different scales is designed,
which not only learns scale-specific features, but also real-
izes cumulatively multi-scale complementary feature learn-
ing during the learning process. In our work, we demon-
strate our DMSFNet on two open datasets (CPSC_2018 and
PhysioNet/CinC_2017) and deliver the state-of-art perfor-
mance on them. Among them, CPSC_2018 is a 12-lead ECG
dataset and CinC_2017 is a single-lead dataset. For these
two datasets, we achieve the F1 score 82.8% and 84.1%
which are higher than previous state-of-art approaches re-
spectively. The results demonstrate that our end-to-end
DMSFNet has outstanding performance for feature extrac-
tion from a broad range of distinct arrhythmias and elegant
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generalization ability for effectively handling ECG signals
with different leads.

Index Terms—Deep learning, ECG, multi-scale fusion,
convolutional neural network.

I. INTRODUCTION

C
ARDIOVASCULAR diseases are the leading cause of

death and disability on a global scale. It is an important

cause of death and disability, which seriously affects people’s

health. Recently, the World Health Organization (WHO) an-

nounces the top ten health threats in the world in 2019. Heart

disease is as a typical non-infectious disease on the list. Because

of the difficulty in curing, early screening and treatment are par-

ticularly important. Electrocardiogram (ECG) is an essential tool

which can record the electrical activity of the heart over a period

of time (Fig. 1). Every year there are more than 300 million

clinical ECG records in global hospitals. ECG is the most basic,

convenient and economical routine examination approach. It

is very commonly performed for clinical medical screening of

many cardiac diseases, such as judging arrhythmia, diagnosing

myocardial ischemia, reflecting the structure of the heart, and

provides important reference information for clinicians [1], [2].

With the emerging of Healthcare 4.0 and the development of

Artificial Intelligence (AI), the importance of automatic diag-

nosis has become increasingly prominent. Automated analysis

of ECG not only provides auxiliary diagnostic information, but

also can monitor hearts situation for 24 hours, which is also

beneficial for mobile medical and remote diagnosis.

Over the past decade, a large number of automatic analy-

sis algorithms have been introduced [4]–[8]. Although these

methods improve the accuracy of ECG signal classification

through reasonably combining feature extraction and classifier,

they still have some common defects: 1) They must rely on

experts to design and extract the characteristics of ECG signals,

other potential information in the original signal is neglected. 2)

The artificial definition of different diseases characteristics may

be slightly different, therefore the generalization ability of the

model is restricted. 3) At the same time, as the feature dimension

increases, the choice of model parameters has also become more

difficult.

With the development of deep learning, it has achieved out-

standing performance in ECG processing [9]–[14]. Deep neural

network realizes the effective combination of feature extraction

and disease classification through end-to-end learning. However,

to automatically detect variable heart arrhythmias from ECG

signals, an algorithm must implicitly recognize the distinct wave
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Fig. 1. Illustration for 12-lead ECG system. (a) Spatial orientation of ECG leads [3]. (b) Examples of ECG signals in 12 leads.

types and discern the complex relationships between them. It is

difficult due to the variability in wave morphology of different

diseases as well as the presence of noise. At present, most of

these models based on deep learning mainly use single-scale

convolution filters for feature extraction, ignoring other poten-

tially useful information of different scales. Furthermore, they

are hard to utilize the implicit correlated complementary advan-

tages across scales for enhancing the recognition performance.

Specifically, small-scale convolution filters are suitable for

extracting amplitude and local statistical information from sig-

nals, such as the amplitude of P, R, S and T waves of ECG. And

the large-scale convolution filters with larger receptive fields

are more better at encoding the interval information between

different waves and some morphological features, such as P-R

interval, R-R interval and QRS duration etc. All these features

are crucial for analyzing the ECG signal. For example, the typical

performances of atrial fibrillation are the disappearance of P

wave at small scale and irregular RR interval at large scale.

In this paper, we formulate a novel Deep Multi-Scale Fusion

convolutional neural network architecture for ECG classification

by multi-scale features optimized simultaneously integrating

multi-loss learning. This is significantly different from existing

ECG detection approaches considering only heartbeat or single-

scale signal information. The main contributions of this paper

are summarized as follows:

1) For ECG analysis, we investigate the multi-scale feature

learning problem for multi-class arrhythmia detection.

Cross-scale features of segments with different sizes are

extracted by multiple convolution kernels with different

receptive fields. In addition, spatial attention is utilized

for further mining the discriminative information.

2) Joint optimization strategy with multiple losses of differ-

ent scales is designed, which not only learns scale-specific

features, but also realizes cumulatively multi-scale com-

plementary feature learning during the learning process.

