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Abstract

The recent development in learning deep representations

has demonstrated its wide applications in traditional vision

tasks like classification and detection. However, there has

been little investigation on how we could build up a deep

learning framework in a weakly supervised setting. In this

paper, we attempt to model deep learning in a weakly su-

pervised learning (multiple instance learning) framework.

In our setting, each image follows a dual multi-instance as-

sumption, where its object proposals and possible text an-

notations can be regarded as two instance sets. We thus

design effective systems to exploit the MIL property with

deep learning strategies from the two ends; we also try

to jointly learn the relationship between object and anno-

tation proposals. We conduct extensive experiments and

prove that our weakly supervised deep learning framework

not only achieves convincing performance in vision tasks

including classification and image annotation, but also ex-

tracts reasonable region-keyword pairs with little supervi-

sion, on both widely used benchmarks like PASCAL VOC

and MIT Indoor Scene 67, and also a dataset for image-

and patch-level annotations.

1. Introduction

Deep learning, as a recent breakthrough in artificial intel-

ligence, has been successfully applied to multiple fields in-

cluding speech recognition [12] and visual recognition [16,

19, 15, 18], mostly with full supervision. A typical deep

learning architecture for visual recognition builds upon con-

volutional neural network (CNN) [17, 19, 16, 38]. Given

large-scale training data and the power of high-performance

computational infrastructure, deep learning has achieved

tremendous improvement in visual recognition with thou-

sands of categories [6].

While deep learning shows superior performance on

fully supervised learning tasks, research on learning deep

representations with weak supervision is still in its early

stage; i.e., human labels still play a key role in these popu-

lar frameworks [12, 16]. This is in a sense anathema to the

very nature of large-scale web or real-world data — namely,

big data is largely data with no labels or noisy labels. The

emergence of image search engines like Google, social net-

work sites like Facebook, and photo and video sharing sites

like Flickr provides vision researchers with abundant visual

data; unfortunately, strong labels for these images are in

much shorter supply. Therefore, unsupervised or weakly-

supervised methods are particularly favored as they can bet-

ter utilize the available large-scale web resources.

Weakly supervised learning can in general be viewed

as mechanisms to learn from sparse or noisy labels. As

web data usually comes with high diversity but much noise,

these weakly supervised methods have been successfully

applied to learn effective visual representations for classi-

fication [27], detection [27, 11], and segmentation [11], all

using weak labels alone.

In terms of visual recognition, people have recently pro-

posed a number of techniques to generate object propos-

als for higher level tasks, apart from traditional exhaus-

tive searches. These approaches either adopt saliency in-

formation [13], train generic object models to harvest “ob-

jectness” [4], or turn to more adaptive segmentation sys-

tems [33, 41], all of which can be viewed as effective ways

of reducing the search space.

These proposal generating algorithms usually have very

high recalls but adequate precisions, which indicates that

although proposals may be noisy, there is almost always an

object of interest within a number of most likely propos-

als [4]. We observe that this property actually corresponds

to the assumption in multiple instance learning, which states

that there must be at least one positive instance within each

positive bag. Therefore, we attempt to incorporate multiple

instance learning into a deep learning framework and ap-

ply the learned visual knowledge to assist the task of image

classification.

We also notice that the multiple instance assumption

widely exists in other domains, e.g., image annotation (tag-

ging), a task which both vision and natural language pro-

cessing communities are interested in. Modern search en-

gines like Google, Bing, and Baidu can already perform

image keywording in a fully unsupervised way, though the
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Figure 1. Overview of our framework and the dual multiple instance assumptions

returned keywords might not be accurate enough. This is

another type of “noisy input” and can be naturally mod-

eled as a multiple instance learning problem if we consider

each tag as an instance and the tags for a certain image as a

bag. Here we also develop a deep multiple instance learning

framework to identify the relevant keywords for images.

