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Deep Networks Can Resemble 
Human Feed-forward Vision in 
Invariant Object Recognition
Saeed Reza Kheradpisheh1,2, Masoud Ghodrati3,4, Mohammad Ganjtabesh1 & 

Timothée Masquelier2,5,6,7

Deep convolutional neural networks (DCNNs) have attracted much attention recently, and have shown 

to be able to recognize thousands of object categories in natural image databases. Their architecture 

is somewhat similar to that of the human visual system: both use restricted receptive fields, and a 
hierarchy of layers which progressively extract more and more abstracted features. Yet it is unknown 

whether DCNNs match human performance at the task of view-invariant object recognition, whether 

they make similar errors and use similar representations for this task, and whether the answers depend 

on the magnitude of the viewpoint variations. To investigate these issues, we benchmarked eight state-

of-the-art DCNNs, the HMAX model, and a baseline shallow model and compared their results to those 

of humans with backward masking. Unlike in all previous DCNN studies, we carefully controlled the 

magnitude of the viewpoint variations to demonstrate that shallow nets can outperform deep nets and 

humans when variations are weak. When facing larger variations, however, more layers were needed to 

match human performance and error distributions, and to have representations that are consistent with 

human behavior. A very deep net with 18 layers even outperformed humans at the highest variation 
level, using the most human-like representations.

Primates excel at view-invariant object recognition1. �is is a computationally demanding task, as an individ-
ual object can lead to an in�nite number of very di�erent projections onto the retinal photoreceptors while it 
varies under di�erent 2-D and 3-D transformations. It is believed that the primate visual system solves the task 
through hierarchical processing along the ventral stream of the visual cortex1. �is stream ends in the inferotem-
poral cortex (IT), where object representations are robust, invariant, and linearly-separable1,2. Although there are 
extensive within- and between-area feedback connections in the visual system, neurophysiological3,4, behavioral5, 
and computational6 studies suggest that the �rst feed-forward �ow of information (~100–150 ms post-stimulus 
presentation) might be su�cient for object recognition5,7 and even invariant object recognition3,4,6,7.

Motivated by this feed-forward information �ow and the hierarchical organization of the visual cortical areas, 
many computational models have been developed over the last decades to mimic the performance of the primate 
ventral visual pathway in object recognition. Early models were only comprised of a few layers8–12, while the new 
generation, called “deep convolutional neural networks” (DCNNs) contain many layers (8 and above). DCNNs 
are large neural networks with millions of free parameters that are optimized through an extensive training phase 
using millions of labeled images13. �ey have shown impressive performances in di�cult object and scene catego-
rization tasks with hundreds of categories13–18. Yet the view-point variations were not carefully controlled in these 
studies. �is is an important limitation: in the past, it has been shown that models performing well on apparently 
challenging image databases may fail to reach human-level performance when objects are varied in size, position, 
and most importantly 3-D transformations19–22. DCNNs are position invariant by construction, thanks to weight 
sharing. However, for other transformations such as scale, rotation in depth, rotation in plane, and 3-D trans-
formations, there is no built-in invariance mechanism. Instead, these invariances are acquired through learning. 
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Although the features extracted by DCNNs are signi�cantly more powerful than their hand-designed counter-
parts like SIFT and HOG20,23, they may have di�culties to tackle 3-D transformations.

To date, only a handful of studies have assessed the performance of DCNNs and their constituent lay-
ers in invariant object recognition20,24–28. In this study we systematically compared humans and DCNNs at 
view-invariant object recognition, using exactly the same images. �e advantages of our work with respect to 
previous studies are: (1) we used a larger object database, divided into �ve categories; (2) most importantly, we 
controlled and varied the magnitude of the variations in size, position, in-depth and in-plane rotations; (3) we 
benchmarked eight state-of-the-art DCNNs, the HMAX model10 (an early biologically inspired shallow model), 
and a very simple shallow model that classi�es directly from the pixel values (“Pixel”); (4) in our psychophysical 
experiments, the images were presented brie�y and with backward masking, presumably blocking feedback; (5) 
we performed extensive comparisons between di�erent layers of DCNNs and studied how invariance evolves 
through the layers; (6) we compared models and humans in terms of performance, error distributions, and rep-
resentational geometry; and (7) to measure the in�uence of the background on the invariant object recognition 
problem our dataset included both segmented and unsegmented images.

�is approach led to new �ndings: (1) Deeper was usually better and more human-like, but only in the pres-
ence of large variations; (2) Some DCNNs reached human performance even with large variations; (3) Some 
DCNNs had error distributions which were indiscernible from those of humans; (4) Some DCNNs used rep-
resentations that were more consistent with human responses, and these were not necessarily the top performers.