3) Finally, we evaluate the proposed method for ECG clas-

sification on two public ECG datasets (CPSC_2018 [15]

and PhysioNet/CinC_2017 [16]) and compare it with

state-of-the-art methods. The experimental results con-

vince the effectiveness and efficiency of the proposed

method.

The rest of this paper is organized as follows: Section II is

the related work in ECG processing. Section III we propose a

new end-to-end deep multi-scale fusion CNN architecture for

ECG classification. Section IV presents experimental results

with different methods on the two ECG datasets. Section V gives

the discussion of our proposed method. Finally, we conclude the

paper in Section VI.

II. RELATED WORK

Traditional ECG analysis methods, such as ECG-based dis-

ease classification, mainly consist of two parts: feature extrac-

tion and classifier training. The first and the most important

step is feature extraction, which need be manually designed

and extracted from raw signal. Early approaches mostly rely

on classical waveform features, such as amplitudes, hermite

coefficients [4], morphological features [5], heartbeat interval

features [6] etc. After that, some new features such as time-

frequency, wavelet, high-order statistics and other factors based

on the detection of waveform features are employed. In order to

further mine the effective information, some commonly extrac-

tion algorithms are used including wavelet decomposition [7],

principal component analysis (PCA) [8], Kalman filter [17]

and some statistical methods [18]. In terms of classification,

different learning algorithms have been well studied, containing

support vector machines (SVM) [19], artificial neural networks

(ANN) [20], and Hidden Markov Models (HMM) [21] and so

on [22], [23].

In recent years, deep learning have achieved remarkable

performance in various fields of medicine, such as medical

image processing [24], genomic analysis [25], electronic health

records analysis [26] and physiological signal analysis [27].

Deep neural network can form more abstract high-level features
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by reasonably designing multi-layer and non-linear network

structure. Meanwhile, some novel multi-scale-based methods

have been designed and proposed in many computer vision task

and achieved outstanding results compared to single-scale meth-

ods [28]–[31], which illustrates the advantages of the multi-scale

approach.

For ECG signal processing, many achievements have been

made based on deep learning over these few years. Most of the

studies focused on ECG-based auxiliary diagnosis and signal

analysis of heart disease [32]–[34]. Kiranyaz et al. [9] proposed

an adaptive 1-D Convolutional Neural Networks (CNN) model

which is used for both feature extraction and classification of the

raw ECG data from each individual patient. Rahhal et al. [10]

used stacked denoising autoencoder with sparsity constraint for

active classification of ECG signals which provided significant

accuracy improvements with less expert interaction. Li et al. [11]

implemented a parallel general regression neural network to

classify the heartbeat for long-term ECG signal. Baloglu

et al. [12] proposed an end-to-end deep learning model using

the standard 12-lead ECG signal for the diagnosis of myocardial

infarction and achieved high performance on myocardial infarc-

tion detection. Pranav Rajpurkar et al. [13] adopted a 34-layers

CNN model to classify 12 rhythm categories using 91232 ECG

signals recorded by a single-lead Holter monitoring device

from 53549 patients. The classification results were compared

with human experts, which displayed the similar diagnostic

performance with human. Bahareh Taji et al. [14] used deep

belief networks to reduce the false alarm rate caused by

poor-quality ECG signal measurement during atrial fibrillation

recognition. In addition, ECG-based assisted diagnosis of

other diseases also has some research results [35], [36]. For

example, Hirotaka Kaji et al. [35] employed a multi-task

learning technique to predict the degree of concentration with

heart-rate features and significantly improved the accuracy of

concentration prediction in small samples situations.

III. METHODOLOGY

A. Problem Formulation

ECG-based disease detection belongs to the time series clas-

sification problem. Given a set of ECG signals and their cor-

responding disease labels, the target is that judging the ECG

records belong to what kind of cardiac diseases. In this pa-

per, we aim to learn a deep representation for ECG records

and use them for end-to-end disease classification. For sim-

plicity, we define D = {(xi, yi)|i = 1, 2, . . ., N} as the ECG

data set. where xi indicates one ECG signal with length li.

yi ∈ {1, . . ., C}denotes the corresponding category ofxi, andC

is the number of disease categories. N refers to the total number

of samples. In order to get meaningful feature representation

of records, we formulate a Deep Multi-Scale Fusion (DMSF)

CNN architecture for capturing discriminative signal features

from multiple scales. Then, this powerful features are directly

used for classification. Mathematically, it can be described by

minimizing the cross-entropy between the reference labels and

outputs.

