
 Open access Journal Article DOI:10.1162/NECO.2008.12-07-661

Deep, narrow sigmoid belief networks are universal approximators — Source link

Ilya Sutskever, Geoffrey E. Hinton

Institutions: University of Toronto

Published on: 01 Nov 2008 - Neural Computation (MIT Press)

Topics: Deep belief network

Related papers:

 A fast learning algorithm for deep belief nets

 Reducing the Dimensionality of Data with Neural Networks

 Deep belief networks are compact universal approximators

 Representational power of restricted boltzmann machines and deep belief networks

 Training products of experts by minimizing contrastive divergence

Share this paper:

View more about this paper here: https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-
13d451hpra

https://typeset.io/
https://www.doi.org/10.1162/NECO.2008.12-07-661
https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra
https://typeset.io/authors/ilya-sutskever-3gzcsenyze
https://typeset.io/authors/geoffrey-e-hinton-1o16xmi2re
https://typeset.io/institutions/university-of-toronto-3dwwuuvf
https://typeset.io/journals/neural-computation-3des24td
https://typeset.io/topics/deep-belief-network-2i479k7g
https://typeset.io/papers/a-fast-learning-algorithm-for-deep-belief-nets-1hjmir8y1f
https://typeset.io/papers/reducing-the-dimensionality-of-data-with-neural-networks-51w34pmjfl
https://typeset.io/papers/deep-belief-networks-are-compact-universal-approximators-52sqo37myr
https://typeset.io/papers/representational-power-of-restricted-boltzmann-machines-and-2mdyjzjnhb
https://typeset.io/papers/training-products-of-experts-by-minimizing-contrastive-1ir65esspm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra
https://twitter.com/intent/tweet?text=Deep,%20narrow%20sigmoid%20belief%20networks%20are%20universal%20approximators&url=https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra
https://typeset.io/papers/deep-narrow-sigmoid-belief-networks-are-universal-13d451hpra

Department of Computer Science 6 King’s College Rd, Toronto

University of Toronto M5S 3G4, Canada

http://learning.cs.toronto.edu fax: +1 416 978 1455

Copyright c© Ilya Sutskever & Geoffrey E. Hinton 2007.

November 21, 2007

UTML TR 2007–002

Deep Narrow Sigmoid Belief

Networks are Universal

Approximators

Ilya Sutskever & Geoffrey E. Hinton

Department of Computer Science, University of Toronto

Abstract

In this paper we show that exponentially deep belief networks [3, 7, 4] can
approximate any distribution over binary vectors to arbitrary accuracy, even
when the width of each layer is limited to the dimensionality of the data.
This resolves an open the problem in [6]. We further show that such networks
can be greedily learned in an easy yet impractical way.

Deep Narrow Sigmoid Belief Networks are Universal

Approximators

Ilya Sutskever & Geoffrey E. Hinton

Department of Computer Science, University of Toronto

1 Introduction

In [3] a fast greedy algorithm for learning deep belief networks was introduced. The algorithm
uses a Restricted Boltzmann Machine (RBM) (see e.g., [2] and references therein) to learn a model
of the input data. The learned RBM’s hidden variables are used to transform the original data
distribution to a new, transformed distribution, which is typically easier to model. The transformed
distribution is learned by a new RBM, which, after completing its learning, further transforms the
already transformed distribution. A recursive repetition of this process is the essence of the greedy
learning algorithm for deep belief networks. It is shown in [3] that this algorithm increases a lower
bound on the log likelihood of a deep belief network whose prior distribution over the topmost layer is
defined by an RBM, justifying the algorithm from a statistical point of view. In practice, the greedy
algorithm often learns deep belief networks that appear to fit the training data well.

In discriminative applications the greedy algorithm is used to initialize the network’s parameters
which are later fine-tuned using backpropagation [9] on a discriminative task. The greedy algorithm
has been applied successfully to several real-world problems [4, 10], including state of the art digit
recognition and document retrieval. The greedy algorithm has also been used to learn kernels that
significantly improve the performance of Gaussian Processes on difficult tasks (compared to standard
kernels) [11]. The potential of deep belief networks together with the limitations of kernel methods
[1] have sparked an increased interest in understanding the capabilities and properties of deep belief
networks.

An obvious question posed in [6] is whether deep belief networks can approximate any distribution
to arbitrary precision even when their width is limited.

Existing approximation results are unable to answer this question because they are only applicable
to neural networks with a single layer of exponential size (see e.g., [5, 6]) or for an exponentially deep
feedforward network computing an input-output mapping [8].