Materials and Methods
Deep convolutional neural networks (DCNNs). �e idea behind DCNNs is a combination of deep 
learning14 with convolutional neural networks9. DCNNs have a hierarchy of several consecutive feature detec-
tor layers. Lower layers are mainly selective to simple features while higher layers tend to detect more complex 
features. Convolution is the main process in each layer that is generally followed by complementary operations 
such as max pooling and output normalization. Up to now, various learning algorithms have been proposed for 
DCNNs, and among them the supervised learning methods have achieved stunning successes29. Recent advances 
have led to the birth of supervised DCNNs with remarkable performances on extensively large and di�cult object 
databases such as Imagenet14,29. We have selected the eight most recent, powerful, and supervised DCNNs and 
tested them in one of the most challenging visual recognition task, i.e. invariant object recognition. Below are 
short descriptions of all the DCNNs that we studied in this work.

Krizhevsky et al. 2012. �is outstanding model reached an impressive performance on the Imagenet database 
and signi�cantly defeated other competitors in the ILSVRC-2012 competition15. �e excellent performance of 
this model attracted attention towards the abilities of DCNNs and opened a new avenue for further investigations. 
Brie�y, the model contains �ve convolutional (feature detector) and three fully connected (classi�cation) layers. 
�ey used the Recti�ed Linear Units (ReLUs) for the neurons’ activation function, which signi�cantly speeds up 
the learning phase. �e max pooling operation is performed in the �rst, second, and ��h convolutional layers. 
�is model is trained using a stochastic gradient descent algorithm. It has about 60 million free parameters; to 
avoid over�tting, they used some data augmentation techniques to enlarge the training set as well as the dropout 
technique in the learning procedure of the �rst two fully-connected layers. �e structural details of this model are 
presented in Table 1. We used the pre-trained version of this model (on the Imagenet database) which is publicly 
released at http://ca�e.berkeleyvision.org by Jia et al.30.

Zeiler and Fergus 2013. To better understand the ongoing functions of di�erent layers in Krizhevsky’s model, 
Zeiler and Fergus16 introduced a deconvolutional visualizing technique which reconstructs the features learned 
by each neuron. �is enabled them to detect and resolve de�ciencies by optimizing architecture and parameters 
of the Krizhevsky model. Brie�y, the visualization showed that the neurons of the �rst two layers were mostly con-
verged to extremely high and low frequency information. Besides, they detected aliasing artifacts caused by the 
large stride in the second convolutional layer. To resolve these issues, they reduced the �rst layer �lter size, from 
11 ×  11 to 7 ×  7, and decreased the stride of the convolution in the second layer from 4 to 2. �e results showed a 
reasonable performance improvement with respect to the Krizhevsky model. �e structural details of this model 
are provided in Table 1. We used the Imagenet pre-trained version of Zeiler and Fergus model available at http://
libccv.org.

Overfeat 2014. �e Overfeat model17 provides a complete system to do object classi�cation and localization 
together. Overfeat has been proposed in two di�erent types: the Fast model with eight layers and the Accurate 
model with nine layers. Although the number of free parameters in both types are nearly the same (about 145 
million), there are about twice as many connections in the Accurate one. It has been shown that the Accurate 
model leads to a better performance on Imagenet than the Fast one. Moreover, a�er the training phase, to make 
decisions with optimal con�dence and increase the �nal accuracy, the classi�cation can be performed in di�erent 
scales and positions. Overfeat has some important di�erences with other DCNNs: 1) there is no local response 
normalization, 2) the pooling regions are non-overlapping, and 3) the model has smaller convolution stride (=  2) 
in the �rst two layers. �e speci�cations of the Accurate version of the Overfeat model, which we used in this 
study, are presented in Table 1. Similarly, we used the Imagenet pre-trained model which is publicly available at 
http://cilvr.nyu.edu/doku.php?id= so�ware:Overfeat:start.

Hybrid-CNN 2014. �e Hybrid-CNN model31 has been designed to do a scene-understanding task. �is model 
was trained on 3.6 million images of 1183 categories including 205 scene categories from the place database 
and 978 object categories from the training data of the Imagenet database. �e scene labeling, which consists of 

http://caffe.berkeleyvision.org
http://libccv.org
http://libccv.org
http://cilvr.nyu.edu/doku.php?id=software:Overfeat:start
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some �xed descriptions about the scene appearing in each image, was performed by a huge number of Amazon 
Mechanical Turk workers. �e overall structure of Hybrid-CNN is similar to the Krizhevsky model (see Table 1), 
but it is trained on a di�erent dataset to perform a scene understanding task. �is model is publicly released at 
http://places.csail.mit.edu. Surprisingly, the hybrid-CNN signi�cantly outperforms the Krizhevsky model in dif-
ferent scene-understanding benchmarks, while they perform similarly di�erent object recognition benchmarks.

