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Abstract: Recently, the rapid development of convolutional neural networks (CNN) has consistently
improved object detection performance using CNN and has naturally been implemented in au-
tonomous driving due to its operational potential in real-time. Detecting moving targets to realize
autonomous driving is an essential task for the safety of drivers and pedestrians, and CNN-based
moving target detectors have shown stable performance in fair weather. However, there is a consider-
able drop in detection performance during poor weather conditions like hazy or foggy situations
due to particles in the atmosphere. To ensure stable moving object detection, an image restoration
process with haze removal must be accompanied. Therefore, this paper proposes an image dehazing
network that estimates the current weather conditions and removes haze using the haze level to
improve the detection performance under poor weather conditions due to haze and low visibility.
Combined with the thermal image, the restored image is assigned to the two You Only Look Once
(YOLO) object detectors, respectively, which detect moving targets independently and improve
object detection performance using late fusion. The proposed model showed improved dehazing
performance compared with the existing image dehazing models and has proved that images taken
under foggy conditions, the poorest weather for autonomous driving, can be restored to normal
images. Through the fusion of the RGB image restored by the proposed image dehazing network
with thermal images, the proposed model improved the detection accuracy by up to 22% or above in
a dense haze environment like fog compared with models using existing image dehazing techniques.

Keywords: object detection; image dehazing; depth estimation; autonomous driving

1. Introduction

The rapid development of artificial intelligence technology based on convolutional
neural networks (CNN) has considerably expanded the applicable fields. Subsequently,
there has been widespread interest in deep learning-based object detection algorithms
that apply to autonomous driving. According to the object detection methods, deep
learning-based object detection algorithms are divided into 1-stage and 2-stage detectors.
1-stage detectors, which include You Only Look Once (YOLO) [1], Single Shot Multi-Box
Detector (SSD) [2], and RetinaNet [3], guarantee rapid execution speed by performing
object categorization and extracting the bounding box, which shows the object locations
simultaneously. Meanwhile, 2-stage detectors, such as Regions with CNN (R-CNN) [4],
Fast R-CNN [5], and Faster R-CNN [6], offer high accuracy by the first searching areas
where objects are to be found and then categorizing objects according to where they
were discovered. While the 1-stage detectors offer high potential in real-time due to
rapid execution speed, they have lower accuracy than 2-stage detectors. The 2-stage
detectors offer higher accuracy, but their real-time operation is mostly impossible due to
slow execution speed. Because of these differences between the detectors, object detection
models are applied in various fields based on the purpose of usage. Therefore, developing
a model that offers both high accuracy and real-time detection concurrently remains of
interest, especially in autonomous driving [7,8].
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The main role of autonomous driving is to accurately and rapidly detect vehicles,
pedestrians, traffic signals and signs, and other objects surrounding vehicles to guarantee
driving safety. Object detection is a key part of autonomous driving since, for vehicles
to drive safely at a high speed, they must accurately detect all objects on the road in real-
time. Thus, it plays an important role in monitoring traffic, preventing collision accidents,
avoiding obstacles, etc. [9,10]. While RGB camera-based object detection models in previous
studies [11,12] offer stable and fast-moving target detection performance, they are prone to
the turbid medium like haze or fog in the atmosphere, which expresses objects in the image
in the achromatic color instead of their natural color, leading to increased image ambiguity.
Particularly, haze or fog is a frequently observed weather condition caused by particles
formed by clustered vapors in the air, which further scatter light, reducing the contrast and
decreasing the saturation of the image. Such a dim image obscures the boundary between
an object and its background, and makes the object almost invisible, drastically reducing
detection performance. Therefore, to secure stable object detection performance, much
focus has been on effective and reliable methods for restoring these obscured images to
clear ones by removing external factors like haze [13–15].

