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Background: The ABC/2 method is usually applied to evaluate intracerebral

hemorrhage (ICH) volume on computed tomography (CT), although it might be

inaccurate and not applicable in estimating extradural or subdural hemorrhage (EDH,

SDH) volume due to their irregular hematoma shapes. This study aimed to evaluate deep

framework optimized for the segmentation and quantification of ICH, EDH, and SDH.

Methods: The training datasets were 3,000 images retrospectively collected from a

collaborating hospital (Hospital A) and segmented by the Dense U-Net framework.

Three experienced radiologists determined the ground truth by marking the pixels as

hemorrhage area. We utilized the Dice and intra-class correlation coefficients (ICC)

to test the reliability of the ground truth. Moreover, the testing datasets consisted of

211 images (internal test) from Hospital A, and 86 ICH images (external test) from

another hospital (Hospital B). In this study, we chose scatter plots, ICC, and Pearson

correlation coefficients (PCC) with ground truth to evaluate the performance of the deep

framework. Furthermore, to validate the effectiveness of the deep framework, we did

a comparative analysis of the hemorrhage volume estimation between the deep model

and the ABC/2 method.

Results: The high Dice (0.89–0.95) and ICC (0.985–0.997) showed the consistency of

the manual segmentations among the radiologists and the reliability of the ground truth.

For the internal test, the Dice coefficients of ICH, EDH, and SDH were 0.90 ± 0.06,

0.88 ± 0.12, and 0.82 ± 0.16, respectively. For the external test, the segmentation Dice

was 0.86 ± 0.09. Comparatively, the ICC and PCC of ICH volume estimations were

0.99 performed by Dense U-Net that overmatched the ABC/2 method.

Conclusion: This study revealed the excellent performance of hematoma segmentation

and volume evaluation based on Dense U-Net, which indicated our deep framework

might contribute to efficiently developing treatment strategies for intracranial

hemorrhage in clinics.

Keywords: CT, deep learning, intracranial hemorrhage, segmentation, quantification

Abbreviations: CT, computed tomography; DL, deep learning; EDH, extradural hemorrhage; ICH, intracerebral
hemorrhage; ICC, intra-class correlation coefficients; IRB, Institutional Review Board; MRI, magnetic resonance imaging;
PCC, Pearson correlation coefficient; SDH, subdural hemorrhage; SGD, stochastic gradient decay.
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INTRODUCTION

Intracranial hemorrhages, such as ICH, EDH, SDH, and
subarachnoid hemorrhages (SAH), are dangerous with high
mortality and low functional recovery rates (Xi et al., 2006;
Qureshi et al., 2009; Soffar, 2012). Moreover, the controversy over
surgical intervention and conservative management still exists
even though there is no significant outcome difference between
the treatments (Mayer and Rincon, 2005; Mendelow et al., 2005;
Mendelow et al., 2013). Therefore, the estimation of hemorrhage
volume plays a critical role among the prognosis parameters
to predict the outcome and standardize the clinical treatment
(Broderick et al., 1993; Hemphill et al., 2001). Generally, the
ABC/2 method has been used to calculate the hematoma volume
at the time of symptomatic ICH diagnosis in previous studies
(Kothari et al., 1996; Divani et al., 2011; Yaghi et al., 2015). With
this approach, the hematoma was estimated as an ellipsoid, and
A, B, and C were the orthogonal axes measured from CT or
magnetic resonance imaging (MRI) (Hemphill and Lam, 2017;
Liu et al., 2019). However, it was difficult to precisely quantify
hemorrhage volume due to the limitations of the conventional
ABC/2 method. Though the ABC/2 method might be practical
and time-efficient for ICH with a single bleeding site, it might
lead to inaccurate measurements for ICH with multiple bleeding
sites (Huttner et al., 2006), and is not applicable for other
intracranial hemorrhage types due to their irregular hematoma
shapes. Moreover, a manual delineation of the contours of the
hematoma could be time-consuming, which is not suitable for
emergency settings.