Chat�eld CNNs. Chat�eld et al.18 did an extensive comparison among the shallow and deep image representa-
tions. To this end, they proposed three di�erent DCNNs with di�erent architectural characteristics, each explor-
ing a di�erent accuracy/speed trade-o�. All three models have �ve convolutional and three fully connected layers 
but with di�erent structures. �e Fast model (CNN-F) has smaller convolutional layers and the convolution 
stride in the �rst layer is four, versus 2 for CNN-M and -S, which leads to a higher processing speed in the CNN-F 
model. �e stride and receptive �eld of the �rst convolutional layer is decreased in Medium model (CNN-M), 
which was shown to be e�ective for the Imagenet database16. �e CNN-M model also has a larger stride in the 
second convolutional layer to reduce the computation time. �e Slow model (CNN-S) uses 7 ×  7 �lters with stride 
of 2 in the �rst layer and larger max pooling window in the third and ��h convolutional layers. All these models 
were trained over the Imagenet database using a gradient descent learning algorithm. �e training phase was 
performed over random crops sampled from the whole parts of the image rather than the central region. Based 
on the reported results, the performance of CNN-F model was close to the Zeiler and Fergus model while both 
CNN-M and CNN-S outperformed the Zeiler and Fergus model. �e structural details of these three models are 
also presented in Table 1. All these models are available at http://www.robots.ox.ac.uk/vgg/so�ware/deep_eval.

Very Deep 2014. Another important aspect of DCNNs is the number of internal layers, which in�uences their 
�nal performance. Simonyan and Zisserman32 have studied the impacts of the network depth by implementing 
deep convolutional networks with 11, 13, 16, and 19 layers. To this end, they used very small (3 ×  3) convolution 

Model Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

Krizhevsky et al.15

Conv 
96 ×  11 ×  11 
Stride 4 LRN, 

x3 Pool

Conv 
256 ×  5 ×  5 

Stride 1 LRN, 
x3 Pool

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 x3 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1000 so� 
max

— —

Zeiler and Fergus 2013

Conv 
96 ×  7 ×  7 

Stride 2 LRN, 
x3 Pool

Conv 
256 ×  5 ×  5 

Stride 2 LRN, 
x3 Pool

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 x3 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1000 so� 
max

— —

Overfeat 2014

Conv 
96 ×  7 ×  7 
Stride 2 x3 

Pool

Conv 
256 ×  7 ×  7 
Stride 1 x2 

Pool

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
1024 ×  3 ×  3 
Stride 1 —

conv 
1024 ×  3 ×  3 
Stride 1 x3 

Pool

Full 4096 
drop out

Full 4096 
drop out

Full 1000 
so� max

—

Hybrid-CNN 2014

Conv 
96 ×  11 ×  11 
Stride 4 LRN, 

x3 Pool

Conv 
256 ×  5 ×  5 

Stride 1 LRN, 
x3 Pool

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
384 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 x3 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1183 so� 
max

— —

CNN-F 2014

Conv 
64 ×  11 ×  11 
Stride 4 LRN, 

x2 Pool

Conv 
256 ×  5 ×  5 

Stride 1 LRN, 
x2 Pool

Conv 
256 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 x2 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1000 so� 
max

— —

CNN-M 2014

Conv 
96 ×  7 ×  7 

Stride 2 LRN, 
x2 Pool

Conv 
256 ×  5 ×  5 

Stride 2 LRN, 
x2 Pool

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 x2 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1000 so� 
max

— —

CNN-S 2014

Conv 
96 ×  7 ×  7 

Stride 2 LRN, 
x3 Pool

Conv 
256 ×  5 ×  5 
Stride 1 x2 

Pool

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 x3 

Pool

Full 4096 drop 
out

Full 4096 
drop out

Full 1000 so� 
max

— —

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10

Very Deep 2014

Conv 
64 ×  3 ×  3 
Stride 1 —

Conv 
64 ×  3 ×  3 
Stride 1 x2 

Pool

Conv 
128 ×  3 ×  3 
Stride 1 —

Conv 
128 ×  3 ×  3 
Stride 1 x2 

Pool

Conv 
256 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 —

Conv 
256 ×  3 ×  3 
Stride 1 x2 

Pool

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Layer 11 Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 x2 

