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Abstract. Ensemble learning consistently improves the performance of multi-class 

classification through aggregating a series of base classifiers. To this end, data-
independent ensemble methods like Error Correcting Output Codes (ECOC) attract  
increasing attention due to its easiness of implementation and parallelization. 
Specifically, traditional ECOCs and its general extension N-ary ECOC decompose the 
original multi-class classification problem into a series of independent simpler 
classification subproblems. Unfortunately, integrating ECOCs, especially N-ary ECOC 
with deep neural networks, termed as Deep N-ary ECOC, is not straightforward and yet 
fully exploited in the literature, due to the high expense of training base learners. To 

facilitate the training of N-ary ECOC with deep learning base learners, we further 
propose three different variants of parameter sharing architectures for deep N-ary ECOC. 
To verify the generalization ability of deep N-ary ECOC, we conduct experiments by 
varying the backbone with different deep neural network architectures for both image 
and text classification tasks. Furthermore, extensive ablation studies on deep N-ary 
ECOC show its superior performance over other deep data-independent ensemble 
methods. 

Keywords: deep n-ary ecoc; ensemble learning; multi-class classification. 

1   Introduction 

Multi-class classification is one of the fundamental problems in machine learning and 

data mining communities, where one trains a model with labeled data of different classes for 

classification purposes. The multi-class classification exists diverse real-world applications 

from computer vision tasks such as object recognition [1], [2], [3], face verification [4], to 

natural language processing tasks like sentiment classification [5], [6]. 

To handle multi-class classification problems, existing approaches could be mainly 
divided into two groups. One group focuses on solving the multi-class problems directly by 

extending its corresponding binary classification algorithm. These approaches include 

decision tree-based methods [7], multi-class linear discriminant analysis [8], multi-layer 

perceptron [9], multi-class support vector machines (SVM) [10] and etc. Another research 

direction focuses on the decomposition of a multi-class problem into multiple binary 

subproblems so that one can reuse the well-studied binary classification algorithms for their 

simplicity and efficiency. Most of these methods can be reinterpreted in the framework of 

error correcting output codes (ECOC) [11], [12]. For example, Allwein et al. [13] show one-

versus-one (OVO), one-versus-all (OVA) could be incorporated into the framework of ECOC 
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where all the classes are reassigned with either binary codes {−1,1} or ternary codes {−1,0,1} 
for each base learners (1/−1 represents positive/negative class, 0 represents non-considered 

class). Zhou et al. [14] further extend traditional ECOCs into N-ary ECOC by introducing N 

meta-classes rather than binary classification for each base learner. The final results are 

determined by the ensemble of a series of base learners. The biggest advantage of ECOCs 

methods is their easiness of implementation and parallelization. 

Most traditional ECOCs methods are based on the pre-defined hand-craft features and 

focus on how to ensemble the results of base learners on these features. Recently, deep 

learning methods significantly advance the multi-class classification performance through 

learning features in an end-to-end fashion. For example, a single AlexNet [15] outperforms the 

second place at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by more 

than 10%. To further improve performance, Goodfellow et al. [16] demonstrate that a simple 

ensemble of seven AlexNet models with different random initiations could significantly 

reduce an error rate from 18.2% to 15.3%. In most high profile competitions, e.g. ImageNet1 

[17] or Kaggle 2 , ensembles techniques often appear in the winner solution. Traditional 

ensemble methods usually assume that the base learners for binary classification are 

inexpensive to train, such as SVMs and decision trees. Unfortunately, this assumption appears 

to be invalid with deep learning algorithms. For example, AlexNet consisting of more than 60 

millions of parameters [15] takes between five and six days to train on two GTX 580 3GB 

GPUs. Therefore, the expensive learning procedure hinders the use of the ensemble of deep 

neural networks on a large scale. 
In this paper, we focus on addressing the ensemble of deep neural networks in the 

framework of ECOC. The biggest reason to choose ECOC rather than other ensemble 

techniques such as Boosting [18] is that ECOC is easy to parallel due to the independence of 

base learners. In contrast, boosting trains a number of models sequentially and continuously 

compensates the mistakes made by the earlier models, which results in that each base models 

in boosting are highly dependent on each other. At this point, ECOC exhibits a large 

advantage in large-scale real-world applications since all the base learners could be trained 

independently and simultaneously. 

Specifically, we choose N-ary ECOC, an extension of ECOC, which shows significant 

improvement over OVA, OVO, and traditional ECOCs [14]. As known, most existing works 

did not investigate the influence of deep learning on ECOCs or N-ary ECOC. In this paper, we 
make a marriage between N-ary ECOC to investigate such an influence. In the sequence, we 

term this problem as Deep N-ary ECOC. The main contributions of this paper are as follows: 

• We investigate a new problem named Deep N-ary ECOC where we mainly discuss 

how to effectively and efficiently leverage advantages of deep learning models in the 

framework of ECOC. 

• To facilitate the training procedure, we further propose three different parameter 

sharing strategies for Deep N-ary ECOC framework, i.e., full parameters share, 

partial parameters share, and no parameter share. Specifically, the full share model 

shares all the feature learning parameters except for top classifier; the partial share 

model shares part of feature learning parameters; the no parameter share means all 

the base learners are learned from scratch. 

 
1 ImageNet: http://www.image-net.org/ 
2 Kaggle: https://www.kaggle.com/ 



 

 

 

 

 

• We explore the influence of two crucial hyper-parameters of N-ary ECOC, i.e., 𝑁! 

and 𝑁, with deep neural networks for improving the accuracy. We also give specific 

suggestions for choosing those two hyper-parameters. 

• We conduct extensive experiments and compare with several ensemble strategies, 

i.e., an ensemble of random initialization (ERI), ECOC and N-ary ECOC, on both 

image and text classification tasks to analyze the advantages and disadvantages of 

each ensemble strategy. 