We further attempt to jointly learn keywords and ob-

ject instances of interests among candidates, and pro-

pose a system to automatically extract insightful keyword-

proposal pairs with little supervision. As existing datasets

mostly provide image-level annotations [6, 21] or assign

pixel/region to a single label [39], we construct a new

dataset where both images and patches are associated with

multiple relevant tags, which can be used for image- and

patch-level annotations or region-keyword pairing.

Our contributions are three-fold: first, we observe the

generic existence of the multiple instance assumption in ob-

ject and keyword candidates; second, we incorporate deep

learning into a weakly supervised learning framework in a

principled manner; third, we demonstrate that our deep mul-

tiple instance learning system achieves convincing perfor-

mance in both image classification and image annotation.

2. Related Work

Deep architectures consist of feature detector units ar-

ranged in layers. Lower layers detect simple and local

features and then feed them into higher layers, which in

turn capture more complex features [12, 16, 19, 15]. Re-

cently, convolutional neural network (CNN) has been suc-

cessfully applied in many vision tasks including object

recognition [16], image classification [17], and video clas-

sification [15].

In the machine learning literature, Dietterich et al. [7]

introduced multiple instance learning (MIL) for drug ac-

tivity prediction. Since then, researchers have proposed a

large number of algorithms for the MIL tasks. For exam-

ple, Andrews et al. [1] developed mi-SVM and MI-SVM

for instance-level classification and bag-level classification,

respectively. There have been some explorations [31, 48, 5]

on solving multiple instance learning using traditional neu-

ral networks. Their approaches are inspiring; however, nei-

ther did they consider learning deep representations, nor

did they study computer vision tasks. Numerous computer

vision applications can naturally fit into the MIL frame-

work. Examples include object and face detection [43], vi-

sual categorization [42], segmentation [45] and image re-

trieval [24].

Most deep learning approaches are in fully supervised

settings. Recently, researchers started to study weakly su-

pervised learning using features learned with deep represen-

tations [47, 35]. Specifically, Xu et al. [47] proposed to use

deep learning to compute features for multi-instance learn-

ing in medical imaging; Song et al. [35] also used CNN

features for weakly supervised object localization. Differ-

ent from these methods, we propose an integrated frame-

work to learn deep representations with MIL assumptions

for the tasks of image classification and annotation.

Russell et al. [33] first proposed to use multiple seg-

mentations for higher level vision tasks. These years, re-

searchers have developed a number of methods for finding

salient regions or detecting generic objects, e.g., spectral

methods [13] and those adopting machine learning tech-

niques [25]. Recently, selective search [41], a novel seg-

mentation technique for object recognition, has been shown

to be effective in object detection. Note that Zhu et al. [49]

also studied multiple instance learning with salient win-

dows, but with a focus on unsupervised object discovery

and without learning deep representations.

In terms of image classification, PASCAL Visual Ob-

ject Classes [10] has long been a popular benchmark. Deep

learning systems from different research groups all reported

impressive performance on the classification task [3, 9, 36].

In this paper, we combine deep learning with multi-instance



Figure 2. Illustration of our framework for learning deep visual representations within a multiple instance learning setting. Here P stands

for a pooling layer, C for a convolution layer, and FC for a fully connected layer.

learning and utilize object-level information to assist the

task of classification.

Image annotation aims at producing rich image descrip-

tions at different levels [26]. During the past decades, there

have been numerous inspiring works in this area [2, 20, 44].

To name a few, Barnard et al. [2] presented some corre-

spondence models on matching segmented images with as-

sociated text; Li et al. [20] proposed a real-time annota-

tion framework for Internet images; Wang and Forsyth [44]

made progress on jointly learning attributes and object

classes via multi-instance learning. Different from these

methods which did not learn deep representations, our deep

multiple instance learning framework can achieve high ac-

curacy on both image classification and annotation.

3. Deep Multiple Instance Learning (DMIL)

In this section, we present our method for learning deep

representations in a weakly supervised manner. Based on

the existence of the multiple instance property in both ob-

ject and keyword proposals, we attempt to unify the learned

deep features within the MIL framework.