Pool

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 —

Conv 
512 ×  3 ×  3 
Stride 1 x2 

Pool

Full 4096 
drop out

Full 4096 
drop out

Full 1000 
so� max

—

Table 1.  �e architecture and settings of di�erent layers of DCNN models. Each row of the table refers to 
a DCNN model and each column contains the details of a layer. �e details of convolutional layers (labeled 
as Conv) are given in three sub-rows: the �rst one indicates the number and the size of the convolution �lters 
as Num ×  Size ×  Size; the convolution stride is given in the second sub-row; and the third one indicates the 
max pooling down-sampling rate, and if Linear Response Normalization (LRN) is used. �e details of fully 
connected layers (labeled as Full) are presented in two sub-rows: the �rst one indicates the number of neurons; 
and the second one whether dropout or so�-max operations are applied.

http://places.csail.mit.edu
http://www.robots.ox.ac.uk/vgg/software/deep_eval
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�lters in all layers, and steadily increased the depth of the network by adding more convolutional layers. �eir 
results indicate that the recognition accuracy increases by adding more layers and the 19-layer model signi�cantly 
outperformed other DCNNs. �ey have shown that their 19-layered model, trained on the Imagenet database, 
achieved high performances on other datasets without any �ne-tuning. Here we used the 19-layered model avail-
able at http://www.robots.ox.ac.uk/vgg/research/very_deep/. �e structural details of this model are provided in 
Table 1.

Shallow models. HMAX model. �e HMAX model33 has a hierarchical architecture, largely inspired by the 
simple to complex cells hierarchy in the primary visual cortex proposed by Hubel and Wiesel34,35. �e input image 
is �rst processed by the S1 layer (�rst layer) which extracts edges of di�erent orientations and scales. Complex 
C1 units pool the outputs of S1 units in restricted neighborhoods and adjacent scales in order to increase posi-
tion and scale invariance. Simple units of the next layers, including S2, S2b, and S3, integrate the activities of 
retinotopically organized a�erent C1 units with di�erent orientations. �e complex units C2, C2b, and C3 pool 
over the output of the corresponding simple layers, using a max operation, to achieve a global position and scale 
invariance. �e employed HMAX model is implemented by Jim Mutch et al.36 and it is freely available at http://
cbcl.mit.edu/jmutch/cns/hmax/doc/.

Pixel representation. Pixel representation is simply constructed by vectorizing the gray values of all the pixels of 
an image. �en, these vectors are given to a linear SVM classi�er to do the categorization.

Image generation. All models were evaluated using an image database divided into �ve categories (airplane, 
animal, car, motorcycle, and ship) and seven levels of variations19 (see Fig. 1). �e process of image generation 
is similar to Ghodrati et al.19. Brie�y, we built object images with di�erent variation levels, where objects varied 
across �ve dimensions, namely: size, position (x and y), rotation in-depth, rotation in-plane, and background. To 
generate object images under di�erent variations, we used 3-D computer models (3-D object images). Variations 
were divided into seven levels from no object variations (level 1) to mid- and high-level variations (level 7). In 
each level, random values were sampled from uniform distributions for every dimension. A�er sampling these 
random values, we applied them to the 3-D object model and generated a 2-D object image by snapshotting 
from the varied 3-D model. We performed the same procedure for all levels and objects. Note that the magni-
tude of variations in every dimension was randomly selected from uniform distributions that were restricted to 

Figure 1. Sample object images from the database superimposed on randomly selected natural 
backgrounds. �ere are �ve object categories, each divided into seven levels of variations. Each 2-D image 
was rendered from a 3-D computer model. �ere were, on average, 16 various 3-D computer models for each 
object category. Objects vary in �ve dimensions: size, position (x, y), rotation in-depth, rotation in plane, and 
background. To construct each 2-D image, we �rst randomly sampled from �ve di�erent uniform distributions, 
each corresponding to one dimension. �en, these values were applied to the 3-D computer model, and a 
2-D image was then generated. Variation levels start from no variations (Level 1, �rst column at le�; note the 
values on horizontal axis) to high variation (Level 7, last column at right). For half of the experiments, objects 
were superimposed on randomly selected natural images from a large pool of natural images (3,900 images), 
downloaded from the web or taken by authors (images shown in this �gure are taken by authors).

http://www.robots.ox.ac.uk/vgg/research/very_deep/
http://cbcl.mit.edu/jmutch/cns/hmax/doc/
http://cbcl.mit.edu/jmutch/cns/hmax/doc/
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prede�ned levels (i.e. from level 1 to 7). For example, in level three a random value between 0°–30° was selected 
for in-depth rotation, a random value between 0°–30° was selected for in-plane rotation, and so on (see Fig. 1). 
�e size of 2-D images were 300 ×  400 pixels. As shown in Fig. 1, for di�erent dimensions, a higher variation level 
has broader variation intervals than the lower levels. �ere were on average 16 3-D image exemplars per category. 
All 2-D object images were then superimposed onto randomly selected natural images for experiment with natu-
ral backgrounds. �ere were over 3,900 natural images collected from the web or taken by authors, consisting of 
a variety of indoor and outdoor scenes.