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 

presents Deep N-ary ECOC. Finally, Section 4 discusses our empirical studies and Section 5 

concludes this work. 

2   Related Work 

Our proposed deep N-ary ECOC is highly related to the following topics, including 

ECOCs, ensemble learning, and deep neural networks. 

 

2.1   ECOCs 

 

Many ECOC approaches [13], [19], [20], [21] have been proposed to design a good 
coding matrix in recent years. Most of them are fallen into the following two categories. The 

first one is data-independent coding, such as OVO, OVA, and ECOCs [20]. Their coding 

matrix design is not optimized for the training dataset nor the instance labels such that all the 

base learners could be independently learned. For example, the sparse ECOC coding approach 

aims to construct the ECOC matrix 𝑀 ∈ {−1, 0, 1}"!×"", where 𝑁$ is the number of classes, 

𝑁!  is the code length, and its elements are randomly chosen as either −1, 1, or 0 [20]. In 

ECOCs, the classes corresponding to 1, −1 are considered as positive and negative classes, 

respectively, and 0 are not considered in the learning process. More recently, Zhou et al. [14] 

extend the existing ECOCs into N-ary ECOC to enable the construction of N metaclasses. 

Both theoretical and empirical findings validate the superiority of N-ary ECOC over 

traditional ECOCs. 

Another direction is data-dependent ECOCs where the data are considered in the learning 
coding matrix, such as discriminant ECOC (D-ECOC) [19], ECOC-ONE [22], subspace 

ECOC [21], Adaptive ECOC [23], etc. In this way, different base learners interact with each 

other during training phrases, which is also similar to Boosting [18] methods, such as 

AdaBoost [24]. In Boosting methods, a series of models are sequentially trained with latter 

models correcting mistakes committed in previous models. Compared to data-independent 

ECOCs, these methods require sophisticated algorithm design and are difficult to be 

paralleled. 

To our best knowledge, there is little research to investigate the combination of ECOCs 

and deep learning. In this paper, we take a step further to analyze the performance of 

combining our previous work N-ary ECOC with deep learning. 

 
2.2   Deep Ensemble Learning 

 

A lot of studies show that deep neural network models are nonlinear and have a high 

variance, which can be frustrating when preparing a final model for making predictions [16]. 



 

 

 

 

 

Deep ensemble learning appears to one of the solutions that combine the predictions from 
multiple neural network models to reduce the variance of predictions and reduce 

generalization error. Recently, there are some studies to integrate base learners of deep neural 

networks with ensemble learning in three major ways. The first one is ensemble training data 

including re-sampling [25], bootstrap aggregation [26], where the choice of data is varied for 

training different base models in the ensemble. The second one is to ensemble models where 

different base models are used in the ensemble, including different random initialization, a 

random selection of mini-batches, differences in hyper-parameters, etc [16]. The third way is 

varying combinations where one vary the choice of combining outcomes from ensemble 

members. The most famous method is a model averaging ensemble and weighted average 

ensemble. Different from the aforementioned deep ensemble learning methods, deep N-ary 

ECOC serves a complementary piece for existing methods. 
 

2.3   Deep Neural Networks 
 

In recent years, a lot of different deep neural networks are proposed for different 

applications. For computer vision tasks, the most dominating model comes from 
Convolutional Neural Networks (CNNs), and its follow-up works such as AlexNet [15], 

VGGs [27], ResNet [28] and DenseNet [29]. For natural language processing tasks, most 

popular networks belong to Recurrent Neural Network (RNNs), or its many variants such as 

Long Short-Term Memory (LSTM) [30], Gated Recurrent Unit (GRU) [31] and etc. In the 

experiment, we validate deep N-ary ECOC in both CNNs and LSTMs architecture for vision 

and text datasets respectively. 

3   Deep N-ary ECOC 

In this section, we first introduce the concept of N-ary ECOCs. To facilitate the training 

procedure, we further propose three different parameter sharing architectures, namely full, 

partial and no sharing. 

 

3.1   N-ary Ensemble for Multi-class Classification 

 

Error correcting output codes (ECOC) constructs an ensemble of binary base classifiers 

by randomly and independently assigning positive/negative pseudo labels (i.e., 1/−1 in the 

coding matrix) for each base task. The results of all the base learners are combined to make a 

prediction. ECOC consists of two main steps: 1) encoding 2) decoding. In encoding, we create 

an encoding matrix to encode each class into a unique code that is as different as possible from 

the codes of the remaining classes. One example of the encoding matrix is illustrated in Table 

1(a). A row of the coding matrix represents the code of each class, while a column of the 

coding matrix represents the binary classes to be considered when learning a base classifier. In 

decoding, ECOC first computes the prediction vector that is the concatenation of results of all 

the base tasks. The final label is determined by assigning the label with the “closest” label 

vector in encoding matrix 𝑀 ∈ {1, 2, … ,𝑁}"!×"", where 𝑁$ denotes the number of classes and 

𝑁! denotes the number of base learners. As proved in many research works [12], [14], the 

capability of error correction relies on the minimum distance, Δ%&'(𝑀), between any distinct 



 

 

 

 

 

pair of rows in the coding matrix 𝑀 . In this way, the trained base classifiers could be 

sufficiently differentiated from each other. 