TABLE I
THE NETWORK STRUCTURE FOR PROPOSED METHOD

note: The convolutional parameters are denotes as ”conv(kernel

size)_(number of filters)_(dilation rate)”. Padding operation is adopted

for maintaining the previous size in all convolutional layers. And the pooling

window is set as 3 with stride 3.

B. Model Overview

The proposed DMSFNet is composed of three main com-

ponents: 1) Backbone network for learning shared low-level

features; 2) multiple sub-networks to learn the high-level scale-

specific signal features using different scales convolution kernels

collaboratively; 3) multi-scale features fusion for integrating

features from sub-networks and further discovering correlated

complementary informations from different scales by using

attention. Meanwhile, the joint multi-loss optimization strategy

is adopted for simultaneously optimizing multi-branch feature

representation and realizes cumulatively multi-scale comple-

mentary feature learning during the learning process. Specifi-

cally, the backbone network is built based on the VGG net due

to its powerful data representation ability. Table I shows the

configuration of our proposed network. We use the first seven

convolution layers for shared learning and obtain the feature

maps fb. Then the features fb are fed into two sub-branches with

six convolution layers in each branch to extract scale-specific

feature mapsfb1 andfb2 . Concatenate different feature mapsfb1 ,

fb2 and adopt attention to obtain the fusion cross-scale features

F . At last, all the learning features including the fusion and

single branch features are employed for multi-loss optimization.

The overall framework design is illustrated in Fig. 2.

In particular, for obtain the multi-scale receptive fields, dilated

convolution is adopted in this paper, which has been demon-

strated in solving many computer vision task with significant

performance [37], [38]. To make it clearer, we use a 3× 3
2-D convolution kernel as an example to describe the opera-

tion (Fig. 3). Mathematically, a 2-D dilated convolution can be
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Fig. 2. Overview of the proposed model architecture, which consists a backbone network, two different scale-specific networks and one multi-scale
feature fusion branch.

Fig. 3. 3× 3 convolution kernels with different dilation rate. The green
dotted frame indicates 1-D convolution situation.

defined as follows:

y[i, j] =
∑

p

∑

q

x[i+ r · p, j + r · q]w[p, q] (1)

where r denotes the dilation rate, w[p, q] is the convolution

parameters, [i, j] is the center of convolution, y[i, j] indicates

the output of convolution from input x[i, j]. Classic convolution

kernels with different sizes would overlap to a certain extent at

the same output position and produce redundant parameters. The

dilated convolutions dramatically reduce the redundant repeated

information using filters with holes. For different dilation rates 1,

2, 3, the 3× 3 dilated convolutions instead of classic convolution

kernels with size 3× 3, 5× 5 and 7× 7. As shown in Fig. 3,

the red patch denotes the center position, and blue patch refers

to the convolution area. We can find that the convolution have

larger receptive field with larger dilation rate. And the number of

parameters has not been increased, which reduces the duplicate

convolution for overlapped areas.

C. Single Scale Feature Learning

The shared feature maps by the backbone are fed into the

different scale branch. We construct the single-scale branch

using six layers CNN framework. Specifically, the first three

convolution layers use the same number of convolution kernels

for effectively extracting the signal features. And the number

of convolution kernels in the latter three layers decreases step

by step. It can continue to extract high-level features and reduce

features dimension very well. Specific configuration details refer

to Table I.

For the input xi, i ∈ {1, 2, . . ., N}, the branch output fbj , j ∈
{1, 2} can be defined as:

fbj = Nbj (Nb(xi; θb); θbj ) (2)

where fbj denotes the branch feature of raw input xi, Nb

and Nbj , j ∈ {1, 2} denote the backbone network and scale-

specific sub-network. θb and θbj are the network parameters,

respectively.

ECG classification is a multi-class classification problem. In

this paper, the softmax loss is employed for single branch model

training. According to the top output feature map fbj of bj th

branch, the global max-pooling is first adopted for squeezing the

features dimension, which produces a reduced dimension feature

embedding for each sample. Then the posterior probability of

each class is calculated:

zbj = gm(fbj ) (3)

p(zbj ) =
exp(w⊤

yi
zbj )∑C

k=1 exp(w
⊤
k zbj )

(4)

where gm denotes the global max-pooling operation, p(bj) is the

probability that model assigns the label yi to the input xi, and

wk is the parameter of class k. Therefore, for all the observable

instances in the training set, the objective lost function can be

defined as:

Lbj = −
1

N

N∑

i=1

C∑

k=1

I{yi = k} log p(zbj ) (5)

where I(·) is the indicator function, so that I(true) = 1, and

otherwise is 0.