Psychophysical experiments. In total, 26 human subjects participated in a rapid invariant object catego-
rization task (17 males and 9 females, age 21–32, mean age of 26 years). Each trial started with a black �xation 
cross presented for 500 ms. �en an image was randomly selected from a pool of images and was presented at the 
center of screen for 25 ms (two frames, on a 80 Hz monitor). �e image was followed by a uniform blank screen 
presented for 25 ms, as an inter-stimulus interval (ISI). Immediately a�erwards, a 1/f noise mask was presented 
for 100 ms to account for feed-forward processing and minimize the e�ects of back projections from higher 
visual areas. �is type of masking is well established to be used in rapid object recognition tasks19,33,37–39. Finally, 
subjects had to select one out of �ve di�erent categories using �ve keys, labeled on the keyboard. �e next trial 
started immediately a�er the key press. Stimuli were presented using MATLAB Psychophysics Toolbox40 in a 21” 
CRT monitor with a resolution of 1024 ×  724 pixels, a frame rate of 80 Hz, and viewing distance of 60 cm. Each 
stimulus covered 10° ×  11° of visual angle. Subjects were instructed to respond as fast and accurately as possible. 
All subjects voluntarily participated to the experiments and gave their written consent prior to participation. 
All experimental protocols were approved by the ethical committee of University of Tehran. All experiments 
were carried out in accordance with the guidelines of the declaration of Helsinki and the ethical committee of 
University of Tehran.

According to the “interruption theory”39,41,42, the visual system processes stimuli sequentially, so processing of 
a new stimulus (the noise mask) will interrupt the processing of the previous stimulus (the object image) before 
it can be modulated by the feedback signals from higher areas39. In our experiment, there is a 50 ms Stimulus 
Onset Asynchrony (SOA) between the object image and the noise mask (25 ms for image presentation and 25 ms 
for ISI). �is SOA can disrupt IT-V4 (~40–60 ms) and IT-V1 (~80–120 ms) feedback signals, while it leaves the 
feed-forward information sweep intact33. Using Transcranial Magnetic Stimulation42, it has been shown that 
applying magnetic pulses between 30 to 50 ms a�er stimulus onset will disturb the feed-forward visual informa-
tion processing in the visual cortex. �us, SOAs shorter than 50 ms would make the categorization task much 
harder by interrupting the feed-forward information �ow.

Experiments were held in two sessions: in the �rst one, the objects were presented with a uniform gray back-
ground, and in the second one, a randomly selected natural background was used. Some subjects completed two 
sessions while others only participated in one session, so that each session was performed by 16 subjects. Each 
experimental session consisted of four blocks; each one containing 175 images (in total 700 images; 100 images 
per variation level, 20 images from each object category in each level). Subjects could rest between blocks for 
5–10 minutes. Subjects performed a few training trials before starting the actual experiment (none of the images 
in these trials were presented in the main experiment). A feedback was shown to subjects during the training 
trials, indicating whether they responded correctly or not, but not during the main experiment.

Model evaluation. Classi�cation accuracy. To evaluate the classi�cation accuracy of the models, we �rst 
randomly selected 600 images from each object category, variation level, and background condition (see Image 
generation section). Hence, we have 14 di�erent datasets (7 variation levels ×  2 background conditions), each of 
which consists of 3000 images (5 categories ×  600 images). To compute the accuracy of each DCNN for a given 
variation level and background condition, we randomly selected two subsets of 1500 training (300 images per 
category) and 750 testing images (150 images per category) from the corresponding image dataset. We then fed 
the pre-trained DCNN with the training and testing images and calculated the corresponding feature vectors for 
all layers. A�erwards, we used these feature vectors to train the classi�er and compute the recognition accuracy 
of each layer. Here we used a linear SVM classi�er (libSVM implementation43, www.csie.ntu.edu.tw/cjlin/libsvm) 
with optimized regularization parameters. �is procedure was repeated for 15 times (with di�erent randomly 
selected training and testing sets) and the average and standard deviation of the accuracy were computed. �is 
procedure was done for all models, levels, and layers.