Therefore, computer-aided image segmentation could provide
accurate and fast volume estimation for brain hemorrhages.
A recent study showed that the ICH volume could be
estimated using a random-forest based machine learning
algorithm, with a Pearson correlation coefficient of 0.96 against
the manual segmentation (Scherer et al., 2016). However,
the study comprised 58 cases in total and was limited to
spontaneous ICH. In addition, its accuracy decreased as the
hematoma volume increased. Another study demonstrated that
region proposal convolution neural networks could be used to
simultaneously detect and segment brain hemorrhages (Chang
et al., 2018). However, the dataset used in this study was from
a single institution, and the ground truth was generated semi-
automatically and was determined by only one radiologist, which
might not be reliable for training and testing of the deep
learning (DL) model.

In this study, we firstly applied a DL model based on Dense
U-Net (Ronneberger et al., 2015; Guan et al., 2019) architecture
to segment and quantify three types of brain hemorrhage (ICH,
EDH, and SDH) on non-contrast CT images. Since contrast
CT scans are needed for accurate SAH segmentation, SAH
was excluded from the current study. To test the reliability
of the ground truth masks from the experienced radiologists
utilized in this study, we calculated the Dice and ICC among
the three experienced radiologists. Then, on the internal and
external test set, the segmentation Dice was evaluated to test
whether the constructed model based on Dense U-Net could
be utilized to segment the intracranial hemorrhage from the

head CT successfully. Finally, we did a comparative analysis on
ICC and PCC of ICH volume estimations between the deep
model and the ABC/2 method to validate the effectiveness of the
constructed framework based on Dense U-Net. We hope that this
study could assess the feasibility of the constructed deep model
for the accurate segmentation and quantification of intracranial
hemorrhage on non-contrast CT, and provide a guide for clinical
decision-making.

MATERIALS AND METHODS

Data Collection
Institutional Review Board (IRB) approval was received from
collaborating hospitals and informed consent was waived for this
retrospective study. A total of 3,000 non-contrast brain CT scans
containing ICH, EDH, and SDH were retrospectively collected
from Beijing Tiantan Hospital Affiliated to Capital Medical
University (Hospital A) for model training and validation.
Each hemorrhage type had 1,000 scans, which were randomly
partitioned for model training and validation with a ratio of
80:20%. Another 211 scans from the same hospital were reserved
as the internal test set, where ICH, EDH, and SDH had 61,
87, and 63 scans, respectively. To test the validity of the deep
framework, we collected 86 ICH CT scans from the QingPu
Branch of Zhongshan Hospital Affiliated to Fudan University
(Hospital B) as an independent testing set (i.e., external test set).
Besides, in order to evaluate the performance of the model on
non-hemorrhagic cases, 450 cases containing 48 hemorrhagic
and 402 non-hemorrhagic cases were also collected fromHospital
B. All images were acquired using brain CT protocols on scanners
from various vendors, with the x-ray tube voltage around 120 kV
and current around 400 mA. The matrix size was 512 × 512 and
most of the scans had a slice thickness of 5 mm.

Ground Truth Determination
To determine the segmentation ground truth for model training,
each CT scan was independently examined by three certified
neuroradiologists and annotated using the 3D Slicer (Carrboro,
NC, United States) (Kikinis et al., 2014). The common
segmentations, i.e., pixels that were marked as hemorrhage
positive by at least two neuroradiologists, were considered as
the ground truth and each annotated slice was inputted into
the 2D segmentation network for training. The segmentation
by the radiologists against the ground truth and their volume
estimation agreements were also evaluated using the Dice and
ICC, respectively.