Generally, image dehazing algorithms can be divided into image enhancement [16,17]
and image restoration [18,19] methods. The image enhancement methods are classic image
processing techniques, such as histogram equalization, wavelet transformation, luminance,
and contrast transformation, among others. These techniques can relatively remove haze
with ease, thereby increasing the fidelity of hazy images with low contrast. However, they
rely on local contrast distribution information, causing an overall image imbalance and
color distortion. The image restoration method, which sets an estimation model for dim
images and compensates for distortion by inferring the process in which the image becomes
dim, offers more natural and detailed image dehazing results than the aforementioned
classic methods. Xie et al. [18] proposed a haze removal method using dark channel prior
(DCP), a well-known image dehazing algorithm, and multi-scale retinex (MSR), a popular
contrast improvement technique, and extracted a function map similar to a transmission
map. Li et al. [19] attempted haze removal by estimating an improved transmission
map using a homomorphic filter and an improved DCP. Both [18] and [19] showed good
dehazing performance on the images with various fog types by estimating a transmission
map using DCP, a method for calculating the airlight and transfer rate using the fact that
the minimum value among the RGB values in an area without fog is very small compared
with that of a foggy area. However, such methods produce images with low contrast, can
produce a halo artifact due to the fog in the border area of the image, and may require a
considerable amount of calculation for refining the transfer rate which was estimated in a
block shape.

Recently, active research has been conducted on deep learning-based image dehazing
for high applicability and effective transmission map estimation for images shot under
varying conditions [20–22]. Cai et al. [23] removed haze using the atmospheric scattering
model estimated with a transmission map obtained by applying dim images to neural
networks. Instead of estimating the transmission map and airlight using the reconstructed
atmospheric scattering model in previous models, Li et al. [24] proposed a novel cross-
sectional design method that directly produces clear images using lightweight CNN. Here,
they showed that a high-quality dehazing process can be performed by including it in
other deep multi-models. Zhang et al. [25] proposed a method that does not remove
haze in an actual image but produces a haze-free image using the generative adversarial
network. However, such deep learning-based algorithms have low estimation accuracy
due to complicated learning strategies. In addition, they still do not consider depth when
estimating the transmission map.

Recently, the moving target detection technique has become a crucial part of au-
tonomous driving, which can guarantee high detection levels due to the rapid development
of neural network technologies. However, under poor weather with limited visibility,
its moving object detection performance drops considerably. Hence, in this paper, we
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propose a deep multimodal object detection model with reinforced moving target detection
performance under reduced visibility. Its image dehazing uses GoogLeNet, a CNN-based
classification model, to learn weather conditions and select an appropriate atmospheric
scattering coefficient using the haze level. Furthermore, the proposed model simultane-
ously performs depth estimation between the object and the camera with Monodepth using
the thermal image. Additionally, using the selected atmospheric scattering coefficient and
depth information, our proposed model estimates a transmission map and secures a haze-
free image using the atmospheric scattering model. Furthermore, it improves estimation
performance by detecting objects, using independent YOLO, from clear RGB images with
rich color information and thermal images with clear object bounding lines. In addition, it
detects an object with the highest probability via late fusion. Overall, the contributions are
the following:

1. The study proposed a stable and accurate atmospheric scattering estimation model
that independently estimates each parameter of the atmospheric scattering model for
image dehazing;

2. We proposed a method for selecting an atmospheric scattering coefficient by estimat-
ing the haze level by identifying weather conditions to restore clearer original images
since it allows for a more flexible application of the model to various environments;

3. We proposed a novel thermal image-based depth estimation method for removing
haze even under poor weather conditions with high dense haze;

4. We proposed a detection model using late fusion of heterogeneous sensors based on
dehazed images and demonstrated more improved moving target detection performance;

The rest of this paper is organized as follows: Section 2 describes the image dehazing
network with depth estimation. Section 3 explains the object detection framework of YOLO.
Section 4 proposes an object detection strategy reinforced by the image dehazing network.
Section 5 presents experimental results. Finally, Section 6 presents our conclusions.

2. Image Dehazing with Depth Estimation

Haze is the most general phenomenon that obscures visibility and is caused by various
particles in the air, such as vapor, dirt, and fog, that scatter atmospheric light. This shortens
visibility, obscures images, and reduces image quality. Dim images reduce visibility and
significantly weaken the detection performance, thereby causing considerable damage
when applied to autonomous driving. The most popular dehazing method removes haze
and restores images by estimating atmospheric light and transmission map using an
atmospheric scattering model that shows dim images.