D. Multi-Scale Feature Fusion Learning

For achieving cross-scale information complementation and

obtaining robust features for classification, we first obtain the

fusion feature maps F with c channels by concatenating the

multiple scale-specific features fbj :

F = Cat(fb1 , fb2) (6)

where Cat is the concatenation operation. Then a spatial at-

tention module is adopted for further mining the discriminative

features and improving the performance. In this work, a global
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TABLE II
CLASSIFICATION PERFORMANCE ON CPSC_2018 DATASET

note: Liu et al.1 indicates their proposed network model without expert features. Liu et al.2 refers to their method with expert features and deep features.

feature map S is first obtained by global average pooling oper-

ation at each spatial location u of F :

Su =
1

c

c∑

k=1

Fu,k (7)

Then we use a 1× 1 convolution and sigmoid function to S

and produce the spatial attention map fatt. Thus, the new fusion

features fbf can be obtained by summing with the weighted

features. The details can be expressed as follows:

fatt = σ(W ∗ S + b) (8)

F = F + fatt ⊗ F (9)

where σ(·) denotes the sigmoid function and ⊗ indicates the

channel-wise product operation. At last, a global pooling layer

is adopted for integrating features from different convolutional

channels and squeezing the features dimension. In this paper,

both the global max-pooling and average-pooling are used for

the fusion feature maps F . Max-pooling can effectively extract

the specific and discriminative information of signals by extract-

ing the maximum value in each region. And average-pooling is

more conducive to extracting global information of the signal

by average operation:

zbf = gm(F ) + ga(F ) (10)

where ga refers to the global average-pooling operation. Then

features zbf are adopted for prediction. In our work, we similarly

utilize the softmax classification loss as the objective function.

The details can be expressed as follows:

Lbf = −
1

N

N∑

i=1

C∑

k=1

I{yi = k} log p(zbf ) (11)

E. Joint Optimization With Multiple Losses

Critically, the scale-specific branches are not independent but

related to each other. In order to learn effective and discrimina-

tive classification features, we train the whole model by jointly

optimizing the losses of multiple branches.

Optimization for each branch aims to maximize scale-specific

feature discriminative capability by supervision, whilst opti-

mization for scale-fusion branch is designed to concurrently

optimize the potential complementary information across scales.

Based on the above considerations, we use the joint op-

timization for model training, which balances between indi-

vidual learning and correlation learning. Compared with the

scale-specific learning, it can optimize multiple classification

loss on same ECG label information concurrently. Importantly,

the model parameters are optimized by back propagation to

all individual branches, which not only learns scale-specific

features, but also realizes cumulatively multi-scale complemen-

tary feature learning during the learning process. Through joint

learning in an end-to-end fashion, the model maximizes the

scale-specific feature learning and discriminative selection from

multi-scale representations for arrhythmia detection. Thus the

robustness of the model is improved effectively in training stage

and achieves a better classification performance. For the overall

network training, The final objective function is as follows:

L = Lbf + λ1Lb1 + λ2Lb2 (12)

where λ1, λ2 are the balance parameters which are set to 1.0 in

our experiments.

IV. EXPERIMENT

In this section, implementation details and experiments are

given. We choose two ECG data set for validating the proposed

method. The final results are shown in Table II–III.
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TABLE III
CLASSIFICATION PERFORMANCE ON CINC_2017 DATASET

TABLE IV
DATA DETAILS FOR CPSC_2018 DATASET

A. Data Description

1) CPSC_2018 Dataset: This dataset was from the China

Physiological Signal Challenge (CPSC 2018). The data is col-

lected from 11 hospitals containing 6,877 12-lead ECG records

(female: 3,178; male: 3,699) for training and 2,954 records

for testing. The ECG records are sampled as 500 Hz, and the

signal length of the data is from 6 s to 60 s. The labels of

these records include one normal type and eight abnormal types,

which are detailed as: Normal (N), Atrial fibrillation (AF), First-

degree atrioventricular block (I-AVB), Left bundle brunch block

(LBBB), Right bundle brunch block (RBBB), Premature atrial

contraction (PAC), Premature ventricular contraction (PVC),

ST-segment depression (STD) and ST-segment elevated (STE).

Table IV shows the details of the data.

2) PhysioNet/CinC_2017 Dataset: This dataset contains

8,528 single lead ECG records lasting from 9 s to just over

60 s, and ECG records were sampled as 300 Hz. All the signals

were manually labeled by ECG experts into Normal rhythm,

Atrial fibrillation rhythm, Other rhythm and noisy recordings.