3.1. The Setting of DMIL

As described earlier, recent approaches are able to gener-

ate a number of object proposals with very high recalls. In

this sense, we notice that it is reasonable to assume that the

object lies in at least one of the proposals. In other words, it

becomes natural to treat the object proposals of each image

as a positive bag in multiple instance learning.

From a different angle, there have been many techniques

for collecting keywords from the web for a given image.

These keywords alone are often too noisy for tasks like im-

age classification. However, it is justifiable to assume that

there must be at least one relevant keyword within a number

of most confident keywords. This again corresponds to the

multiple instance assumption. These findings encourage us

to design a multi-instance learning scheme to jointly learn

about visual objects and verbal keywords.

As we know, different from traditional supervised learn-

ing in which training instances are given as pairs {(xi, yi)},

where xi ∈ R
d is a feature vector and yi ∈ {−1, 1} is

the corresponding label. In multiple instance learning, data

are organized as bags {Xi}, and within each bag there are

a number of instances {xij}. Labels {Yi} are only avail-

able at the bag level, while labels of instances {yij} are un-

known. Given the MIL assumption lies generally in object

and keyword proposals, we therefore propose to exploit this

property by incorporating multiple instance learning into a

deep learning framework.

3.2. Our Formulation

Considering the recent advances achieved by deep learn-

ing, it is a natural choice to employ deep representations

instead of a shallow model. We use deep convolutional

neural network as our architecture for learning visual rep-

resentation with multiple instance learning. The structure

is inspired by [17]. As shown in Figure 2, it contains five

convolutional layers, followed by a pooling layer and three

fully connected layers.

We redesign the last hidden layer for multiple instance

learning. Given one training sample x, the network extracts

layer-wise representations from the first convolutional layer

to the output of the last fully connected layer fc8 ∈ R
m,

which can be viewed as high level features of the input im-

age. Followed by a softmax layer, fc8 is transformed into a

probability distribution p ∈ R
m for objects of m categories,

and cross entropy is used to measure the prediction loss of

the network. Specifically, we have

pi =
exp (hi)

∑

i

exp (hi)
, i = 1, . . . ,m, and L = −

∑

i

ti log (pi),

(1)

where L is the loss of cross entropy. The gradients of the

deep convolutional neural network is calculated via back-

propagation

∂L

∂hi

= pi − ti, (2)



Figure 3. Difference between human labels and automatically crawled keywords

Figure 4. Comparison of our joint deep multiple instance learning framework for learning correspondences between keywords and image

regions, with the DMIL framework and traditional DNN for image keywording

where t = {ti|ti ∈ {0, 1}, i = 1, . . . ,m,
∑m

i=1
ti = 1}

denotes the true label of the sample x.

To learn multiple instances as a bag of samples, we in-

corporate deep representation with multiple instance learn-

ing. Denote {xj|j = 1, 2, . . . , n} as a bag of n instances

and t = {ti|ti ∈ {0, 1}, i = 1, . . . ,m} as the label of the

bag; a multiple instance convolutional neural network ex-

tracts representations of the bag: h = {hij} ∈ Rm×n, in

which each column is the representation of an instance. The

aggregated representation of the bag for MIL is:

ĥi = f(hi1, hi2, . . . , hin), (3)

where function f can be maxj (hij), avgj (hij), or

log
[

1 +
∑

j exp (hij)
]

, among others. Here we continue

our reasoning with the max(·) layer, but formulations with

other choices are straightforward. Also in Section 4.5, we

show experiments with these possible choices.

The distribution of visual categories of the bag and the

loss L are therefore

pi =
exp

(

ĥi

)

∑

i exp
(

ĥi

) and L = −
∑

i

ti log (pi). (4)

In order to minimize the loss function of the DMIL, we

employ stochastic gradient descent for optimization. The

gradient is calculated via back propagation [32],

∂L

∂ĥi

= pi − ti and
∂ĥi

∂hij

=

{

1, hij = ĥi

0, else
. (5)

For the task of image classification, we first employ ex-

isting methods to generate object proposals within each

image; we then apply the deep multiple instance learning

framework to perform image classification.