2.1. Atmospheric Scattering Model

To explain the process of creating hazy images due to atmospheric particles in com-
puter vision, the atmospheric scattering model is defined as follows:

Ih(x) = Ih f (x)t(x) + A(1− t(x)) (1)

Here, Ih(x) is the observed hazy image, Ih f (x) is the haze-free (or dehazed) image
to be restored, t(x) is a medium transmission map, A is the atmospheric light vector in
the RGB domain, and x is the pixel location of the image. The transmission is the part of
the light that arrives at the camera without scattering and ranges between 0 and 1. Thus,
the objective of dehazing is to restore the haze-free image Ih f (x) from a dim image by
estimating t(x) and A, as shown below.

Ih f (x) =
Ih(x)− A

(
1− t(x)

)
t(x)

(2)

Here, A is an atmospheric light value arbitrarily estimated between 0 and 255. t(x)
is the estimated transmission map, and assuming that atmospheric conditions are even
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as an exponential function of distance, it depends on two parameters—atmospheric scat-
tering coefficient β and the depth between the object and the camera d(x). It is expressed
as follows:

t(x) = e−β∗d(x) (3)

Generally, the haze level depends on the number of particles in the atmosphere. t(x)
decreases as the distance between the camera and the object increases, signifying an increase
in the effect of atmospheric light on the image. Therefore, it causes more light scattering,
thereby producing dim objects. As the distance decreases, the atmospheric effect reduces,
making the image look relatively clearer.

2.2. Image Dehazing Network with Thermal Depth

The dehazing network with RGB and thermal depth (DN-RTD), proposed to remove
haze effectively, is designed, as shown in Figure 1, by estimating β, the atmospheric
scattering coefficient appropriate to the current atmospheric condition, and d(x), the depth
between the object and the camera, using RGB and thermal images.

Figure 1. Proposed image dehazing network by incorporating RGB and thermal images.

The proposed dehazing algorithm trains the model using GoogLeNet, a CNN-based
classification model, to categorize captured hazy image Ih(x) into four haze levels, namely,
haze-free, light haze, moderate haze, and dense hazy, and to select β corresponding to the
classified weather condition. Moreover, the algorithm estimates the depth information d(x)
from a thermal image H(x), not from an RGB image, using Monodepth. After deriving the
transmission map t(x), which expresses the level of atmospheric light transmission, from
Equation (3) using the above β and the estimated d(x), the clear image Ih f (x) is extracted
via the image restoration process in Equation (2).

The atmospheric scattering coefficient β expresses the degree of light being scattered
by particles in the air, and it appears on the overall image rather than a specific area of
the image. Therefore, it is estimated by observing the whole image. Authors of [23,24]
proposed an estimation method that uses β based on a neural network model, but such a
method should estimate an accurate parameter through the training of a neural network
model. Therefore, it requires image data at various haze levels and an accurate β, which is
labeled according to each data, leading to a high training cost and low estimation accuracy.
On this account, for stable β accuracy, we propose a β estimation algorithm that classifies
four haze levels using GoogLeNet based on the overall image and selects an appropriate
scattering coefficient in a specified scope, rather than estimating an accurate atmospheric
scattering coefficient. GoogLeNet is a model that allows deep learning by increasing
the length and width of neural networks while maintaining the calculation size using
a 1 × 1 convolution-based inception module, average pooling, and auxiliary classifier,
among others. It is a CNN model designed for deep learning with small data [26]. As
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shown in Table 1, for estimating atmospheric scattering coefficient at a specified scope, the
training data for GoogLeNet were divided into four categories. The output of the trained
GoogLeNet is G ∈ [1, 2, 3, 4], denoting the four haze levels representing each atmospheric
scattering coefficient corresponding to each state.

Table 1. Estimated atmospheric scattering coefficients by haze level.