In this paper, only Normal (N), Atrial fibrillation (AF) and Other

rhythm (O) are used for classification. Table V shows the details

of the data.

B. Reference Model

To evaluate the proposed model’s performance, we choose

some common network structures and state-of-art ECG classi-

fication algorithms for comparison.

TABLE V
DATA DETAILS FOR CINC_2017 DATASET

Baselines: In our experiments, three common deep neural

network frameworks, Resnet [39], VGG [40] and LSTM [41] are

adopted for performance comparison. Both the Resnet and VGG

net are classical convolutional neural network for processing

images and signals. The Resnet designs a residual learning

framework by shortcut identity connections to ease the training

of very deep networks and make feature maps from shallower

layers available at later stages. The VGG is also a classical

CNN containing multiple convolutional and fully connected

layers. The LSTM is a variant of recurrent neural network,

which is designed for time series processing. In addition, two

state-of-the-art ECG analysis methods are also used for testing.

Acharya et al. [42] implemented a 11-layers convolutional neu-

ral network algorithm for the automated detection of a normal

and myocardial infarction ECG signals. And Fan et al. [43]

proposed a multi-scale CNN (MS-CNN) for screening out AF

recordings from ECG records. Both methods have achieved

excellent classification results at present for ECG classification

task.

CPSC_2018: For the CPSC_2018 dataset, several latest re-

ported algorithms are also compared. Yao et al. [44] proposed

a time-incremental convolutional neural network (TI-CNN) us-

ing the spatial-temporal network framework which consists of

multiple convolutional layers for feature extracting and a Long

Short-Term Memory (LSTM) layer for time-series processing

and classification. Liu et al. [47] used extracted expert features

and deep features by a modified Resnet framework, CL3, con-

taining 17 layers of convolution and a fully connected layer for

12-lead ECGs classification.

CinC_2017: We also choose related algorithm for classify-

ing normal, AF and other signals on the Cinc_2017 dataset.

Datta et al. [45] introduced a multi-layer cascaded binary

classifier instead of a single multi-class classifier with about
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150 features (including morphological ECG features, prior art

AF features, HRV features Frequency features and statistical

features etc.).

C. Evaluation Criteria

In this paper, the average precision, recall rate and F1 score

are adopted for measuring the classification performances. The

details is as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2× (Precision × Recall)

Precision + Recall
(15)

For a certain class in multi-classification problem, TP is the

true positives which indicates the number of correctly clas-

sified samples in this class, FN is the false negatives which

refers to the number of samples belonging to this class which

are misclassified into other classes, and FP denotes the false

positives which indicates the number of samples misclassified

in this class. The average of three metrics among classes were

calculated to give a final evaluation. Among these metrics, F1
score mainly assesses the recognition effect, which is the most

important evaluation metric in these two datasets.

D. Implementation Details

Training setting: All the experiments in this paper are im-

plemented based on Pytorch (http://pytorch.org/). In the model,

we use the stochastic gradient descent optimizer (SGD) with

0.9 momentum for training in each mini-batch and update the

parameters. ReLU is chose as the default activation function.

For fair comparison, we initialize our model using the Kaiming

initializer [39] and set the initial learning rate as 10−3. The

learning rate is divided by 10 at 150 and 200 epochs, eventually

terminated at 250 epochs. All the training data is divided into

mini-batches for network training, the mini-batch size is set as

128 during the training stage.

Data preprocessing: As shown in Table IV–V, the differ-

ent kinds of diseases’ ECG signal show imbalanced sample

distribution. In addition, the length of the signal varies from

few seconds to 60 seconds. So several data augmentation and

padding/sampling strategies are used before training the model.

For data augmentation, we first use horizontal and vertical flip

operation to expand small sample data, such as the samples of

LBBB, PAC, PVC and STE in CPSC_2018 dataset, the samples

of AF and other signals in CinC_2017 dataset. Secondly, to

further expand the sample number and increase sample diversity,

we add random noise and use random erasure strategy [46] to the

original samples for data augmentation. These method have been

proved to be effective in expanding sample data and improving

robustness of model.

Input with same length is necessary for model training. In that

the length of the data varies from few seconds to 60 seconds,

padding operation is applied to fix input length. Firstly, we fill all

the data into 60 s using replication strategy, and then cut out 50 s

length data from the padded signal as training data randomly.

Besides, ECG signals among different individuals as well as

different lead positions tend to have large variation of ampli-

tudes, which affects model performance greatly. In this work, all

padded records are normalized to zero mean and unit standard

deviation in training stage, which would help the model to

converge faster.