In this work we positively resolve this question. We show that for any distribution over n-
dimensional binary vectors there is a deep belief network with maximal layer width of size n + 1 and
depth 3 · (2n − 1) + 1 that approximates the distribution to any desired precision. We also show that
adding hidden layers always increases the representational power of the deep belief network unless the
network is already exponentially deep. In addition, we introduce a simple greedy learning algorithm
for learning a network approximating any distribution.

2 Deep Belief Networks

Before we describe the constructions, we define deep belief networks (henceforth, we will use the
terms sigmoid belief networks and deep belief networks interchangeably). Sigmoid belief networks
are described in full generality in [7]. In this paper we restrict ourselves to layered sigmoid belief
networks, in which the observed units (the outputs) are at the lowest layer.

1

Let g(x) = (1+exp(−x))−1 be the logistic function, logit(y) be g’s inverse function, so logit(g(x)) =
x for all x, and V0, . . . , VN be a sequence of random variables each of which is a binary vector, such
that V0 is the visible layer where the outputs of the generative model are observed and V1, . . . , VN

are the hidden layers. Each coordinate of Vk is also called a unit.
We consider probability distributions of the form

P (V0 = vi, . . . , VN = vN) =

N−1∏

i=0

Pi(Vi = vi|Vi+1 = vi+1)PN (VN = vN) (1)

so that the distribution defined by P on V0 is just P (V0), which is the result of marginalizing
V1, . . . , VN .

This distribution is that of a sigmoid belief network if for all i, Pi(Vi|Vi+1) is a factorial distribution
with Pi((Vi)j = 1|Vi+1) = g((Wi ·vi+1+bi)j), where Wi and bi are the parameters of Pi: Wi is a matrix
of connection weights between layers Vi and Vi+1 and bi is a vector of biases for Vi. Equivalently,

Pi(Vi = vi|Vi+1 = vi+1) =

di∏

j=1

g((2(vi)j − 1) · (Wi · vi+1 + bi)j) (2)

and

PN (VN = vN) =

dN∏

j=1

g((2(vN)j − 1) · (bN)j) (3)

In these equations, dk denotes the dimensionality of Vk. We call P (V0) the visible distribution of the
sigmoid belief network.

We define the total input of a variable (Vi)j to be (Wi ·vi+1 + bi)j . Note that when the total input
is very large and positive (Vi)j is extremely likely to take the value 1; if it is very large and negative
it is extremely likely to take the value 0.

3 The Construction

3.1 The Basic Idea

Given an arbitrary distribution assigning non-zero probability to a subset of binary vectors {x0, . . . , xM},
we might take a fraction of the probability mass from x0, and give it to, say, xM+1, that is not in
the subset. If we are not restricted in the choice of xM+1 and the fraction of the mass taken from
x0 to xM+1, then any distribution can be constructed by repeatedly applying this rule with different
xM+1’s and different fractions. We call such a transformation of a distribution sharing.

Suppose, for example, that we want to apply sharing steps to get a distribution over the four
binary vectors 00, 01, 10, 11 with probabilities (.5, .2, .1, .2), i.e., Pr(00) = .5, P r(01) = .2, P r(10) =
.1, P r(11) = .2, where we let x0 = 00. We start with the initial distribution (1, 0, 0, 0), and execute
the following sharing steps:

• Distribution: (1, 0, 0, 0) (initial)

– Operation: give 2/10 of the mass of x0 = 00 to x1 = 01

• Distribution: (.8, .2, 0, 0)

– Operation: give 1/8 of the mass of x0 = 00 to x2 = 10

• Distribution: (.7, .2, .1, 0)

– Operation: give 2/7 of the mass of x0 = 00 to x3 = 11

2

Figure 1: A Sigmoid Belief Network implementing sharing. If the input is not x0 then A = 0 and the
output is equal to the input. If the input is x0 then A = 1, so B = 1 with probability p. If B = 1
then the output is equal to xM+1. B = 0 with probability 1− p, in which case the output is equal to
x0.

• Distribution: (.5, .2, .1, .2) (final)

Thus, to show that a sigmoid belief network can approximate any distribution, it is enough to
show that a sigmoid belief network can implement sharing.

3.2 Implementing Sharing with a Sigmoid Belief Network

We now show how a sigmoid belief network can approximate an arbitrary sharing step to arbitrary
accuracy using 3 layers. More specifically, we implement a distribution transformation that gives a
fraction p of x0’s probability mass to xM+1 and leaves all the other probabilities unchanged, where
x0, xM+1, and the fraction p are arbitrary. It is done it by implementing the stochastic mapping
Input → Output (where Input and Output are n-dimensional binary vectors) such that if Input 6= x0

then Output = Input, and if Input = x0 then Output = xM+1 with probability p and Output = x0

with probability 1 − p.
Consider figure 1. In the figure, there are four layers, Input,H1,H2, Output. Every pair of

connected nodes acts as a flip-flop unit (except A and B), so that a varibale is equal to its parent
with high probability, causing the output layer to be equal to the input layer whenever B = 0. This
is done by setting the weights connecting the flip-flop units to 2w for some large w and and setting
the bias to −w. Increasing w allows us to make the failure probability of each flip-flop arbitrarily
small.