CNN Output
(G) Haze Level Atmospheric Scattering

Coefficient (β)
Estimated Atmospheric

Scattering Coefficient (β)

1 Haze-free 0~0.50 0.25
2 Light haze 0.51~1.00 0.75
3 Moderate haze 1.01~1.50 1.25
4 Dense haze 1.51~2.30 2.00

2.3. Depth Estimation by Thermal Image

The noise level of haze worsens as the atmosphere thickness between the camera
and the object increases. As such, the depth information between the camera and the
object is a key component in image dehazing algorithms, as well as depth estimation.
Generally, depth information can be acquired using light detection and ranging (LiDAR),
time-of-flight (ToF) camera, or Kinect depth sensors. However, these are relatively large,
expensive, and have a long processing time due to large data sizes. In particular, for a ToF
camera, the LED light at a specific wavelength weakens greatly when it is reflected from
an object, leading to a limited detection distance. In addition, in outdoor conditions or
under strong sunlight, the camera cannot differentiate the LED light and sunlight, making
distance detection impossible. To mitigate these issues, some proposed a depth estimation
method using a stereo vision sensor, which requires a large calculation to process data
and is prone to external noise, such as dirt or lighting [27–29]. Godard et al. [30] proposed
Monodepth, a model that trains CNN using single images and a disparity map, which
shows the difference between two images and extracts depth information from the image
reconstruction based on single images. To estimate the mono depth when the left image
(IL) and the right image (IR) exist in pairs, only one image, the left image (IL), is input to
CNN to extract the left and right disparities (dL) and (dR), respectively. Then, the training
is performed with a loss function, where the reconstructed left image (IL) is created by the
currently estimated left disparity (dL) and right image (IR), and the disparity is obtained by
the comparison with the existing left image (IL). Similarly, the reconstructed right image
(IR) is created by applying the currently estimated right disparity (dR) to the left image (IL),
and the disparity is obtained by the comparison of the existing right image (IR).

The loss function used for Monodepth training from the existing and newly recon-
structed image pairs consists of three factors: the similarity between the original image
and the reconstructed image (DL,sim), the continuity indicating whether the generated
image is seamlessly connected (DL,cont), and the accuracy of the generated disparity map
(DL,acc). The first loss function expresses the similarity level of the image and conducts
image reconstruction using the left and right disparities acquired from the model. It is
defined as follows:

DL,sim =
1
N ∑

ij
γ

1− SSIM
(

IL(i, j), IL(i, j)
)

2
+ (1− γ)

∣∣∣∣IL(i, j)− IL(i, j)
∣∣∣∣ (4)

Here, N is the total number of pixels in an image, and (i, j) is the location of the
pixel. It is defined by the sum of SSIM(·) and the L1 regularizer of the two images with
a weighting value γ set to 0.85 on each. SSIM(·) is Structural-Similarity-Index-Map, a
function that determines the similarity level of images by the luminance, contrast, and
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structural comparison of the images, in which each function represents the luminance,
contrast, and structural comparison, respectively.

SSIM(·) = l(i, j)× c(i, j)× s(i, j) (5)

The second loss function, shown below, measures gradients in the x- and y-directions
given by ∂x and ∂y, among others, so that there is no disconnection in the disparity bounding
regions. This has the effect of making the disparities locally smooth by removing the
discontinuity of the image of which the depth is not uniform using the gradient of the image.

DL,cont =
1
N ∑

ij
|∂xdL(i, j)|e−||∂x IL(i,j)|| +

∣∣∂ydL(i, j)
∣∣e−||∂y IL(i,j)|| (6)

Finally, the loss function to make a more accurate disparity map serves to make the
left-view disparity map equal to the projected right-view disparity map. To produce a more
accurate disparity map, the disparity dL and dR for each of the left and right images are
determined, and the difference between them is used for depth estimation in the left-right
disparity consistency loss, which is shown below.

DL,acc =
1
N ∑

ij

∣∣∣dL(i, j)− dR+dL(i,j)(i, j)
∣∣∣ (7)

When estimating a transmission map, depth information is one of the crucial parame-
ters, and acquiring the depth directly from a single image, as shown in Monodepth, saves a
considerable cost. However, the RGB camera’s depth estimation accuracy plummets for
noise, such as a haze, as shown in Figure 2a,b. Hence, for the low-cost transmission map
and accurate estimation, Monodepth is used to estimate stable depth information using
thermal images, not RGB images. Thermal images are resistant to haze, and regardless of
the haze level, they allow stable estimation of depth information, as shown in Figure 2c,d.
Finally, through the above atmospheric scattering coefficient estimated with the neural
networks and the depth information estimated with Monodepth, a transmission map is
created, and using Equation (2), the original image without haze is restored.