E. Results

1) Evaluation on CPSC_2018 Dataset: Table II compares

the class-level F1 score, average precision, average recall and

average F1 score of eight reference models and our work in iden-

tifying cardiac arrhythmias. As can be observed, the proposed

DMSFNet performs favorably against other counterparts in all

evaluation metrics (Precision, Recall and F1 score). Specifically,

the proposed method reaches an overall classification F1 score

of 82.8%. Compared with the Resnet and plain VGG network,

about 5.2% (0.828–0.776) and 4.3% (0.828–0.785) improve-

ments are obtained by the proposed approach, respectively.

And our method obtains 7.0% (0.828–0.758) gain compared to

LSTM. The Acharya et al. and MS-CNN methods are surpassed

by our approach in F1 score by 6.7% (0.828–0.761) and 3.1%

(0.828–0.797). We also compare the proposed method with

two latest reported algorithm on this dataset. Compared with

TI-CNN (Yao et al.), our method increases by about 5.6%

(0.828–0.772) in average F1 score. Compared with CL3 (Liu

et al.2) combining the expert features and learning features, our

DMSFNet has a 1.8% (0.828–0.810) improvement.

Furthermore, for each individual class of N, AF, I-AVB,

LBBB, RBBB, PAC, PVC, STD and STE, the gains on F1 score

are almost the highest than others. In particular, for single dis-

ease, accuracy increases 16.0%, 21.0% in detecting paroxysmal

arrhythmias (PAC) compared with Resnet and LSTM. And our

method is 18.0% and 16.0% higher than Acharya et al. and

TI-CNN in detecting ST-segment elevated, respectively. And

in [47], only using the expert features and deep features, the

F1 score of CL3 (Liu et al.1) are 58.0% and 78.0% respectively.

Compared with the best competitor CL3, our method achieves F1

score of 82.8% only using the learning features by the designed

end-to-end neural network, which implies the effectiveness of

our model.

2) Evaluation on CinC_2017 Dataset: Table III compares

the related metrics of six reference models and DMSFNet in

detecting Normal rhythm, AF rhythm, Other rhythm. In the

experiment, we evaluate the classification performance on the

training dataset using 5-fold cross validation. As shown in the

table, we can find that the DMSFNet has the best performance

than other methods in all average precision, recall rate and

F1 score. Specifically, the proposed method reaches an overall

classification F1 score of 84.1% in average. In comparison with

Resnet, VGG and Acharya et al. that are based on convolu-

tional network, the average F1 score increases by about 6.4%

(0.841–0.777), 6.2% (0.841–0.779) and 7.1% (0.841–0.770).

Compared to the recurrent neural network model, LSTM, our

model has a 7.9% (0.841–0.762) improvement. And Compared
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Fig. 4. Visualization of the responses assigned for different segments in ECG records, where (a) is the result of single-scale model and
(b) indicates our model.

TABLE VI
EVALUATING MODEL WITH DIFFERENT SCALES

with the MS-CNN, about 3.4% (0.841–0.807) improvement are

obtained by our method.

In the classification of single disease, our method achieves a

F1 value of 0.83 in the diagnosis of AF, which exceeds 11% of

Resnet and Acharya et al., 8% of VGG and 6% of MS-CNN.

And for other rhythmic diseases, the proposed method has also

improved to some extent. Compared with Datta et al. method,

it uses more than 150 extracted features for ECG classification

by a multi-layer cascaded binary classifier. In order to get more

accurate results, more expert features need to be designed and ex-

tracted. DMSFNet can solve this problem effectively. Compared

with the designed features of ECG, the above results indicate

that our method can effectively extract abnormal features of

ECG signals by using the multi-scale features in an end-to-end

mechanism.

3) Ablation Studies: To analyze the relative contributions of

different components of our model, we evaluate some variants

of the proposed method with different settings.

Single-scale Framework vs. Multi-scale Framework: The

classification performance of the model is effectively improved

by complementary information between cross-scales. As shown

in Table VI, we evaluate the performance using single-scale

and multi-scale framework respectively. In this experiment,

we use two single-scale CNNs with dilation rate 1 and 3 for

classification task. The DMSFNet also adopts these two scales

convolutional kernels for constructing the neural network. By

comparison, we can find that the multi-scale model has bet-

ter performance than single-scale model. The average recall

rate increases by about 4.0% and the multi-scale model beats

the single-scale model with about 3.0% rise in average F1

TABLE VII
EVALUATING MODEL WITH ATTENTION

score. Also, Fig. 4 shows a visual comparison of features with

DMSFNet and single-scale model. From the figure, we can find

that the single-scale model does not capture the abnormal pattern

of the signal and misidentifies this PVC signal as STD in the

decision. Our proposed method gives high weight to the anoma-

lous signal segment and accurately identifies it. In addition,

a significant test is conducted with multiple sampling, the p

value is less than 0.05. Overall, it suggests that the multi-scale

features are consistently better than the results of single-scale

model.