To achieve this goal, ECOC is extended to a new framework of N-ary ECOC [14] where 

the original classes are decomposed into N meta-class (3 ≤ 𝑁 ≤ 𝑁$). Table 1(b) shows an 

example of N-ary ECOC encoding matrix. Zhou et al. [14] both empirically and theoretically 

showed that N-ary ECOC is able to achieve larger row separation and lower column 

correlation. It is interesting to note that N-ary ECOC is a more general framework for ECOC 

since traditional coding schemes could be treated as special cases of N-ary ECOC. For 

example, when 𝑁 = 2, N-ary ECOC corresponds to the binary coding scheme; when 𝑁 = 3, 

N-ary ECOC corresponds to the ternary coding scheme. Furthermore, recent works [16] 
showed that an Ensemble of models with different Random Initialization (ERI) is able to 

improve multi-class classification performance. This deep ensemble learning strategy could be 

also viewed as a special case in the framework of N-ary ECOC if we keep the original label 

assignment, namely 𝑁 = 𝑁$. 

Table 1. Example of ECOC and N-ary coding matrix. 

                                    (a) ECOC                                                (b) N-ary ECOC with 𝑁 = 4 

                  

 

On the other side, most existing work on ECOCs including our previous work on N-ary 

ECOC is constrained to classifier training with pre-defined features. With a significant 

advance of deep learning, the performance of various machine learning tasks has been 

improved. There is few works to discuss how to extend ECOC in the scenario of deep 

learning.  In this work, we specifically study this open problem in the framework of N-ary 

ECOC, termed Deep N-ary ECOC, and propose several approaches to address it. In this paper, 

we mainly investigate the following three questions: 
1. Do we necessarily independently train all the deep base learners from scratch for all 

the situation? 

2. Whether the N-ary ECOC framework still retains the advantages over other data-

independent ensemble approaches with deep neural network? 

3. Any new suggestion on the choice of the meta-class number 𝑁 and base learners 

number 𝑁!? 



 

 

 

 

 

For the first question, we are going to propose three different parameter sharing 
architectures, which is described in more details next section. For the remaining two 

questions, we delay the investigation in the experiment section. 

 

3.2   Efficient Implementation for Deep N-ary ECOCs 

 

Different from traditional ECOC problems with pre-defined features, Deep ECOCs 

should consider deep feature learning as well as the classifier construction during training. 

This increases the difficulty of deploying ECOCs in real-world scenarios, since even training a 

single deep neural network is also expensive. Fortunately, thanks to the nature of ECOCs, all 

the base deep neural networks could be trained simultaneously. Furthermore, in this paper, we 

investigate a more efficient realization and propose three different parameter sharing 
strategies, namely, no share, partial share, and full share, which is depicted in Figure 1. 

Typically, we take the model of the CIFAR dataset, termed CIFAR-CNNs (explain in 

detail later), as an example to illustrate the three strategies. For the no parameter sharing 

strategy, as shown in Figure 1(a), we trained 𝑁! base learners independently, which means 

that the feature encode layers of each base learner are trained by the inputs directly and do not 

interact with other learners. The partial parameter sharing strategy contains shared and task-

specific layers, as in Figure 1(b), the first three feature encoder layers are shared by all the 

base learners while the top encoder layer is task-specific, which is only optimized by the 

corresponding meta-class objectives. The full parameter sharing strategy is simply set all the 

feature encode layers to be shared by all the base learners except the top classifiers (see Figure 

1(c)). The top layer classifiers of all the sharing strategies are trained independently with its 
meta-class objectives. Note that, all the base learners of no parameters sharing strategy are 

trained from scratch while the shared layers of partial and full parameters sharing strategies 

are initialized by a pre-trained single model and fine-tuned through training to accelerate the 

model convergence rate. Obviously, the no parameter sharing strategy contains most 

parameters (𝑁'), then the partial sharing strategy (𝑁() and the full sharing strategy (𝑁)) is 

least, say, 𝑁' > 𝑁( > 𝑁). 

 

 

Figure 1. An example of three different parameters sharing strategies. 

4   Experiments 

4.1   Datasets 

We conduct the experiments on 4 image datasets and 2 text datasets. The image datasets 

contain MNIST [32], CIFAR-10 [33], CIFAR-100 [33], and FLOWER-102 [34], which are 



 

 

 

 

 

widely used image classification datasets in the computer vision community. While the text 
datasets are Text REtrieval Conference (TREC) [35] dataset and Stanford Sentiment Treebank 

(SST) [36] dataset. The TREC is the question and answering dataset which involves 

classifying question sentences into 6 question types, say, whether the question is about person, 

location, numeric information and etc. The SST is the sentiment analysis sentence data with 5 

classes that range from 0 (most negative) to 5 (most positive). The statistics of these datasets 

are described in Table 2. Note that we do not utilize the K-fold cross-validation method, but 

simply use the split of train/validation/test sets. If the datasets do not contain development 

part, we randomly split 10% training samples as the development dataset. 

Table 2. Statistics of Image and Text Datasets. 

Image Dataset 
Dataset Image Size # Train Sample # Dev Sample # Test Sample # Classes (𝑁!) 

MNIST 28 × 28 60,000 N/A 10,000 10 
CIFAR-10 32 × 32 50,000 N/A 10,000 10 
CIFAR-100 32 × 32 50,000 N/A 10,000 100 
FLOWER-102 256 × 256 6,552 818 819 102 

Text Dataset 

Dataset Avg. Sent. Len. # Train Sample # Dev Sample # Test Sample # Classes (𝑁!) 

TREC 10 5,500 N/A 500 6 
SST 18 11,855 N/A 2,210 5 

 

4.2   Experimental Setup 

 

Deep Neural Networks. We employ different neural network-based models for different 

datasets. Specifically, we use LeNet [32] for the MNIST dataset and the FLOWER-102 

dataset is trained by AlexNet [15]. Note that, due to the difficulty for the AlexNet model to 

learn consequential and representative features from the small training dataset of FLOWER-

102 directly, the AlexNet is not trained from scratch but obtained by fine-tuning the pre-

trained AlexNet model3, which is trained on ILSVRC dataset. For CIFAR-10/100 datasets, we 

build a model with eight convolutional layers and two full-connected layers, named as CIFAR-

CNNs, as shown in Figure 2(a), where the eight convolutional layers are divided into four 

groups, they share the same structure with the different numbers of filters and kernel widths. 
The architecture of each group is structured as follows: one convolutional layer following the 

batch normalization [37] and dropout [38] layer, another convolutional layer with batch 

normalization and max-pooling is applied. And the ELU [39] activation function is used for 

each convolutional layer. 