Figure 2. Examples of haze-free (top) and hazy (bottom) images: (a) RGB image, (b) depth map
estimated from the RGB image, (c) thermal image, (d) depth map estimated from the thermal image.
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3. Object Detection Framework

While object detection technology has advanced considerably due to the development
of CNN, the performance improvement of object detection via single sensors is limited
and less stable. Therefore, many studies have focused on the development of multi-sensor-
based object detection techniques and the improvement of object detection performance
through the compensation of multi-sensors. Thus, we proposed to acquire improved object
detection performance from the late fusion of the thermal and RBG cameras, which offer
clear boundary information of objects and rich color information, respectively.

3.1. Real-Time Object Detection

With the various CNN-based object classification models and object recognition al-
gorithms, including GoogLeNet, residual network (ResNet), and visual geometry group
from Oxford (VGG), among others, the accuracy of CNN-based object recognition has
consistently improved. Object detection, such as the location and identification of an object,
is more difficult and has a more complicated structure than simple image recognition, and
thus it has not been easily accessed. However, through R-CNN, which uses a CNN-based
image classifier, several studies have proposed various object detection models like Fast
R-CNN or Faster R-CNN, and improved detection performance. However, these models
must calculate the bounding box of the object within the image and class probability sep-
arately and conduct object classification via neural networks. This causes considerable
training and processing time, thereby making them unsuitable for real-time application. To
speed up the object detection speed, the YOLO framework, developed to focus more on
real-time object detection, creates the bounding box within the image and class probability
as one regressive problem to increase the inference speed, estimates the type and location
of an object that was seen before, and trains the neural networks on the whole tasks.

YOLO divides the input image into an S × S grid and predicts the B number of
bounding boxes, predetermined in the region where an object is expected to be found using
CNN and a confidence score on each bounding box. The bounding box of each region
consists of five-dimension vectors (x, y, w, h, C), where (x, y) is the central coordinate of
the bounding box, (w, h) is its width and height, and C is the probability that the bounding
box is included in a specific class. C is expressed by the multiplication of Pr(object), the

probability that the object is included, and
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, the width of the IOU (Intersection
of Union), where the actual and predicted values overlap, indicating how accurately the
bounding box predicted the object.

C = Pr(object) ∗ IOU

truth
pred (8)

Here, if the central coordinates of the predicted bounding box and the ground truth
exist in the same region, the bounding box is assumed to include the object, and Pr(object)
is set to 1; otherwise, it is set to 0. The probability of an object among the N number of
classes that could be classified is Pr(Classi|object), and the probability that a specific object
is included in the predicted bounding box among N classifiable objects is the product of
Pr(Classi|object) and C as follows:

CPr(Classi|object) = Pr(object) ∗ IOU

truth
pred ∗ Pr(Classi|object)

= Pr(Class) ∗ IOU

truth
pred

(9)

The bounding box with the highest CPr(Classi|object) among the B numbers of the finally
predicted bounding boxes is determined to be the bounding box of the concerned object [1].
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3.2. Non-Maximum Suppression

Considering only RGB images in object detection under complex conditions like
autonomous driving leads to image distortion or damage due to external light like sunlight
or lighting and cannot be used at night. To mitigate this issue, additional sensors like
LiDAR and Radar have been suggested to be used as multi-sensor fusion methods for the
shortcomings of RGB cameras [31]. The early fusion method can completely use the raw
data information by fusing pre-processed sensor data. However, this method is sensitive to
spatiotemporal data alignment defects among sensors due to correction errors, different
sampling frequencies, sensor defects, etc. Nonetheless, the late fusion method offers high
flexibility and modularity as it combines the outputs of each network although it requires
a slightly higher calculation cost. The mid-fusion method is a compensation method
between the early and late fusion methods, which allows the training of various network
characteristics. However, finding the optimal fusion method for changing the network
structure is challenging.