The variable A is equal to 1 if and only if the input layer is equal to x0. It is implemented using
a linear classifier that separates x0 from the rest of the binary vectors with a positive margin. By
multiplying the classifier’s weights by a large a factor w, this margin can be made as large as desired,
causing A to be equal to 1 with overwhelming probability if the input vector is equal to x0, and 0
with overwhelming probability otherwise.

We let B decide whether probability mass should be given to xM+1: if B = 1 then the output
equals to xM+1, but if B = 0 then the output equals the input. If A = 1 then the input layer is equal
to x0, so we set B = 1 with probability p, and when A = 0 then the input layer is not x0, so we set
B = 0. This is implemented by letting B have a large negative bias, −w, and setting the connection
from A to B to the weight w + logit(p) (logit is the inverse of g). This way, if A = 0, B receives total
input −w, which causes it to be 0 with very high probability, but if A = 1, B receives total input of
size logit(p), so it is equal to 1 with probability g(logit(p)) = p.

3

B is connected to the output layer with weights of absolute value of size 4w, so that when B = 1,
the output layer is set to xM+1 regardless the values of the flip-flop units in the layer above, but if
B = 0 then the output layer is equal to the input layer.

This implements sharing: if the input is x0, A = 1, so B = 1 with probability p which causes
the output to be xM+1 with probability p; however, with probability 1 − p the output pattern stays
equal to x0. This is how x0’s probability is given to xM+1. Any other pattern (6= x0) does not
activate A and thus gets copied to the output layer, so the sharing implementation does not change
the probabilities of every vector that is not x0 or xM+1.

The construction is completed by specifying PN (VN), which assigns overwhelming probability to
the zero vector1.

Note that 2n − 1 sharing steps are sufficient to obtain any distribution over n-dimensional binary
vectors, and the output layer of one sharing step implementation is the input layer of the next sharing
step implementation, so there are 3(2n − 1) + 1 layers (the +1 term exists because of the distribution
PN). The approximation can be made arbitrarily accurate by making w large.

3.3 Adding Hidden Layers Increases Representational Power

Consider sigmoid belief networks with k layers of size n + 1 (the visible layer V0 is also of size n + 1).
Let Dk be the set of all distributions over n+1-dimensional binary vectors that can be approximated
arbitrarily well by a sigmoid belief network of this size. For each distribution in Dk, we compute
its marginal distribution over its first n dimensions and get a set of marginal distributions over
n-dimensional binary vectors which we call D′

k.
It was known that adding hidden layers does not reduce the representational power of sigmoid

belief networks (i.e., Dk ⊆ Dk+1) [3], but it was not known whether they increased it (i.e., Dk ⊂ Dk+1)
[6]. We will show that unless D′

k = ALLn, the set of all distributions over n-dimensional binary
vectors, then Dk 6= Dk+1.

For the proof, suppose that Dk = Dk+1, namely, that for any sigmoid belief network with k + 1
layers there is a sigmoid belief network with k layers with the same marginal distribution over the
visible vectors V0. From this it follows that Dk+2 = Dk+1, since given a sigmoid belief network of
depth k + 2, we can replace the top k + 1 hidden layers (i.e., Vk+2, . . . , V1) with k hidden layers
(i.e., Vk+1, . . . , V1) such that the marginal distribution on V1 is the same for both networks (because
Dk = Dk+1 and all the layers are of size n + 1). If we do not change the conditional probability of V0

given V1, we get the same marginal distribution on V0 but with k+1 layers instead of k+2. Repeating
this argument proves that Dk = D3(2n

−1)+1, and we have demonstrated that D′

3(2n
−1)+1 = ALLn in

the previous section. So unless D′

k = ALLn, Dk 6= Dk+1.
D′

k = ALLn is a strong condition that means that networks with k − 1 layers of size n + 1 and
a visible layer of size n can approximate any distribution over n-dimensional binary vectors. If this
condition is not met, then there is a deep belief network with k + 1 layers each of size n + 1 (none of
size n) whose marginal distribution over V0 cannot be approximated by a deep belief network with k
layers each of size n + 1.