3.3. Automatic Image Annotation

We now explain our method for automatic image annota-

tion. Again, besides purely using deep learning for keyword

extraction and image annotation, we integrate deep features

and weakly supervised learning to truly find out discrimina-

tive and relevant keywords for each image.

Keywords Extraction from Web Data: Human-labeled

datasets, e.g., PASCAL VOC [10] and MIT Indoor Scene

67 [30], usually come with a few entry-level labels. In con-

trast, images on the web are connected with rich documents,

consisting of titles, captions, alternate texts, and articles in

webpages, all of which may describe images in more de-

tail. There have been abundant classical techniques to ex-

tract keywords from texts [40]. In this paper, we use a much

simpler strategy to extract keywords: given an arbitrary im-

age I , we firstly use the image similarity search engine from

Baidu to find a set of most similar images {I ′} from the



Figure 5. Illustration of our framework for jointly learning image regions and keywords. Here P stands for a pooling layer, C for a

convolution layer, and F for a fully connected layer.

web. We then crawl the surrounding documents of each re-

trieved image I ′. The nouns which appear in the surround-

ing documents are considered as the keywords of the image.

Figure 3 provides some examples. The keywords extracted

from webpages are highly noisy. However, although many

of the keywords are irrelevant to the given image, some

words actually provide more detailed and more informative

descriptions than the category label does (for instance, F-

22 Raptor vs aeroplane). This offers us an opportunity to

obtain more specific image annotations than human-labeled

tags.

Image Recognition by Keywords: we subsequently aim

to predict image category from keywords. As discussed be-

fore, keywords gathered from the web, as a type of “noisy

input”, fit the multi-instance assumption well. Here we

use another deep neural network formulation with multi-

instance learning. As shown in Figure 4, the deep network

contains one input layer, one hidden layer, and one output

layer with softmax. Instead of using original word indices

as input, a 128-dimensional word-to-vector feature is used

to relieve the computational burden. For this task, we keep

the same learning strategy as that for object proposals.

3.4. Joint Learning of Image Regions and Keywords

We now consider a novel framework for learning cor-

respondences between image regions and keywords, which

serves as the basis for patch-level annotations. Object pro-

posals and keywords are two sets of instances satisfying the

multiple instance assumption; a cross combination of the re-

gions and the words leads to the possibility that we can label

regions with proper words. We build a joint deep multi-

instance learning architecture to learn the object proposals

and keywords simultaneously.

Specifically, we combine the outputs of image and text

understanding systems in the final fully connected layer, as

illustrated in Figure 5. This can be viewed as a straightfor-

ward generalization of the aggregate equation Eq. 3. Now

we have

ĥi = f











hi11 hi12 . . . hi1n

hi21 hi22 . . . hi2n

...
...

. . .
...

him1 him2 . . . himn











, (6)

where m is the number of keywords and n is the number of

patches. Because m is not large, this intuitive formulation

is also computationally affordable.

4. Experiments

In this section, we conduct experiments of our weakly

supervised deep learning framework on both image clas-

sification and image auto-annotation. We test our method

on two widely used datasets for object and scene classifi-

cation, PASCAL VOC 2007 [10] and MIT Indoor Scene

67 [30]. For image annotation, we apply our framework on

PASCAL VOC as well as a new dataset for both image-level

and region-based annotations.

4.1. Setup

4.1.1 Datasets

PASCAL 07: The PASCAL Visual Object Classes 2007

database [10] contains 9963 images of 20 categories includ-

ing people, animals, and various objects. This dataset is

considered more challenging than datasets like ILSVRC [6]

as the objects are not centered and their appearances are

more diverse.