Therefore, this study proposes a multimodal YOLO object detection method using
non-maximum suppression (NMS) to efficiently extract the characteristics of an object using
rich color and boundary information from RGB and thermal cameras, respectively. Not
only does it minimize the intersensory interference through the fusion of the RGB and
thermal cameras, but it extracts the optimal object bounding boxes using the late fusion, as
shown in Figure 3.

Figure 3. Block diagram of the multimodal YOLO object detection method based on late fusion.

The RGB and thermal images are entered into each YOLO, and the B × 2 number
of vectors, which shows the location and class of the object, are extracted using NMS
and the final bounding box is determined. NMS is connected to the second half of the
detection model for improving object detection performance of models like YOLO or SSD
to extract the optimal bounding box using the following procedure. First, the bounding
box with the highest-class probability against one class is determined and added to the
final bounding box list. Second, after comparing the IOU of the selected bounding box and
all predicted bounding boxes, if the value is higher than the threshold, the corresponding
box is removed. Third, the bounding box with the highest-class probability among the
remaining boxes is selected and added to the final bounding box list. After the IOU of the
selected bounding box and all remaining bounding boxes are compared, if the value is
higher than the threshold, the corresponding box is removed. This process is repeated until
no bounding box is left in the list.



Sensors 2022, 22, 5084 9 of 15

4. Object Detection in Reduced Visibility

Haze, one of the most frequently observed phenomena in daily life, degrades image
quality and weakens detection performance by disturbing the object’s characteristics detec-
tion function of a detection model. If a vehicle makes an incorrect control decision when the
moving target detection in autonomous driving is disturbed by haze, it can lead to a huge
accident. Therefore, to perform stable moving target detection under reduced visibility,
this paper proposes an improved deep multimodal YOLO object detection method that
performs image dehazing pre-processing using DN-RTD, which is based on the late fusion
of the RGB and thermal cameras. The overall block diagram is shown in Figure 4.

Figure 4. Overview of the improved deep multimodal object detection strategy.

The proposed model classifies haze levels into four levels, namely, haze-free, light
haze, moderate haze, and dense haze, based on CNN, as the pre-process for extracting
clear images under foggy weather conditions. From Table 1, it selects an atmospheric
scattering coefficient β appropriate to each level. Moreover, to estimate stable depth
information regardless of the haze level, the model uses thermal image H(x) and estimates
the depth d(x) using Monodepth. Using the derived β and d(x), the model calculates
the transmission map t(x) based on Equation (3) and enters it into the image restoration
process in Equation (2) to create a dehazed image Ih f (x). Finally, Ih f (x) and H(x) are
entered into two YOLO models, YOLOR and YOLOT, to determine an object based on
different images, and NMS is employed to estimate the optimal object detection. Since
some haze removal can be performed using the haze level estimates, the proposed model
allows an RGB image with improved quality. Additionally, with the late fusion and thermal
image, the proposed model can process the rich color and clear boundary information
from the RGB and thermal images simultaneously to improve the detection performance in
single sensor-based models.

5. Experimental Results

The improved deep multimodal object detection model was realized on an NVIDIA
GTX 1080ti, Intel Core i7-8700 CPU, and the dataset used for validation was the forward
looking infrared thermal dataset [32], containing both RGB and thermal images. The hazed
image dataset for the weather classification training for the CNN based on the haze level
was generated by acquiring the transmission map using Monodepth and changing the
atmospheric scattering coefficient randomly between 0 and 2.3. In addition, the haze
removal performance of DN-RTD, the proposed dehazing method, was compared with
that of the existing dehazing models using peak signal-to-noise ratio (PSNR) and SSIM.

PSNR = 10 log10
R2

MSE
(10)
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Here, MSE is the difference in each pixel between two images, and R, the maximum
value of the corresponding image, is used when evaluating the image loss information.