To train the TREC and SST text datasets, we construct a three-layer bidirectional LSTM 

model with character-level CNN [40] and self-attention [41] mechanism, termed Bi-LSTMs, as 

shown in Figure 2(b), where the character-level CNN learned the character features to 

represent a word from the character sequences of such word, which can help to enrich the 

meaning of word features, especially for rare and out-of-vocabulary words, and boost the 

performance by capturing morphological and semantic information, and the self-attention 

mechanism encodes the learned contextual affluent word-level feature sequence of 

 
3 Pre-trained AlexNet: http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/ 



 

 

 

 

 

bidirectional LSTM into a single vector by considering the importance of each word-level 
feature. 

Parameters Setup. For LeNet of MNIST dataset, we follow the same settings as LeCun et al. 

[32] and RMSProp [42] is chosen as the parameters optimization method with a learning rate 

of 0.001 and decay rate of 0.9, we also introduce Dropout [38] strategy with a drop rate of 0.5 

at each convolutional layer and the first full-connected layer to prevent over-fitting. While the 

AlexNet for FLOWER-102 dataset, we utilize exactly the same structure, parameter setting, 

and optimization method as Alex et al. [15]. For CIFAR-CNNs model of CIFAR-10/100 

datasets, we set the number of filters for each convolutional block as 32, 64, 128, and 256, 

respectively, the kernel sizes of (3, 3) and pool size of (2, 2) for all the blocks. The hidden 

size of the first fully-connected layer is 512, while the second depends on the class size. To 

avoid over-fitting, we apply ℓ*  regularization with weight decay rate of 0.0005 for all the 

weight parameters and Dropout strategy, the drop rate is 0.3 , 0.4 , 0.4 , 0.4  for each 

convolutional block respectively, and 0.5  for the first fully-connected layer. Parameters 

optimization is performed by Adam optimizer [43] with gradient clipping of 5.0 and learning 

rate decay strategy. We set the initial learning rate of 𝛽+ = 0.002 and fixed it for the first 

5000 training iterations, then the learning rate 𝛽&  is updated by 𝛽& = 𝛽+/(1 + 𝜌 ×
,-.+++

/
), 

where 𝑇 is the decay step of 500 and 𝜌 is the decay rate of 0.05. Meanwhile, in order to 

improve the performance, the data augmentation is also utilized. 

 

 

Figure 2. The general architecture of CIFAR-CNNs and Bi-LSTMs models. 

For the Bi-LSTMs model of TREC and SST text datasets, we use the 300-dimensional 

publicly available pre-trained word embeddings as the word-level feature representation, 
which is trained by fastText4 package on Common Crawl and Wikipedia [44], [45], and the 50-

dimensional randomly initialized task-specific character embeddings. The word embeddings 

are fixed and character embeddings are learned during training. We use three different 

 
4 fastText: https://github.com/facebookresearch/fastText 



 

 

 

 

 

convolutional layers with widths 2, 3, 4, respectively, for character-level CNN encoder and 

set the filter number of each layer as 20, the learned character features of each layer are 

concatenated and then optimized by a two-layer highway network [46] before concatenating 

with the corresponding word embeddings. The dimension of hidden states of LSTM layers are 

set as 200 . Parameters optimization is performed by Adam optimizer [43] with gradient 

clipping of 5.0 and learning rate decay strategy. We set the initial learning rate of 𝛽+ = 0.001, 

at each epoch 𝑡, learning rate 𝛽, is updated by 𝛽, = 𝛽+/(1 + 𝜌 × 𝑡), where 𝜌 is the decay rate 

with 0.05. To reduce overfitting, we also apply Dropout [38] at the embedding layer and the 

output of each LSTM layer with the drop rate of 0.2 and 0.3, respectively. 

 

N-ary ECOC Coding Matrix Setup. For N-ary ECOCs, including ECOCs (which is a special 

issue of N-ary ECOC when 𝑁 = 2), we train the 𝑁! base learners based on the coding matrix 

and use the predicted code sequence of each class and generated coding matrix to make a 

prediction based on distance measurement. Zhou et al. [14] introduced several coding matrix 

construction methods and distance measurements designed for general or task-specific 

applications. For simplicity, we utilize the random dense encoding method to randomly split 

the original classes 𝑁0 into 𝑁 subsets and make sure that the number of classes in each subset 
should be approximately balanced, simultaneously. For the decoding method, we adopt the 

minimum Hamming distance due to its simplicity and effectiveness. In our experiments, we 

experiment on the different numbers of meta-class 𝑁  and number of base learners 𝑁!  for 

different datasets, as described in Table 3. Note that we do not experiment on all the possible 

meta-classes for each dataset, because of the limitations of computing resources and we only 

trained 60 base learners for MNIST, FLOWER-102, TREC, and SST datasets and 100 base 

learners for CIFAR-10/100 datasets, respectively. Specifically, in order to evaluate the effects 

of number of base learners on the ensemble learning performance, we trained another 300 

classifiers for FLOWER-102 and TREC datasets, respectively. 

Table 3. Summarization of tested 𝑁 and 𝑁" for experiments. 

Dataset # Classes (𝑁!) Tested # Meta-Class (𝑁) Tested # Base Learners*	(𝑁") 

MNIST 10 2, 4, 5, 8, 10 60 
CIFAR-10 10 2, 4, 5, 8, 10 100 
CIFAR-100 100 2, 5, 10, 30, 50, 75, 95, 100 100 
FLOWER-102 102 2, 3, 5, 10, 20, 40, 60, 80, 90, 95, 102 60 

TREC 6 2, 3, 4, 5, 6 60 
SST 5 2, 3, 4, 5 60 

* It indicates the maximal number of classifiers is used for training. 