MIT Indoor: The MIT Indoor Scene 67 dataset [30] con-

tains 15620 images of 67 categories of scenes. The dataset

consists of various types of indoor scenes including public

spaces, stores, leisure places, working places, and residen-

tial rooms. Many of these indoor scenes are highly similar

to each other, which makes the dataset especially difficult

compared to traditional outdoor scene datasets.



aero bike bird boat btl bus car cat chair cow table dog hrs mbk per plant shp sofa train tv mAP

GHM [3] 76.7 74.7 53.8 72.1 40.4 71.7 83.6 66.5 52.5 57.5 62.8 51.1 81.4 71.5 86.5 36.4 55.3 60.6 80.6 57.8 64.7

AGS [9] 82.2 83.0 58.4 76.1 56.4 77.5 88.8 69.1 62.2 61.8 64.2 51.3 85.4 80.2 91.1 48.1 61.7 67.7 86.3 70.9 71.1

NUS [36] 82.5 79.6 64.8 73.4 54.2 75.0 77.5 79.2 46.2 62.7 41.4 74.6 85.0 76.8 91.1 53.9 61.0 67.5 83.6 70.6 70.5

CNN-SVM [34] 91.2 81.4 82.1 81.1 51.6 81.6 84.4 83.9 54.5 61.0 53.8 72.3 74.9 75.6 83.7 47.4 71.7 60.0 88.3 79.4 73.0

DMIL (region) 92.9 81.6 86.0 82.5 53.9 81.8 86.8 83.4 53.7 66.8 51.8 72.3 79.4 77.3 86.1 50.1 74.6 61.7 90.3 80.1 74.7

DMIL (keyword) 81.4 70.3 76.1 71.3 34.7 66.7 71.8 68.1 50.7 49.7 37.0 55.0 57.9 63.9 71.1 46.5 59.0 43.4 87.2 73.9 61.8

DMIL (joint) 93.5 83.4 86.9 83.6 54.2 81.6 86.6 85.2 54.5 68.9 53.8 73.2 78.8 79.0 86.6 51.2 74.4 63.7 91.5 80.4 75.5

Table 1. Image classification results on Pascal VOC 2007, compared to other methods which also use outside training data. The CNN

representation is not tuned for the Pascal VOC dataset. Note that in comparison, GHM [3] jointly learns from bag-of-words and contextual

information on VOC. By clustering the VOC data, AGS [9] learns layered representation. NUS [36] learns a codebook for descriptors from

VOC. CNN-SVM [34] is the popular OverFeat representation.

aero bike bird boat btl bus car cat chair cow table dog hrs mbk per plant shp sofa train tv avg

DNN 65.2 50.6 73.0 34.9 9.9 60.9 61.3 77.0 40.8 59.8 20.5 69.9 20.1 68.5 48.2 18.8 66.0 54.7 39.4 40.6 49.0

DMIL (ours) 80.9 51.9 69.5 72.1 22.6 53.4 73.1 74.2 43.9 73.2 46.9 85.6 48.9 67.1 34.7 14.7 80.4 57.8 25.1 52.8 56.5

Table 2. Image annotation results on Pascal VOC 2007

Figure 6. Sample data from the new dataset. Note that human

labeling helps to remove noisy tags and construct a clean dataset

with both image-level (the black box) and patch-level (the colored

boxes) annotations.

Dataset for annotation: We evaluate on a new dataset

specifically designed for both image- and patch-level an-

notation (tagging). The dataset contains images of 50 cate-

gories, 25 of which are the most popular object categories in

ImageNet [6] and the others are the most popular scene cat-

egories in SUN database [46]. For each category, we collect

50 images from these existing databases and the web.

For each of the 2500 images, we manually label bound-

ing boxes for several salient objects. We then apply the

keyword extraction technique described in Section 3.3 with

Baidu search engine to collect keywords while restricting

them to be from a dictionary of 981 nouns for both the im-

age and these boxes. The 981 nouns are chosen from a set

of most frequently searched keywords on Baidu. To remove

noise, five external experts are invited to decide whether

each tag is correct or not, and we retain those tags that are

endorsed by at least four of the five experts. Figure 6 pro-

vides a snapshot of our dataset.