Additionally, the performance evaluation of the proposed multimodal object detection
model, including DN-RTD, was based on the mean Average Precision (mAP), which
expresses the area below the precision–recall (PR) curve and shows how reliable a model is
against the detected object. Precision is the ratio of the correctly detected results among
those detected and is given as TP/(TP + FP). A recall is the ratio of the correctly detected
object among those that should be detected and is given as TP/(TP + FN). Here, TP, FP, and
FN denote true positive, false positive, and false negative, which means that objects that
should be detected were not detected.

5.1. Evaluations on Image Dehazing

For the CNN training to estimate the atmospheric scattering coefficient at a specific
scope with single images, data labeled with the scattering coefficient are required. Authors
of [21,33,34] generated the simulated hazed image data using an atmospheric scattering
model and used it for model training. Similarly, we generated simulated hazed images
using arbitrary scattering coefficients and an atmospheric scattering model. The scattering
coefficients were categorized into four levels, each generating 577 test images. Table 2
summarizes the identification accuracy, which is the CNN-based environment identifi-
cation performance index by haze level. The identification accuracy was at 87.12% on
average, verifying that the model showed stable performance on the weather environment
identification by haze levels.

Table 2. Environment identification performance by haze level.

Haze Level Haze-Free Light Haze Moderate Haze Dense Haze

Identification
Accuracy 99.65% 78.16% 81.10% 89.60%

Using the atmospheric scattering coefficients estimated from the above, we compared
the performance of our proposed dehazing model, DN-RTD, to those of existing image
dehazing models, the result of which is summarized in Table 3 with the process examples
shown in Figure 5. Under the light haze level, our proposed model showed higher dehazing
performance than [24], which showed the highest image quality improvement among the
existing models. For the dense haze level, our proposed model demonstrated substantially
higher dehazing performance than all other models. The visual quality of the proposed
model also showed higher dehazing performance at all haze levels.

Table 3. Environment identification performance by haze level.

Model
PSNR SSIM

Light Haze Dense Haze Light Haze Dense Haze

[33] 18.14 13.24 0.88 0.66

[24] 22.63 15.93 0.92 0.76

[23] 18.11 17.96 0.90 0.83

DN-RTD 28.69 23.56 0.96 0.89
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Figure 5. Example of dehazing performance comparison by model (top: light haze, bottom: dense
haze); (a) original, (b) hazed image, (c–f) dehazed image by [23,24,33], and DN-RTD, respectively.

5.2. Comparative Evaluations of Detection under Hazy Conditions

To demonstrate the superiority of the proposed deep multi-mode object detection
model (YOLORT + DN-RTD) including DN-RTD for image dehazing, object detection
performance evaluation was carried out with various procedures. A comparison test
was performed on the proposed architecture according to the level of visibility, and a
comparative evaluation was also conducted with the object detection model, which fused
with various conventional haze removal models and YOLO.

Table 4 shows a comparison of the object detection performance between other state-
of-the-art detection models and the proposed YOLORT + DN-RTD model. Under the light
haze level with a relatively low effect of haze, YOLORT, which is a late fusion model of
RGB and thermal images, showed improved detection performance of AP by approxi-
mately 6% or more than the RGB image-based model YOLOR and thermal image-based
model YOLOT. For the dense haze level, the detection performance only by RGB images
dropped significantly because of the considerable effect of haze. This also affected the
multimodal model YOLORT, dropping the AP by approximately 4% or more in the light
haze level. However, the performance increased by about 3% more than thermal image
single sensor detection model YOLOT due to the fusion with thermal images, verifying
that detection performance can be improved by multimodal sensor fusion. The proposed
YOLORT + DN-RTD showed improvement in object detection by up to 8% above the ex-
isting image dehazing models and YOLOR under the light haze level, and by about 1.4%
above YOLORT. The dehazing performance of existing image dehazing models under the
dense haze level decreased, causing a huge drop in detection performance. However, the
proposed YOLORT + DN-RTD model removed haze according to each haze level. Thus,
even in a dense haze environment like fog, its AP improved by 22% or higher above
YOLOR+ [33] and by about 3% to YOLORT. Therefore, the proposed object detection model
improved the detection performance using RGB images through appropriate dehazing
and showed stable detection potential under poor weather conditions like fog due to its
stable image dehazing performance as opposed to existing dehazing models. The proposed
architecture performed equivalent to or faster execution speed than the object detection
models combining the conventional haze removal models and YOLO. However, since the
total processing time from haze removal to object detection is 686.99 ms, it seems that it
will be rather difficult to process without interruption in real time. This is because real-time
processing is possible at 27.89 ms based on the object detection time, but 659.1 ms, which is
most of the total processing time, is required in the haze removal process like other haze
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removal techniques. Therefore, further studies are planned in the future to accelerate the
haze removal process to increase its real-time potential.