For the HMAX and Pixel models, we �rst randomly selected 300 and 150 images (from each category and 
each variation level) as the training and testing sets, and then, computed their corresponding features. �e visual 
prototypes of the S2, S2b and S3 layers of the HMAX model were randomly extracted from the training set, and 
the outputs of C2, C2b, and C3 layers were used to compute the performance of the HMAX model. Pixel rep-
resentation for each image is simply a vector of pixels’ gray values. Finally, the feature vectors were applied to a 
linear SVM classi�er. �e reported accuracies are the average of 15 independent random runs.

Confusion matrix. We also computed the confusion matrices for models and humans in all variation levels, both 
for objects on uniform and natural backgrounds. A confusion matrix allows us to determine which categories 
are more misclassi�ed and how classi�cation errors are distributed across di�erent categories. For the models, 
confusion matrices were calculated from the labels assigned by the SVM. To obtain the human confusion matrix, 
we averaged the confusion matrices of all human subjects.

Representational dissimilarity matrix (RDM). Model RDM. RDM provides a useful and illustrative 
tool to study the representational geometry of the response to di�erent images, and checking whether images of 
the same category generate similar responses in the representational space. Each element in a RDM shows the 

http://www.csie.ntu.edu.tw/cjlin/libsvm
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pairwise dissimilarity between the response patterns elicited by two images. Here these dissimilarities are meas-
ured using Spearman’s rank correlation distance (i.e., 1–correlation). Moreover, RDMs is a useful tool to compare 
di�erent representational spaces with each other. Here, we used RDMs to compare the internal representations 
of the models with human behavioral responses (see below). To calculate the RDMs, we used the RSA toolbox 
developed by Nili et al.44.

Human RDM. Since we did not have access to the human internal object representations in our psychophysical 
experiment, we used the human behavioral scores to compute the RDMs (See ref. 19 for more details). Actually, 
for each image, we computed the relative frequencies with which the image is assigned to di�erent categories by 
all human subjects. Hence, we have a �ve-element vector for each image, which is used to construct the human 
RDM. Although, computing human RDMs based on behavioral responses is not a direct measurement of the rep-
resentational content of the human visual system, it provides a way to compare internal representations of DCNN 
models to behavioral decisions of humans.

Results
We tested the DCNNs in our invariant object categorization task including �ve object categories, seven variation 
levels, and two background conditions (see Materials and methods). �e categorization accuracy of these models 
were compared with those of human subjects, performing rapid invariant object categorization tasks on the same 
images. For each model, variation level, and background condition, we randomly selected 300 training images 
and 150 testing ones per object category from the corresponding image dataset. �e accuracy was then calculated 
over 15 random independent runs and the average and standard deviation were reported. We also analyzed the 
error distributions of all models and compared them to those of humans. Finally, we compared the representa-
tional geometry of models and humans, as a function of the variation levels.

DCNNs achieved human-level accuracy. We compared the classi�cation accuracy of the �nal layer of all 
models (DCNNs, and HMAX representation) with those of human subjects doing the invariant object categori-
zation tasks in all variation levels and background conditions. Figure 2A shows that almost all DCNNs achieved 
human-level accuracy across all levels when objects had a uniform gray background. �e accuracies of DCNNs 
are even better than humans at low (levels 1 to 3) and intermediate (levels 4 and 5) variation levels. �is might be 
due to inevitable motor errors that humans made during the psychophysical experiment, meaning that subjects 
might have perceived the image but pressed a wrong key. Also, it can be seen that the accuracies of humans and 
almost all DCNNs are virtually �at across all variation levels which means they are able to invariantly classify 
objects with uniform background. Surprisingly, the accuracy of Overfeat is far below the human-level accuracy, 
even worse than the HMAX model. �is might be due to the structure and the number of features extracted by 
the Overfeat model which leads to a more complex feature space with high redundancy.

We compared the accuracy of humans and models at the most di�cult level (7). �ere is no signi�cant di�er-
ence between the accuracies of CNN-S, CNN-M, Zeiler and Fergus, and human at this variation level (Fig. 2A, 
bar plot; Also, see pairwise comparisons shown using a p-value matrix computed by the Wilcoxon rank sum test). 
CNN-S is the best model.

When we presented object images superimposed on natural backgrounds, the accuracies decreased for both 
humans and models. Figure 2B illustrates that only three DCNNs (CNN-F, CNN-M, CNN-S) performed close 
to human. �e accuracy of the HMAX model dropped down just above chance level (i.e., 20%) at the seventh 
variation level. Interestingly, the accuracy of Overfeat remained almost constant either in objects on uniform or 
natural backgrounds, suggesting that this model is more suitable for tasks with unsegmented images. Similarly, we 
compared the accuracies at the most di�cult level (level 7) when objects had natural backgrounds. Again, there 
is no signi�cant di�erence between the accuracies of CNN-S, CNN-M, and humans (see the p-value matrix com-
puted using the Wilcoxon rank sum test for all possible pairwise comparisons). However, the accuracy of human 
subjects is signi�cantly above the HMAX model and other DCNNs (i.e., CNN-F, Zeiler and Fergus, Krizhevsky, 
Hybrid-CNN, and Overfeat).