4.1.2 Metrics and Measures

For image classification on PASCAL VOC 2007 dataset, we

adopt the traditional mean average precision (mAP) as our

evaluation metric. Following [8] and [14], We use mean

accuracy as the evaluation metric for image classfication on

MIT Indoor Scene 67 dataset and for image annotation.

4.1.3 Implementation Details

Following previous works [3, 9, 36], we first conduct pre-

training of CNN on the ILSVRC dataset [6]. Based on the

parameters obtained from pre-training, we then train the

DMIL framework on the PASCAL 07 training set. We use

BING [4] as the proposal generating system. For each im-

age, windows with confidence scores larger than −0.97 are

retained for further use.

4.2. Image Classification on PASCAL VOC 2007

Table 1 shows the results of our deep multiple instance

learning (DMIL) system on image classification. As men-

tioned earlier, the performance is measured in mean aver-

age precision (mAP). As our system uses training data out-

side the standard Pascal VOC 2007 dataset, we also com-

pare the results only with those methods which have used

outside training data. We can see that DMIL outperforms

previous efforts by a significant margin in mean average

precision. Specifically, compared to the popular OverFeat



Figure 7. Confusion matrix for MIT Indoor 67. Some of the mis-

takes (children room-kindergarden) are very hard even for humans.

(CNN-SVM) architecture [34], it has superior average pre-

cision on 14 out of 20 classes. Also, both region propos-

als and keyword proposals contribute to the overall per-

formance, although regions proposals play a more central

role. Note that all baselines in Table 1 require to learn

dataset-specific knowledge (codebook, contextual informa-

tion) from VOC, while our representation is not fine-tuned

for the VOC data.

4.3. Image Classification on MIT Indoor Scene 67

Table 3 shows the results of our deep multiple instance

learning (DMIL) system on MIT Indoor Scene 67. We mea-

sure our performance in mean accuracy. Figure 7 is the con-

fusion matrix of our DMIL system. As we can see, DMIL

achieves encouraging performance and outperforms most of

other methods including CNN-SVM, and again both patch

and keyword modules are helpful. As illustrated by Fig-

ure 7, some of the mistakes made by DMIL are even hard

for humans to distinguish. Please note that the dimension

of the Improved Fisher Vector (IFV) [14] representation is

over 200, 000, while DMIL only employs a feature vector

of length 4, 096. Also, the MLrep [8] requires fine tuning

on the dataset which takes several weeks.

4.4. Image Annotation

Here we show the application of our framework in im-

age annotation. As illustrated earlier, our method can per-

form both image-level and region-based annotations. We

also provide some exemplar patch-keyword pairs automati-

cally extracted by our system.

Methods mAcc

ROI+Gist [30] 26.1

DPM [28] 30.4

Object Bank [22] 37.6

RBow [29] 37.9

BoP [14] 46.1

miSVM [23] 46.4

D-Parts [37] 51.4

IFV [14] 60.8

MLrep [8] 64.0

CNN-SVM [34] 57.7

DMIL (region) 60.0

DMIL (keyword) 48.3

DMIL (joint) 61.2

Table 3. Comparison of classification results on MIT Indoor

Scene 67. Note that IFV [14] needs a feature representation

of length over 200, 000, and MLrep [8] employs the very time-

consuming fine tuning on the dataset.

4.4.1 Image-level annotation

We perform image keywording on the test set of PASCAL

VOC 2007. We compare our system with a simple deep

learning system without the multi-instance learning layer.

We evaluate the returned keywords in a class-wise manner.

For each image in a specific class, we choose the top one

keywords returned by the two systems, and invite external

experts to decide whether these keywords are relevant to

the object class. For instance, if an image of class “car” is

labeled as “hatchback”, based on our statistics, the expert

would regard the annotation correct; if it is labeled as “bed-

room”, then it would be considered as an error.