Model Construction and Training
The model was constructed on the MXNet platform (Chen et al.,
2015). The DenseNet encoder consisted of 4 dense blocks, each
followed by a transition layer (Huang et al., 2017). Each dense
block had 3, 6, 12, and 8 dense units, respectively and each
dense unit had a growth rate of 32. Feature maps extracted
from each dense block were concatenated with the up-sampled
maps to form a U-Net structure. The input into the model was
one CT scan, and the output was the segmented masks for all

Frontiers in Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 541817

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Xu et al. Automatic Quantification for Intracranial Hemorrhage

FIGURE 1 | Illustration of the constructed Dense U-Net. The Dense U-Net had four dense blocks, with 3, 6, 12, and 8 dense units in each dense block. The growth

rate was 32 for all dense units. BN, batch normalization; ReLU, rectified linear unit; Conv, convolution.

slices. Detailed structures of the constructed model are illustrated
in Figure 1.

During the implementation of the DL model, the He-normal
initialization was used for all convolutional kernels (He et al.,
2015). The DL model was trained using a binary cross-entropy
loss function (De Boer et al., 2005) which can make the training
more stable than using a Dice loss function and was improved
with a stochastic gradient decay (SGD) optimizer (Bottou, 2010).
The learning rate was set to 0.001 with a momentum of 0.99. The
model was trained on four Nvidia GTX 1080 graphic processing
units (32 gigabytes total memory capacity) with a batch size
of one. No image augmentation was applied during the model
training. The training process was finished after 20 epochs when
the validation loss had no improvement. No dropout layers were
used without an overfitting problem (Srivastava et al., 2014).
With the DL model, the pixel-wise segmentation results were
achieved. Combining with CT thickness, we could calculate the
volume of each pixel. The hemorrhage volume was calculated by
accumulating all the volumes of pixels in the hemorrhage region.

Performance and Statistical Analysis
After training, the model was tested on the reserved testing
data. The segmentation performance of the model was analyzed
using the Dice coefficient against the ground truth. The sum
of the segmented areas of each slice was multiplied by the
corresponding slice thickness, yielding the hemorrhage volume
of a patient. The segmentation-based volume estimation was
then compared with the ground truth using scatter plots, ICC,
and PCC. A non-parametric Wilcoxon signed-rank test (Rey and
Neuhäuser, 2011) was used to evaluate the systematical volume

bias of the segmentation-based method due to the non-normal
distribution of the hemorrhage volume difference.

RESULTS

Manual and Automatic Segmentation
Evaluation
For the testing data originating from Hospital A, Table 1

demonstrates the performance of the segmentation by the
radiologists against the ground truth and their in-group volume
estimation agreements using Dice and ICC, respectively. The
high Dice (0.89–0.95) and ICC scores (0.985–0.997) showed
that the manual segmentations were consistent among the
three radiologists and the ground truth was reliable for model
training and evaluation.

Figure 2 shows the segmentation examples of ICH, EDH,
and SDH using the modified Dense U-Net. The ground truth

TABLE 1 | Dice and ICC of the manual segmentation and volume measurement.

Hemorrhage type Dice ICC

Radiologist 1 Radiologist 2 Radiologist 3

ICH 0.95 ± 0.03 0.90 ± 0.13 0.93 ± 0.04 0.9963

EDH 0.93 ± 0.11 0.93 ± 0.09 0.93 ± 0.08 0.9967

SDH 0.91 ± 0.11 0.89 ± 0.09 0.93 ± 0.05 0.9847

ICC, intra-class correlation coefficient; ICH, intracerebral hemorrhage; EDH,

extradural hemorrhage; SDH, subdural hemorrhage.
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FIGURE 2 | Intracranial hemorrhage segmentation examples of the Dense U-Net from six representative patients. The ground truth bleeding areas were contoured in

green while the model segmentations were contoured in blue. Red boxes indicated zoomed-in regions of segmentation. (A–C) Three ICH segmentation examples.

The patients had various hematoma shapes and positions. (D) One EDH segmentation example. (E) One SDH segmentation example. (F) No segmentation on the

hematoma negative slice of the CT scan of the patient. ICH, intracerebral hemorrhage; EDH, extradural hemorrhage; SDH, subdural hemorrhage.

TABLE 2 | Dense U-Net segmentation Dice of intracranial hemorrhage.