How accuracy evolves across layers in DCNNs. DCNNs have a hierarchical structure of di�erent pro-
cessing stages in which each layer extracts a large pool of features (e.g., > 4000 features at top layers). �erefore, 
the computational load of such models is very high. �is raises important questions: what is the contribution of 
each layer to the �nal accuracy? and how does the accuracy evolve across the layers? We addressed these ques-
tions by calculating the accuracy of each layer of the models across all variation levels. �is provides us with the 
contribution of each layer to the �nal accuracy. Figure 3A–H shows the accuracies of all layers and models when 
objects had uniform gray background. �e accuracies of the Pixel representation (dashed, dark purple curve) and 
human (gray curve) are also shown on each plot.

Overall, the accuracies signi�cantly evolved across layers of DCNNs. Moreover, almost all layers of the mod-
els (except Overfeat), even Pixel representation, achieved perfect accuracies at low variation levels (i.e., levels 1 
and 2), suggesting that this task is very simple when objects had small variations and uniform gray background. 
Looking at the intermediate and di�cult variation levels shows that the accuracies tend to increase as we go up 
across the layers. However, the trend is di�erent between layers and models. For example, layers 2, 3, and 4 in 
three DCNNs (Krizhevsky, Hybrid-CNN, Zeiler and Fergus) have very similar accuracies across the variation lev-
els (Fig. 3A,B,G). Similar results can be seen for these models in layers 5, 6, and 7 (Fig. 3A,B,G). In contrast, there 
is a high increase in accuracies from layer 1 to 4 for CNN-F, CNN-M, and CNN-S, while the three last layers have 
similar accuracies. �ere is also a gradual increase in the accuracy of Overfeat from layer 2 to 5 (with the similar 
accuracy for layers 6, 7, and 8); however, there is a considerable decrease at the output layer (Fig. 3C). Moreover, 
the overall accuracy of Overfeat is low compared to humans and other models as previously seen in Fig. 2.
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Interestingly, the accuracy of HMAX, as a shallow model, is far below the accuracies of DCNNs (C2b is the 
best performing layer). �is shows the important role of supervised deep learning in achieving high classi�cation 
accuracy. As expected, the accuracy of Pixel representation exponentially decreased down to 30% at level seven, 
con�rming the fact that invariant object recognition requires multi-layered architectures (note that the chance 
level accuracy is 20%). We note, however, that Pixel performs very well with no viewpoint variations (level 1).

We also compared the accuracies of all layers of the models with those of humans. Color-coded points at the 
top of each plot in Fig. 3 indicate the p-values of the Wilcoxon rank sum test. �e average accuracy of each layer 
across all variation levels is shown on the pink area at the right side of each plot, summarizing the contribution of 
each layer to �nal accuracy independently of variation levels. Horizontal lines on the pink area show whether the 
average accuracy of each layer is signi�cantly di�erent from those of humans (black: signi�cant; white: insigni�-
cant). Furthermore, Fig. 3I summarizes the results depicted on the pink areas, con�rming that the last three layers 
in DCNNs (except Overfeat) have similar accuracies.