 

4.3   Experimental Results 

 

4.3.1  Comparison with Different Ensemble Methods 

 

In this section, we compare the performance of different ensemble methods on the 

aforementioned image and text datasets. In the experiment, we trained a single model and 
ensemble models of three coding schemes for each dataset, i.e., Ensemble with Random 

Initializations (ERI), ECOC, N-ary ECOC, then report their (ensemble) accuracy with 

standard deviations. Note that we only report the highest score under a specific meta-class 𝑁 

for N-ary ECOC. For the MNIST, FLOWER-102, TREC, and SST datasets, we use 60 base 



 

 

 

 

 

learners for each scheme, while 100 base learners for CIFAR-10/100 datasets. The results are 
summarized in Table 4. Generally, we observe that most ensemble models show relatively 

significant improvements, compared with the single model, on the given datasets with 

different deep neural networks. 

We observe two interesting results in Table 4. First, comparing the single model with N-

ary ECOC, we find that the improvement ratio of N-ary ECOC is inverse relation with single 

model performance, i.e., the improvement of N-ary ECOC scheme is more prominent if the 

performance of the single model is lower. For example, it is obvious that the baseline 

accuracies are higher on MNIST, CIFAR-10, TREC and FLOWER-102 (> 80%) than on 

CIFAR-100 and SST (almost < 60% ), then the improvement ratios are 0.59% , 5.54% , 

5.64% and 5.80% from the single model to N-ary ECOC on MNIST, CIFAR-10, TREC, and 

FLOWER-102 datasets, respectively, while the improvement ratios of CIFAR-100 dataset are 

13.72% and 15.15% on SST dataset. 

Table 4. Ensemble accuracies with their standard deviations. 

Dataset Method Single Model 
Ensemble Model* 

ERI ECOC N-ary ECOC 

MNIST LeNet [32] 98.98	 ± 	0.07% 99.11	 ± 	0.11% 99.23	 ± 	0.08% 𝟗𝟗. 𝟓𝟕	 ± 	0.09% 

CIFAR-10 CIFAR-CNNs 87.12	 ± 	0.43% 90.54	 ± 	0.31% 89.37	 ± 	0.54% 𝟗𝟏. 𝟗𝟓	 ± 	0.24% 

CIFAR-100 CIFAR-CNNs 61.50	 ± 	0.57% 69.57	 ± 	0.29% 34.26	 ± 	2.42% 𝟔𝟗. 𝟗𝟒	 ± 	0.32% 

FLOWER-102 AlexNet [15] 83.12	 ± 	0.29% 86.32	 ± 	0.60% 77.05	 ± 	0.73% 𝟖𝟕. 𝟗𝟒	 ± 	0.28% 

TREC Bi-LSTMs 90.50	 ± 	0.12% 94.80	 ± 	0.09% 95.80	 ± 	0.08% 𝟗𝟓. 𝟔𝟎	 ± 	0.10% 

SST Bi-LSTMs 44.17	 ± 	0.92% 48.69	 ± 	0.18% 48.91	 ± 	0.26% 𝟓𝟎. 𝟖𝟔	 ± 	0.13% 

* Here 𝑁! are 60, 100, 100, 60, 60 and 60, respectively, for the ensemble models from top to bottom row. While 𝑁 

are 3, 4, 95, 95, 3, 4, respectively, for the N-ary ECOC. 

 
Second, the N-ary ECOC scheme outperforms ECOC and ERI ensemble methods on most 

image and text datasets, except for the TREC text dataset. Specifically, N-ary ECOC always 

performs better than ERI. This is due to that N-ary ECOC varies the predicted classes for each 

base learner and makes them more diverse than ERI, where the diverse forecast errors made 

by base learners of N-ary ECOC are more beneficial to the ensemble learning in comparison to 

the similar base learner errors of ERI. Meanwhile, compared with ECOC, N-ary ECOC also 

shows its superiority in most cases, especially when the number of classes is large (i.e., 𝑁0 ≥

100 in our experiments). It is primarily due to, as mentioned by Zhou et al. [14], the better 

quality of the coding matrix and the higher discriminative ability (in terms of how many meta-

classes a base learner tries to discriminative) of N-ary ECOC than ECOC. 
In fact, we find the contribution of class merge degree to the ensemble accuracy of N-ary 

ECOC replies on the dataset, say, the datasets with a different number of classes require 

different class merge degree strategy, as discuss in Section 4.3.2. Note the class merge degree, 

which is measured by 
"#-"

"#
, is the ratio of class numbers reduced when the classes are merged 

into meta-classes. 

 

4.3.2  Evaluation on the Effect of Meta-class Number 𝑵 

 

In this section, we investigate the influence of meta-class number 𝑁, which is one of the 

crucial hyper-parameters of N-ary ECOC. For the datasets with a small value of 𝑁0 , we 

experiment on all the possible meta-class numbers, i.e., from 2 to 𝑁0 (𝑁 = 2 denotes ECOC 



 

 

 

 

 

and 𝑁 = 𝑁0 denotes ERI), while for the datasets with a large value of 𝑁0, we select several 

representative meta-class numbers for the experiment. The ensemble accuracies with respect 

to 𝑁 are depicted in Figure 3. 