Hemorrhage type Dice

ICH 0.90 ± 0.06/0.86 ± 0.09*

EDH 0.88 ± 0.12

SDH 0.82 ± 0.16

ICH, intracerebral hemorrhage; EDH, extradural hemorrhage; SDH, subdural

hemorrhage. *Denoted the segmentation Dice of ICH from the Hospital B.

segmentation (green) and the model predictions (blue) were
overlaid on the same image. For each intracranial hemorrhage
type, the segmentation Dices of the constructed DL model are
displayed in Table 2.

Statistical Analysis
For ICH from Hospital A, the difference mean between the
ABC/2 method and the ground truth was 3.2 ml, while the
difference standard deviation was 11.5 ml and the absolute
difference mean was 7.3 ml. However, for ICH volume estimated
by the deep framework, the difference mean was 1.3 ml, the
standard deviation was 1.6 ml, and the absolute difference
mean was 1.5 ml.

For ICH from Hospital B, the difference mean of the ABC/2
method was −2.1 ml while the difference standard deviation was
10.1 ml, and the absolute difference mean was 7.0 ml. For the

DL model, the difference mean was −0.5 ml, with a standard
deviation of 4.1 ml, and an absolute difference mean of 0.6 ml.

For EDH and SDH, only the hemorrhage volumes performed

by the deep framework were analyzed because the ABC/2method

is not applicable for measuring the volumes of intracranial

hemorrhage with irregular shapes. For EDH, the difference mean

between the DL model and the ground truth was −0.3 ml, with a

standard deviation of 1.4 ml, and an absolute mean of 1.1 ml. For

SDH, the mean volume difference was −1.2 ml, with a standard

deviation of 1.5 ml, and an absolute mean of 1.4 ml.

The Wilcoxon signed-rank test showed that the DL-based

segmentation tended to systematically overestimate ICH volume

by 1.0 ml for Hospital A (p < 0.001) and underestimated it by

0.4 ml for Hospital B (p < 0.001) compared with the ground

truth. For EDH, there was no clear difference in hemorrhage

volume estimation between the DL-based segmentation and the

ground truth (p = 0.296). For SDH, the statistical test showed that

the DL model underestimated the hemorrhage volume by 0.8 ml

(p < 0.001). However, although the over- and underestimations

were statistically significant, the biases were small and might not

have clinical significance.

For data collected to evaluate the performance of the model

on non-hemorrhagic cases, the DL model successfully identified

388 negative cases from 402 non-hemorrhagic cases with an

accuracy of 96.5%.
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FIGURE 3 | Scatter plots of hemorrhage volume measurements for (A) ICHs from the Hospital A; (B) ICHs from the Hospital B; (C) EDHs from the Hospital A;

(D) SDHs from the Hospital A. ICHs, intracerebral hemorrhage cases; EDHs, extradural hemorrhage cases; SDHs, subdural hemorrhage cases.

In this study, we first revealed the consistency of the manual
segmentations among the three radiologists and the reliability
of the ground truth masks with high Dice (0.89–0.95) and ICC
scores (0.985–0.997). Then, we demonstrated that the Dense
U-Net framework was remarkably accurate in the automatic
segmentation of intracranial hemorrhages, including ICH, EDH,
and SDH, with high Dice scores for both internal (0.82–0.90) and
external test sets (0.86). We further verified that compared with
the ABC/2method, ICH volume estimated by the DLmodel had a
stronger correlation with the ground truth volume as reflected by

TABLE 3 | ICC and PCC of volume estimations.

Hemorrhage

type

ICC PCC

Model ABC/2 Model ABC/2

ICH 0.9978 0.9978* 0.9509 0.9780* 0.9979 0.9960* 0.9375 0.9576*

EDH 0.9983 – 0.9969 –

SDH 0.9882 – 0.9930 –

ICC, intra-class correlation coefficient; PCC, Pearson correlation coefficient;

ICH, intracerebral hemorrhage; EDH, extradural hemorrhage; SDH, subdural

hemorrhage. *Hospital B.