Fusion without Attention vs. Fusion with Attention: To

evaluate the effectiveness of fusion method using spatial atten-

tion, we conduct additional experiments by comparing with the

model without attention module. In this experiment, we delete

attention module before global pooling and keep other network

configurations unchanged in the training stage. Experimental

results are shown in Table VII. As we can see, the average recall

rate increases by 1.5%, the F1 sore increases by about 1.1% with

the attention module. This shows that the attention module for

fusion multi-scale features is helpful for mining the discrimi-

native features and improving the classification performance of

the model.

Single-loss Optimization vs. Multi-loss Optimization: The

hyper parameter λ1 and λ2 dominates the participation level

of scale-specific subnetworks in our model. Both of them are

essential to our model. So we conduct experiments to investigate

the sensitiveness of the two parameters. In the first experiment, to

evaluate the effectiveness of the joint multi-losses optimization,

we remove all branch losses and only keep the loss for the last

fusion features in the training stage by fixing λ1 and λ2 to 0.

Experimental results are shown in Table VIII. As we can see,
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Fig. 5. Visualization of the learning features at 20, 50, 100 and 250 epochs on CPSC_2018 dataset.

TABLE VIII
EVALUATING MODEL WITH DIFFERENT LOSS

the F1 sore increases by about 2.3% (0.828–0.805) with the joint

branch losses. Further, we add one scale-specific branch loss

and observe the performance of classification. After adding a

single scale branch loss, the F1 scores have 1.4% (0.819–0.805)

and 0.8% (0.813–0.805) improvements. When all scale branches

are considered for joint optimization, the accuracy gradually

increases. We carry λ1 and λ2 from 0.1 to 1.0, it is very clear that

simply using the scale-fusion branch loss (in this case λ1 and λ2

are 0) is not an optimal result. And the recognition accuracy

of the deeply learned features is improved as scale-specific

branches participation increases. This shows that joint multi-loss

optimization can improve the classification performance of the

model.

4) Effectiveness of Learning Features: The quantitative

metrics show the effectiveness of our proposed multi-scale

features fusion approach. Taking CPSC_2018 dataset as an

example, to further intuitively evaluate the proposed method,

Fig. 5 shows the visualization of the learning features on dif-

ferent training stages. To facilitate visualization, we reduce the

dimensions of the network features from 256 to 2 before output.

Then the results of these features for all the categories can be

visualized into a two-dimensional plane. We intercept the results

of 20, 50, 100 and 250 epochs. As shown in Fig. 5, the degree

of feature discrimination becomes more and more obvious as

the number of iterations increases on the whole. Specifically, in

the first 20 epochs, the features of all categories overlap and are

difficult to identify. Before 50 epochs, the distinction of learning

features for all categories is not obvious. After 50 epochs, the

discrimination is obviously enhanced, and the distance between

classes is gradually enlarged. By the end of training, classes are

basically separated from each other.

To illustrate the effectiveness of the proposed method, two

samples with PAC and PVC are drawn according to the response

degree of the category to the feature, as shown in Fig. 6. We

use Resnet and MS-CNN as examples. From the figure, we

can find that the response performances of arrhythmias with

obvious occasional patterns get more attention. Specifically,

our DMSFNet clearly assigns larger weights for abnormal seg-

ments and gives lower weight to normal signal segments, which

achieves the right judgment. However, it is difficult for the MS-

CNN (Fig. 6(b)(e)) and Resnet (Fig. 6(a)(d)) to catch the accurate

abnormal pattern in the ECG segment, so they get the wrong

recognition.

5) MS-CNN vs. DMSFNet: Both the DMSFNet and MS-

CNN are based on multi-scale learning methods for ECG analy-

sis. But there are still some differences between the two methods:

(1) In DMSFNet, a backbone CNN sharing the same parameters

is adopted for extracting shared features firstly. And unlike

MS-CNN which uses general convolution kernels, the dilated

convolution is used for decreasing the correlations among the

different kernels and the number of network parameters. (2)

DMSFNet uses spatial attention for further mining the discrimi-

native features and improving the representations of the network.