From Figure 3(a), we observe that the performances of ensemble models with different 𝑁 

are relatively stable, the highest ensemble accuracies of MNIST, CIFAR-10, and SST achieve 

when 𝑁 = 3, 𝑁 = 4, and 𝑁 = 4 respectively, and the best performance of TREC is obtained 

at 𝑁 = 3 if we do not consider the ECOC. After that, the performance of each dataset is 

gradually decreased with small fluctuations with an increasing number of meta-class 𝑁. It is 

interesting to see that N-ary ECOC for datasets with a small value of 𝑁0 always tends to arrive 

the best performance with small value of 𝑁, i.e., large class merge degree. Specifically, the 

class merge degree for MNIST, CIFAR-10, TREC and SST are 0.7 , 0.6 , 0.5  and 0.2 

respectively. 

 

 

Figure 3. Ensemble accuracies with respect to 𝑁, where the first point of each line represents ECOC 

(𝑁 = 2), the last represents ERI (𝑁 = 𝑁0) and the rest is N-ary ECOC with various 𝑁. 

However, as shown in Figure 3(b), the performance of ensemble models with different 𝑁 

fluctuates significantly on the datasets with a large value of 𝑁0. For the ECOC scheme, it only 

achieves 34.26%  ensemble accuracy on the CIFAR-100 dataset and 77.05%  on the 

FLOWER-102 dataset. For the N-ary ECOC with 𝑁 = 3, it obtains 83.52% and 59.75% on 

FLOWER-102 and CIFAR-100 datasets, respectively. Then the ensemble accuracy improves 

gradually with the increase of meta-class 𝑁  and reaches the summit with accuracies of 

87.94% and 69.94%, when 𝑁 = 95, for FLOWER-102 and CIFAR-100 datasets, and mildly 

decreases after the optimal performances. The ensemble accuracies of the ERI scheme (𝑁 =

𝑁0) on these two datasets are slightly lower than that of N-ary ECOC. Obviously, the ECOC 

fails to address the datasets with a large value of 𝑁0, while the higher ensemble performance 

of N-ary ECOC needs a large value of 𝑁 , namely, a small class merge degree. For the 

FLOWER-102 and CIFAR-100 datasets, the N-ary obtains good results after 𝑁 ≥ 75 and 

achieve best at 𝑁 = 95. In particular, the class merge degree for FLOWER-102 is 0.069 and 

CIFAR-100 is 0.05. 

In general, we conclude from the experiment that the ensemble performance is relatively 

stable for the datasets with a small value of 𝑁0, which slightly improves until the peak and 

then decreases a bit, or just slightly decreases with the increase of 𝑁 after the peak. While the 

performance, for the datasets with a large value of 𝑁0 , boosts significantly at the very 

beginning, then it saturates as 𝑁 continues increasing and reaching the optimum when 𝑁 is 



 

 

 

 

 

close to 𝑁0 . This could be explained by that the base learners with large 𝑁  has stronger 

discriminability [14]. 

Thus, our suggestions for the choice of 𝑁 are: 1) For the dataset with small 𝑁0, the large 

class merge degree strategy, i.e. small 𝑁, is better for achieving good performance, such as 

𝑁 = 3 or 4 for the dataset with 𝑁0 ≤ 10. 2) Reversely, for the dataset with large 𝑁0, the small 

class merge degree strategy should be applied, e.g. 75 ≤ 𝑁 ≤ 95 for 𝑁0 is around 100. 

 

4.3.3  Evaluation on the Effect of Base Learner Number 𝑵𝑳 

 

In this experiment, we further explore another crucial hyper-parameter of N-ary ECOC, 

namely the number of base learner 𝑁!  (also equivalent to the code length), and study its 

influence on the ensemble accuracy. We first report the ensemble accuracies of different 𝑁! 

for each dataset with the optimal meta-class number 𝑁, as described in Table 5. Then, we 

study the ensemble accuracies of different meta-class 𝑁 with respect to 𝑁! (see Figure 4 and 

5). 

From Table 5, we observe that one requires a smaller number of base learners 𝑁!  for 

datasets with small 𝑁0  than that for datasets with large 𝑁0  to reach the optimal ensemble 

accuracies generally. For example, MNIST and TREC only need 50 base learners to get the 

optimum, while SST obtains best accuracies with 60 base learners and CIFAR-10 requires 80. 

In comparison, it reaches the optimal ensemble accuracies with the help of 100 base learners 

on CIFAR-100 (note that it first reaches optimum when 𝑁! = 90). There is a special issue that 

FLOWER-102 holds a large 𝑁0 (102 classes), but only requires 60 base learners to derive the 

optimal ensemble accuracies. It is because the pre-trained model on the large-scale dataset 
(ILSVRC dataset in our experiment) is utilized and the pre-trained model already encodes a 

variety of abstractly and typically well-learned features. Moreover, we also find that the 

requirement of 𝑁! is related to the single model performance to some degree, say, the single 

model achieves better performance, then its ensemble model requires fewer base learners to 

achieve the optimal result. 

Table 5. Ensemble accuracies of N-ary ECOC with respect to number of base learners 𝑁!. 

Dataset 𝑁 
# of Base Learners (𝑁") 

10 20 30 45 50 60 80 100 

MNIST 3 99.14% 99.20% 99.35% 99.48% 99.57% 99.57% - - 

CIFAR-10 4 87.45%   89.76%   91.78%   91.83%   91.82%   91.92% 𝟗𝟏. 𝟗𝟓%	  91.93% 
CIFAR-100 95 67.94%   69.12%   69.11%   69.33%   69.34%   69.46%   69.67% 𝟔𝟗. 𝟗𝟒% 

FLOWER-102 95 86.06%	  86.45%   86.45%   87.06%   87.16% 𝟖𝟕. 𝟗𝟒%   87.46%   87.59% 

TREC 3 93.80%   94.00%   95.20%   95.20% 95.60% 𝟗𝟓. 𝟔𝟎%   95.50% 𝟗𝟓. 𝟔𝟎% 

SST 4 46.74%   48.19%   49.41%   50.18%   50.45% 𝟓𝟎. 𝟖𝟔% - - 

 

In addition to the observations from Table 5, we also study the impact of 𝑁! on ensemble 

performance under different meta-class 𝑁. Obviously, the optimal number of base learners 𝑁! 

for achieving the best accuracy is related to the meta-class 𝑁, as shown in Figure 4 and 5. 