ICC (0.998) and PCC (>0.996–0.998) (see Figure 3 and Table 3).
Lastly, we assessed the model on a larger dataset containing
non-hemorrhagic cases to verify its capability to segment lesions
accurately without introducing more false positive results. These
results indicated that the deep framework was more accurate
than the ABC/2 method when quantifying the volume of large,
complex-shaped intracranial hemorrhages.

DISCUSSION

This study indicated that the performance achieved by the
constructed Dense U-Net was comparable to the manual
segmentation by the radiologists for brain hemorrhage and
volume estimation. Additionally, the model was robust for a
broad range of volume between 1 and 100 ml, and it could also
be applied to various brain hemorrhage types in comparison with
the previous findings reported (Scherer et al., 2016).

Moreover, the constructed Dense U-Net in this study used
half of the dense units of the DenseNet reported previously
(29 vs. 58 of DenseNet-121) (Huang et al., 2017). That is,
our modification halved the model parameters, yet the model
could still achieve high segmentation performance using fewer
computational resources. With the current configuration and
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hardware conditions, the trained model could finish inferring
one brain CT scan within approximately 5 s. The time-efficiency
also enabled the possibility of the DL network to be applied
to emergency settings, especially in the situation for brain
hemorrhage patients.

According to the results on volume estimation, the ABC/2
method showed higher standard deviation and thus was more
unstable compared to ground truth. The ABC/2 method
uses the lengths of the principal axes of ellipsoid to assess
its volume, yet the shape of lesions, i.e., the hemorrhagic
regions, is much more irregular and therefore cannot be
assessed accurately by this means consistently. Thus it is
of great importance to find more widely applicable and
accurate methods to estimate the hemorrhagic volume. Using
deep learning algorithms to estimate hemorrhagic volume
automatically is one potential approach and the performance
of the proposed Dense U-Net in this study also verified
its capabilities to segment and analyze hemorrhagic regions
accurately and quickly. In order to further improve its
performance, more possible influencing factors could be
considered in future work, such as the location and shape of
hemorrhagic regions.

Inter-institutional robustness of the model was checked
by testing the model using internal and external test sets
from different hospitals. The average Dice coefficient of the
external test set (ICH from Hospital B) dropped about
4% compared with that of the internal test set (from
Hospital A), which might be the reason that the external test
datasets (from Hospital B) were not used for model training.
For example, the two hospitals used different scanners as
Hospital A mainly used scanners manufactured by GE and
Siemens, while Hospital B mainly used scanners from GE and
United Imaging Healthcare. Although only ICH scans were
currently curated from Hospital B, the DL model still yielded
excellent performance, indicating its strong robustness for the
segmentation and quantification of intracranial hemorrhages.
Furthermore, the good robustness of the Dense U-Net structure
in different institutions could make its application significantly
more widespread.

LIMITATION

Though the small volume estimation difference of the
segmentation-based method might not have any clinical
significance (see the “Statistical Analysis” section of “Results”),
it was interesting to note that this method tended to
slightly overestimate the hemorrhage volume for ICH and
systematically underestimate for SDH. More testing data
might be needed to confirm this conclusion. Nonetheless,
such a pattern might be related to how the model processed
the edges of ICH and SDH. Since SDH was close to the
skull, which also had high intensity on CT images, the

model might tend to drop certain pixels of SDH at the
interface. This might also be the reason for the relatively low
Dice scores of SDH.

CONCLUSION

This study demonstrated the high performance of a deep
framework based on Dense U-Net for the automated
segmentation and quantification of intracranial hemorrhages,
including ICH, EDH, and SDH on non-contrast CT.
Furthermore, the deep model also achieved strong robustness
when tested on internal and external datasets from different
hospitals. Moreover, the Dense U-Net utilized significantly
fewer model parameters yet achieved accurate segmentation
and precise volume quantification performance. With the high
performance and time-efficiency, the model might potentially
provide a promising tool to assist with treatment decisions for
intracranial hemorrhages.
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