And using global pooling replaces full connection layer, which

effectively extracts features from different channels and reduces

feature dimension. (3) Joint optimization with multiple losses

of different scales is adopted, which improves the discriminant

ability of learning features.

Take LBBB, STD and STE for example, Fig. 7 shows the

receiver operating characteristic (ROC) curve and area under

curve (AUC) value between these two method for these three

disease. From the figure, the AUC values of DMSFNet are 0.98,

0.95 and 0.91 respectively, which are higher than MS-CNN in all

kinds of listed diseases. Further, we compare the classification

performance of the two methods. As shown in Table II, the

DMSFNet outperforms the MS-CNN in almost all disease clas-

sification performances. Specially, F1 value increases by 12%

in detecting STE and 5.0% for PVC. The average recall rate

increases by about 4.0% and F1 score increases by about 3.0%

compared with MS-CNN. It demonstrates that the DMSFNet has

a higher classification performance by learning multi-scale fea-

tures than MS-CNN. Compared with the MS-CNN, the proposed

method is more competitive in mining the implicit correlated

complementary advantages across scales and improving the

processing ability of the model.
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Fig. 6. Visualization of the responses assigned for different segments in ECG records on CPSC_2018 dataset, where the images from the first to
third columns are the results using Resnet [39], MS-CNN [43] and the proposed DMFSNet respectively.

Fig. 7. The ROC curve of MS-CNN and DMSFNet for LBBB, STD and STE.

V. DISCUSSION

A. Diagnostic Effect

Different arrhythmias show various rhythmic characteristics.

For example, AF patients are usually associated with char-

acteristics of P-wave absence or irregular variability of R-R

intervals in the ECG signal. Other abnormal rhythms also show

different abnormal patterns in a single ECG signal. Traditional

methods need to design and extract different features for dis-

tinct diseases, which largely depends on expert experience and

extraction accuracy. In traditional methods of detecting PAC

and PVC, it is necessary to detect QRS position and calculate

R-R interval and QRS width, so that the accuracy of detecting

premature beats depends heavily on the location of QRS and the

accuracy of QRS starting and ending points. In this work, we

focus on developing a novel deep learning method for automated

multi-class arrhythmia detection. First, the proposed method has

great potential to reduce the dependence of hand-crafted features

by end-to-end neural network. From Fig. 6, we can see that the

proposed model can identify premature beat without calculating

parameters such as R-R interval, and locate the position of

premature beat accurately and clearly. In addition, with the help

of multi-scale feature fusion, the proposed method highlights

the related irregular area compared with other approaches. The

segment location of abnormal pattern is more accurate, which

can help doctors to locate and diagnose abnormal patterns faster
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and better, and then improve the efficiency and accuracy of

diagnosis. Results show that the multi-scale informations bring

great benefit to identify the arrhythmias, the proposed DMSFNet

effectively employs the underlying correlations among features

of distinct scales and obtains more abundant feature embeddings

for arrhythmias detection.

B. Model Applicability

The recent works on ECG processing with deep network

improve the recognition accuracy and generalization capacity.

Different network frameworks illustrate different performances.

From the results, we can find that the models based convolutional

network generally exceeds plain LSTM. This is mainly because

if the input time step is very long, it is difficult for the network

to capture long-term memory information. Compared to using

LSTM alone, TI-CNN (Yao et al.) integrates LSTM cell layers

after multi-layer convolution, which improves the above prob-

lem. But it also only utilizes the single scale information that

limited the classification performance without complementary

cross-scale information. Compared with above methods, our

work effectively extracts the cross-scale features of segments

by multiple convolution filters with different receptive fields

and spatial attention mechanism. Meanwhile, joint optimiza-

tion strategy optimizes multiple classification loss on same

ECG label information concurrently, which further promotes

the learning of different scale features. The above results suggest

that the scheme design of multi-scale features fusion effectively

improves the performance of multi-class arrhythmia detection.

VI. CONCLUSION

In this paper, we present a novel end-to-end deep learning

method (DMSFNet) for ECG signal classification by utilizing

the multi-scale ECG signal features. At same time, we integrate

joint optimization with multiple losses of different scales into

an unified convolutional neural network. Compared with the

existing deep learning methods for ECG analysis using single

scale, our proposed approach can effectively achieve multi-scale

feature extraction and cross-scale information complementarity

of ECG signals. We demonstrate outstanding performance for

ECG classification on two public datasets comparing with some

state-of-the-art methods. The experimental results convince the

effectiveness of the proposed method. In the future, we will

apply the DMSFNet to other physiological signal analysis and

processing requirements.
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