Normally, an ensemble model with small meta-class 𝑁 needs more base learners 𝑁! to achieve 

the same result compared to an ensemble model with large meta-class. It is because the 

discriminative ability of the codes for small 𝑁 is worse than that for large 𝑁. 



 

 

 

 

 

Considering the definition of ECOC, N-ary ECOC and ERI schemes, the discriminative ability 

of ECOC is worst due to its small meta-class (𝑁 = 2), which means ECOC needs relatively 

most base learners to reach the optimal performance compared with N-ary ECOC and ERI, 

where ERI holds the best discriminative ability. Thus, we conclude that 𝑁!  for ECOC is 

greater than or equal to 𝑁! for N-ary ECOC, while 𝑁! for N-ary ECOC is greater than or equal 

to 𝑁! for ERI. Note that we use “greater than or equal to” since there is no guarantee that the 

optimal 𝑁! for a small 𝑁 must be larger than that for a large 𝑁, especially for some extreme 

situations such as 𝑁 = 2  (ECOC) versus 𝑁 = 3  (N-ary ECOC) or 𝑁 = 99  (N-ary ECOC) 

versus 𝑁 = 100 (ERI) for the dataset with 100 classes (𝑁0). 

 

Figure 4. Ensemble accuracies of different values for 𝑁 with respect to 𝑁" on the image and text 

datasets, where 𝑁 = 2 is ECOC scheme, 𝑁 = 𝑁# (biggest 𝑁 in each sub-figure) is ERI scheme, and the 
rest is N-ary ECOC schemes. 

In Figure 4, the experiment results on all the datasets show similar trends that ensemble 

accuracies of larger 𝑁 converge faster than that of smaller 𝑁 as the increasing of 𝑁!, which 

means larger 𝑁 requires less 𝑁! and vice versa. For example, as shown in Figure 4(a), ECOC 

reaches optimal ensemble accuracies at 𝑁! = 100 , while N-ary ECOC with 𝑁 = 4  and 5 

optima at 𝑁! = 80 , then 𝑁! = 60  for 𝑁 = 8  and ERI peaks at 𝑁! = 55 . The patterns on 

TREC and SST datasets are consistent as CIFAR-10. Typically, such patterns are more 

distinct for datasets with large 𝑁0 (ref. Figure 4(d) and 4(e)). For instance, in Figure 4(d), the 

ensemble accuracies of 𝑁 = 10 are highest at 𝑁! = 100, 𝑁! = 95 for N-ary ECOC with 𝑁 =

30,50,75, while 90 base learners are required for 𝑁 = 95 and ERI needs 𝑁! = 85. Here we 

do not take ECOC into consideration, since it fails to improve the ensemble accuracy with 

only 34.26% . For the Figure 4(e), we see that ensemble accuracies of 𝑁 = 2, 3, 5, 10 



 

 

 

 

 

converge at 𝑁! = 60 , 𝑁 = 20, 40 , converges at around 𝑁! = 50 , 𝑁 = 60, 80, 90  at 

approximately 𝑁! = 45 and 40 base learners are needed for N-ary ECOC with 𝑁 = 95 and 

ERI to reach the optimal ensemble accuracy. 

Apart from the optimal 𝑁! for each meta-class 𝑁 to reach optimal ensemble accuracy, we 

also observe that using 15~25 base learners for ERI is good enough for datasets with small 

𝑁0 while 20~40 base learners for large 𝑁0. For ECOC, it fails with the large 𝑁0, and on the 

dataset with small 𝑁0. Although ECOC performs comparably to N-ary ECOC and ERI, it still 

needs more base learners to converge, which is different from the conclusion in [13] that 

ECOC requires 𝑁! = 10 log*(𝑁0)  on traditional classifiers. For N-ary ECOC, the optimal 

performance is highly related to the choice of 𝑁. If the choice of 𝑁 follows suggestions in 

Section 4.3.2, 40~60 base learners for small 𝑁0  are enough to achieve good performance, 

while large 𝑁0 needs around 60~100 base learners. 

 

 

Figure 5. Ensemble accuracies with respect to large 𝑁"(= 300) for three coding schemes on FLOWER-
102 and TREC datasets. 

We further extend number of base learners to 300 and experiment on the FLOWER-102 

and TREC datasets to investigate ensemble performances with the increasing 𝑁!, as in Figure 

5. From Figure 5(a), we find that the performance of ECOC improves significantly when 𝑁! 

increases, then keep relatively stable with a slight increase after 𝑁! = 100 and reach the 

optimal accuracy of 82.17% at around 𝑁! = 270. However, the best performance of ECOC 

derived by using a large number of base learners is still lower than N-ary ECOC with 𝑁 = 95 

and ERI with only 5 base learners used, which indicates that ECOC is not suitable for the 

large 𝑁0 case. For the N-ary ECOC and ERI, they obtain good scores with only small numbers 

of base learners and slightly improve to the optimal accuracy at around 𝑁! = 40. After that, 

the performance remains stable with the increase of 𝑁!  and it drops when 𝑁!  continues to 

increase, which indicates that increasing 𝑁!  monotonously has no impact on performance. 

Similar observations could be found in Figure 5(b). 