We then compute for each class the accuracy of top one

keyword. As shown in Table 2, we find that DMIL comes

with very convincing performance. In 13 of 20 classes,

DMIL achieves a higher accuracy than a straightforward

deep formulation. The average accuracy grows from 49.0%
to 56.5%. Specifically, for classes where objects are often

localized in images, like “boat”, “bottle”, “dog”, and “ta-

ble”, DMIL provides a significant increase in performance,

which indicates that the multiple instance assumption as-

sists in finding objects of interest in image annotation.

4.4.2 Patch-level annotation

Given our framework for learning cross-instance (image re-

gions and keywords) relations, it is intuitive to obtain patch-

level annotations. This is also similar to object localization,

although the patches we use here are not necessarily for

objects. Here we also test our system for learning region-

keyword pairs on PASCAL VOC 2007 dataset.

For each test image, we keep the most confident region-



Figure 8. Sample results for patch-level annotations. Note that the image patches are randomly sampled from all patches associated with

the keyword in some returned patch-keyword pair.

CNN-SVM [34]
DMIL (ours)

max avg log

PASCAL 07 73.0 75.5 72.6 74.7

MIT Indoor 57.7 61.2 59.6 59.3

Table 4. Classification results of CNN-SVM and DMIL with dif-

ferent layers on PASCAL 07 and MIT Indoor 67

keyword pair, and group these pairs by keywords. Some of

the results are demonstrated in Figure 8. For each keyword

listed, the patches shown in the figure are randomly sam-

pled from all patches that are associated with the keyword in

some pair. We can see that our system can describe objects

(e.g., cat, motorbike, desktop) and scenes (e.g., prairie), as

well as recognize activities (e.g., dining events) and per-

form fine-grained annotation (e.g., parked aircraft, ciconi-

iformes). All these information can assist tasks like classi-

fication, which indicates directions for future research.

4.4.3 Annotation on new dataset

We then evaluate our framework on the newly proposed

Words dataset. Here we provide quantitative results on both

image- and patch-level annotations. In either case, we first

limit the output space of any system to the dictionary of 981

nouns, mentioned in Section 4.1.1. If the top one keyword

returned by the system is in the list of tags of that image or

patch, we regard this prediction as correct.

As shown in Table 5, again, DMIL achieves an evident

and consistent performance boost over DNN on both image-

and patch-level annotations on Words dataset.

4.5. Choice of Hidden Layer

The choice of hidden layer is of critical importance in

our formulation. In Table 4 and 5, we present results of

our formulation with a variety of hidden layers for both

DNN
DMIL (ours)

max avg log

PASCAL 07 49.0 56.5 50.2 53.3

Annotation (Image) 55.0 62.6 57.3 62.2

Annotation (Patch) 42.0 51.5 46.7 48.5

Table 5. Annotation results of DNN and DMIL with different

layers on PASCAL 07 and the new dataset

image classification and annotation. As mentioned in 3.2,

the max(·), avg(·), and log(·) in Table 4 and 5 refer to

maxj (hij), avgj (hij), and log
[

1 +
∑

j exp (hij)
]

for ag-

gregating instance representations, respectively.

We notice that in almost all cases, the straightforward

max(·) layer obtains the best performance. Considering

that the max(·) layer fits the multiple instance assumption

best, these empirical results confirm our observation that ex-

ploiting the multiple instance property lying in both visual

and verbal levels can assist in these vision tasks.

5. Conclusion

In this paper, we proposed to construct a deep learn-

ing framework within a weakly supervised learning setting.

We demonstrated that our observation of the universal exis-

tence of the multiple instance assumption contributes much

in solving computer vision tasks, and the deep multiple in-

stance learning system we developed performs well in both

image classification and image auto-annotation. Our sys-

tem is also able to automatically extract correspondences

between object and keyword proposals and return meaning-

ful region-keyword pairs on widely used benchmarks. We

hope our findings could arouse further research in the fields

of deep learning and weakly supervised learning in the vi-

sion community.
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