This argument fails if in the definition of Dk, V0 is an n-dimensional binary vector and V1, V2, . . .
are n + 1-dimensional, because it could no longer be argued that if Dk = Dk+1 then Dk+1 = Dk+2,
because the sigmoid belief network that is replaced has n + 1 units in its visible vector and not n.

4 A Greedy Version of the Construction

The construction above is “top-down”, while the greedy learning algorithm that motivated it is
“bottom-up”: an RBM learns the data distribution, transforms it, and lets another RBM learn and

1Repeated applications of sharing can actually transform any distribution into any other distribution, so this speci-

fication of PN is not essential.

4

transform the transformed distribution, repeating this process as often as needed. In this section we
show how a deep belief network approximating a distribution can be learned by a greedy, bottom-up
algorithm that uses autoencoders with hidden layers instead of RBMs.

We define the complexity of a distribution to be the number of configurations to which the distri-
bution assigns non-zero probability (i.e., the size of the support of the distribution).

Let V and H be random n-dimensional binary vectors. Collapsing, to be defined shortly, is
a way to reduce the complexity of a distribution by 1. Assume that the data distribution on V
assigns probabilities p0, . . . , pM to x0, . . . , xM . To collapse this distribution, apply the deterministic
function H = f(V) to V , where f(V) = V unless V = xM , in which case f(V) = x0. As a result, the
distribution over H assigns non-zero probability to only x0, . . . , xM−1 (but not xM), x0 has probability
p0 + pM under the collapsed distribution, and the probabilities of x1, . . . , xM−1 are unchanged.

Collapsing is a special case of sharing where xM gives all of its probability mass to x0, and can
be easily undone by a sharing step that takes the appropriate amount of probability mass from x0

to xM . Since the distribution on H has lower complexity than V , the pair of collapsing and sharing
“gently models” the distribution on V .

Since the complexity of any distribution over n-dimensional binary vectors is bounded by 2n,
repeated (i.e., greedy) applications of collapsing will eventually reduce the complexity of the distribu-
tion to 1, in which case the distribution can be represented by a set of biases that simply put all the
probability mass on this vector. Because all the collapsing steps can be undone by appropriate sharing
steps, the sequential process of undoing all the collapsing steps, starting with the simplest possible
distribution (according to our complexity measure), is in fact the generative process of a greedily
trained sigmoid belief network whose visible distribution is equal to the original, high-complexity
distribution.

5 Conclusions and Open Questions

We have positively resolved the approximation properties of deep and narrow sigmoid belief networks.
The first natural question that arises is whether every distribution in which every vector has non-zero
probability can be exactly represented as a deep belief network. The requirement of each vector to have
non-zero probability is necessary, since a sigmoid belief network always assigns non-zero probabilities
to all configurations. The second question is regarding the necessary depth of the network: can it be
shown that a deep and narrow (with width n+c) network of, say, ≪ 2n/n2 layers cannot approximate
every distribution? We believe the answer to be yes because then the network has less parameters
than the number of parameters of a distribution (which is 2n − 1). What if the number of layers is of
order 2n/n2 (note that a network with 2n/n2 layers has about 2n parameters)? Can any distribution
be approximated in that case? Finally, is it necessary to use hidden layers of width n + 1, or do
hidden layers of width n suffice?

References

[1] Y. Bengio and Y. Le Cun. Scaling learning algorithms towards AI. In Léon Bottou, Olivier
Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines. MIT Press, 2007.

[2] G.E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural
Computation, 14(8):1771–1800, 2002.

[3] G.E. Hinton, S. Osindero, and Y.W. Teh. A Fast Learning Algorithm for Deep Belief Nets.
Neural Computation, 18(7):1527–1554, 2006.

[4] G.E. Hinton and R.R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Net-
works. Science, 313(5786):504–507, 2006.

5

[5] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2(5):359–366, 1989.

[6] N. Le Roux and Y. Bengio. Representational power of restricted boltzmann machines and deep
belief networks. Technical Report 1294, DIRO, U. Montreal, April 2007.

[7] R.M. Neal. Learning stochastic feedforward networks. Technical report, CRG-TR-90-7, Depart-
ment of Computer Science, University of Toronto, 1990.

[8] R. Rojas. Networks of width one are universal classifiers. Proceedings of the International Joint
Conference on Neural Networks, 4:3124–3127, 2003.

[9] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by back-
propagating errors. Nature, 323(99):533–536, 1986.

[10] R.R. Salakhutdinov and G.E. Hinton. Semantic Hashing. SIGIR workshou on graphical models,
2007.

[11] R.R. Salakhutdinov and G.E. Hinton. Using Deep Belief Nets to Learn Covariance Kernels for
Gaussian Processes. Advances in Neural Information Processing systems (NIPS-20), 2007.

6