Generally, there is no concrete conclusion for the choice of the number of base learners 

𝑁!, but some helpful guidelines can be summarized for experiments: 1) The choice of meta-

class 𝑁 is more important than the number of base learners 𝑁! for the performance of N-ary 

ECOC, especially for the dataset with large 𝑁0. Since the increase of 𝑁! cannot compensate 

for the negative effects caused by a badly selected 𝑁 (e.g., 𝑁 = 10 for CIFAR-100). 2) Albeit 

the optimal number of base learners 𝑁! varies along 𝑁0, the suggested 𝑁! is in the range of 

[⌊10 log*.*(𝑁0)⌋, ⌈10 log3..(𝑁0)⌉]. For example, the optimal 𝑁! ranges in [30, 58] for 𝑁0 = 10 

and [59, 110] for 𝑁0 = 100, which aligns with the observations in our experiments. 

 



 

 

 

 

 

4.3.4  Comparison with Three Parameter Sharing Strategies 

 

In this Section, we study the effect of three different parameter sharing strategies in the 

framework of ECOC, N-ary ECOC, and ERI. Note that, for the N-ary ECOC framework, we 

only select the optimal meta-class 𝑁 of each dataset for display except for the CIFAR-100 

dataset which four different 𝑁 are chosen for display. We first study the performance of three 

different parameter sharing strategies on each tested dataset. 

 

 

Figure 6. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for TREC dataset. 

From the experimental results on the TREC dataset (see Figure 6), we observe that no 

parameter sharing strategy performs better than partial and full parameter sharing strategy for 

ECOC, N-ary ECOC, and ERI. When the number of base learner 𝑁! is small, the performance 

of no share is not satisfactory. Then it improves significantly with the increase of 𝑁!, while the 

performances of partial and full share are relatively stable with respect to 𝑁!. Moreover, when 

the number of meta-class 𝑁  is small, partial share outperforms the full share and the 

performance of no share is much better than partial and full share. However, when 𝑁 is large, 

full share is better than partial share and the performance of no share is just slightly higher 

than partial and full share. 

 

 

Figure 7. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for SST dataset. 

From Figure 7, we have the following observations. First, when the number of meta-class 

N is small, both partial and no share models improve significantly with the increase of 𝑁!. The 

partial share generally outperforms the no and full share except when 𝑁! is less. Second, when 

the number of meta-class 𝑁 is large, as shown in Figure 7(b) and 7(c), the performance of the 



 

 

 

 

 

three strategies are stable, and the improvement of no share is most significant with the 

increase of 𝑁!. No share strategy governs the best performance with 𝑁 = 4 while partial share 

strategy always performs best for ERI situation. 

 

 

Figure 8. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for CIFAR-10 dataset. 

 

Figure 9. Parameter sharing strategies in ECOC, N-ary ECOC and ERI for CIFAR-100 dataset. 

In Figure 8, the performances of no, partial, and full share strategies are more stable. 

When the number of base learners 𝑁! is small, we see that the performance of no share is 

worst with ECOC and N-ary ECOC, and partial share performs better with N-ary ECOC and 

ERI situations. With the increase of 𝑁!, for ECOC, all the strategies improve significantly, 

partial share outperforms another two strategies at the beginning, and then no share comes 

closer to partial share and reaches slightly higher performance than partial share. For N-ary 

ECOC, partial and full share strategies do not show significant improvement, while no share 



 

 

 

 

 

improves obviously and outperforms the partially and full share despite its lower ensemble 
accuracy at the very beginning. For the ERI, all these three strategies perform stable while no 

share always performs best and the performance of full share stays the bottom. 

In the last experiment, we study the parameter sharing strategies in ECOC, N-ary ECOC, 

and ERI for the dataset with a large number of classes, as shown in Figure 9. For N-ary ECOC 

situation, we experiment on four different meta-class with 𝑁 = 10, 30, 50, 95. 

First, we observe that ECOC model with no share strategy fails to achieve satisfactory 

performance, while partial and full share strategies with the ECOC improve significantly with 

the increase of 𝑁!. Moreover, partial share always outperforms full share. 

Secondly, for the N-ary ECOC with small number of meta-class, we observe that partial 

share strategy outperforms no and full share always. No share improves most significantly and 

its performance is comparable to that of partial share with the increase of 𝑁!. The performance 

of full share always maintains the worst. With an increasing number of meta-class N, partial 

share strategy outperforms no share strategy at the beginning, but its performance is gradually 

surpassed by no share when number of base learners 𝑁! increases. For 𝑁 = 50 and 95, the 

performance of no share is comparable to that of partial share when the number of base 

learners 𝑁! is small. No share outperforms partial share with the increases of 𝑁!. Moreover, 

for the 𝑁-ary ECOC, full share strategy consistently performs worst. 

Thirdly, for the ERI model, the observations are similar to the N-ary ECOC with large 

meta-class N and the no share strategy is comparable to partial share when 𝑁!  is small. It 

always performs best when 𝑁! increases, meanwhile, the performance of full share is worst. 

Finally, we conclude that: 1) In general, for the dataset with the small number of classes, 

the performance of no share model is better than or equal to that of the partial share model, 

thus no share strategy is suggested to be chosen. 2) For the dataset with the small number of 

classes, when the number of meta-class 𝑁 is large, these three strategies perform stable. 3) For 

the dataset with a large amount of classes, when the number of meta-class is small, the 

performance of partial share model is the best. 4) For the dataset with large amount of classes, 

when the number of meta-class is large, no share strategy model outperforms partial and full 

share models in most cases. Thus no share strategy should be preferred in such a case. 5) If the 
number of meta-class is large, the performance difference between three sharing strategies is 

marginal. Then full share could be suggested due to its parameter efficiency. 

5   Conclusion 

In this paper, we mainly investigate how to effectively integrate deep learning with the N-

ary ECOC framework, also termed Deep N-ary ECOC. To achieve this goal, we give three 

different realizations. We further carry out extensive experiments to show the superiority of 

deep N-ary ECOC over existing data-independent deep ensemble strategies. 
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