Table 4. Vehicle detection performance comparison by model according to the haze level.

Models
Light Haze Dense Haze Running

Time (ms)AP TP FP Precision Recall AP TP FP Precision Recall

YOLOR 78.75 1615 39 0.97 0.79 61.55 1264 30 0.97 0.61 27.82

YOLOT 78.60 1626 182 0.90 0.79 78.60 1626 182 0.90 0.79 27.82

YOLORT 85.22 1767 241 0.88 0.86 81.11 1683 238 0.87 0.82 27.89

YOLOR

+ [33]
78.75 1615 39 0.97 0.79 61.60 1265 30 0.97 0.61 657.82

YOLOR

+ [24]
81.35 1668 27 0.98 0.81 66.99 1374 18 0.99 0.67 1627.82

YOLOR

+ [23]
83.41 1711 55 0.97 0.83 71.55 1468 32 0.98 0.71 737.82

YOLORT

+ DN-RTD
86.69 1800 279 0.86 0.88 84.02 1747 269 0.86 0.85 686.99

Figure 6 shows examples of vehicle detection by model under reduced visibility with
a dense haze level. In particular, Figure 6a shows that relatively distant objects were
not detected at all due to haze. Figure 6b shows that regardless of the haze level, most
objects could be detected using clear boundary lines, but for objects near tree branches, the
boundary lines of the branches and those of the moving targets were mixed so that the
objects could not be detected, leading to missed detection. Therefore, it was confirmed
that the proposed multimodal object detection model improved the detection performance
using the fusion of the thermal sensor and allowed complementary detection of objects that
the other sensors could not find. Furthermore, many more objects could be detected with
superior image dehazing performance of the proposed model to those of existing image
dehazing algorithms under the dense haze level.

Figure 6. Cont.
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Figure 6. Examples of vehicle detection results via model under reduced visibility (Red box—Missed
detection, Blue box—Correct detection); (a) YOLOR, (b) YOLOT, (c) YOLORT, (d) YOLOR + [33],
(e) YOLOR + [24], (f) YOLOR + [23], (g) YOLORT + DN-RTD.

6. Conclusions

Moving target detection is a crucial task in intelligent personal mobility and au-
tonomous driving. While the detection techniques of moving targets using camera sensors
have witnessed a high level of accuracy and rapid execution speed due to the development
of deep learning, its performance considerably drops under poor weather conditions. Haze,
one of the most common weather conditions where poor visibility results from vapors
or dirt in the atmosphere, degrades the performance of vision-based applications in au-
tonomous driving. Thus, the development of an image dehazing model for stable moving
target detection is required. Deep learning-based dehazing methods, which estimate a
transmission map using neural networks, are easy to implement, have faster processing
speed than previous techniques, and have acquired versatility using big data. However,
when estimating a transmission map, they infer detailed parameters of an atmospheric
scattering model for end-to-end training, leading to error accumulation and degraded
accuracy since they fail to consider the depth, which is the most important parameter.
Therefore, we proposed an image restoration model that improves detection performance
by identifying surrounding environment from images, detecting the haze level, extracting
depth information from a single image, and removing haze for stable object detection
under reduced visibility due to haze. Additionally, we proposed a multimodal object detec-
tion scheme that improves detection performance through the late fusion of the restored
RGB and thermal images. The proposed dehazing model showed improved dehazing
performance by up to 10% or more compared with existing CNN-based image dehazing
algorithms and demonstrated the potential of dehazing under fog. Finally, the proposed
model showed improved detection performance by up to 22% or more to the model that
combined the existing CNN-based dehazing technique and YOLO, verifying the validity of
the proposed model.
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