Figure 2. Classi�cation accuracy of models and humans in multiclass invariant object categorization task 
across seven levels of object variations. (A) Accuracies when objects were presented on uniform backgrounds. 
Each colored curve shows the accuracy of one model (speci�ed in the legend). �e gray curve indicates human 
categorization accuracy across seven levels. All models were well above chance level (20%). �e right panel 
shows the accuracies of both models and humans at the last level of variations (level seven; speci�ed with pale, 
red rectangular), in ascending order. Level seven is considered the most di�cult level as the variations are high 
at this level, making the categorization di�cult for models and human. �e color-coded matrix, at the top-right 
of the bar plot, exhibits the p-values for all pairwise comparisons between human and models computed using 
the Wilcoxon rank sum tests. For example, the accuracy of the Hybrid-CNN was compared to the human and 
all other models and the pairwise comparison provides us with a p-value for each comparison. Blue points 
indicate that the accuracy di�erence is signi�cant while gray points show insigni�cant di�erences. Numbers, 
written around the p-value matrix, correspond to models (H stands for human). Accuracies are reported as the 
average and standard deviation of 15 random, independent runs. (B) Accuracies when objects were presented 
on randomly selected natural backgrounds.
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Figure 3. Classi�cation accuracy of models (for all layers separately) and humans in multiclass invariant 
object categorization task across seven levels of object variations, when objects had uniform backgrounds. 
(A) Accuracy of Krizhevsky et al.15 across all layers and levels. Mean accuracies and s.e.m. are reported using 
15 random, independent runs. Each colored curve shows the accuracy of one layer of the model (speci�ed on 
the bottom-le� legend). �e accuracy of Pixel representation is depicted using a dashed, dark purple curve. �e 
gray curve indicates human categorization accuracy across seven levels. �e chance level is 20%; no layer hit 
the chance level for this task (note that the accuracy of Pixel representation dropped down to 10% above chance 
at level seven). �e color-coded points at the top of the plot indicate whether there is a signi�cant di�erence 
between the accuracy of humans and model layers (computed using the Wilcoxon rank sum test). Each color 
refers to a p-value, speci�ed on the top-right (*p <  0.05, **p <  0.01, ***p <  0.001, ****p <  0.0001). Colored circles 
on the pink area, show the average accuracy of each layer, across all variation levels (one value for each layer and 
all levels), with the same color code as curves. �e horizontal lines, depicted underneath the circles, indicate 
whether the di�erence between human accuracy (gray circle) and layers of the model is signi�cant (computed 
using the Wilcoxon rank sum test; black line: signi�cant, white line: insigni�cant). (B–H) Accuracies of Hybrid-
CNN, Overfeat, CNN-F, CNN-M, CNN-S, Zeiler and Fergus, and HMAX model, respectively. (I) �e average 
accuracy across all levels for each layer of each model (again error bars are s.e.m.). Each curve corresponds to 
a model. �is simply summarizes the accuracies, depicted in the pink areas. �e shaded area shows the average 
baseline accuracy (pale-purple, Pixel representation) and human accuracy (gray) across all levels.
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We also tested the models on objects with natural backgrounds to see whether the contributions of similarly 
performing layers change in more challenging tasks. Not surprisingly, the accuracy of human subjects dropped by 
10% at low variation level (level 1), and down to 25% at high variation level (level 7) with respect to the uniform 
background case (Fig. 4, gray curve). Not surprisingly, the Pixel representation shows an exponential decline in 
the accuracy across the levels, with the chance accuracy at level seven (Fig. 4, dashed dark purple curve). Similar 
to Fig. 3, all DCNNs, excluding Overfeat, achieved close to human-level accuracy at low variation levels (levels 1, 
2, and 3). Interestingly, the Pixel representation performed better than most models at level one, suggesting that 
object categorization at low variation level can be done without elaborate feature extraction methods (note that 
we had only �ve object categories, therefore, this can be di�erent with more categories).

�e severe drop in the accuracy of the HMAX model with respect to the uniform background experiment 
reflects the difficulty of this model to cope with distractors in natural backgrounds. For both background 

Figure 4. Classi�cation accuracy of models (for all layers separately) and human in multiclass invariant 
object categorization task across seven levels of object variations, when objects had natural backgrounds. 
(A–H) Accuracies of Krizhevsky et al., Hybrid-CNN, Overfeat, CNN-F, CNN-M, CNN-S, Zeiler and Fergus, 
and HMAX model across all layers and variation levels, respectively. (I) �e average accuracy across all levels 
for each layer of each model (again error bars are s.e.m.). Details of diagrams are explained in the caption of 
Fig. 3.
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conditions, the C2b layer has higher accuracy than C3 layer and can better tolerate object variations. �e main 
reason why HMAX is not performing as well as DCNNs is probably the lack of a purposive learning rule21,45. 
HMAX randomly extracts a large number of visual features (image crops) which could be highly redundant, 
uninformative, and even misleading46. �e issue of inappropriate features becomes more evident when the back-
ground is clutter.

Another noticeable fact about DCNNs in the natural background experiment is the superiority of the last 
convolutional layers with respect to the fully connected layers; for example, the accuracy of the ��h layer in the 
Krizhevsky model is higher than the seventh layer’s. One possible reason for the low accuracies in the �nal layers 
of DCNNs is that the fully connected layers are designed to perform classi�cation themselves, and not to provide 
input for a SVM classi�er. Besides, the fully connected layers were optimized for Imagenet classi�cation, but not 
for our dataset. A last reason could be that the convolutional layers have more features than the fully connected 
layers.

Given the accuracies of all layers, it can be seen that the accuracies evolved across the layers. However, similar 
to Fig. 3, layers 2, 3, and 4 of Krizhesvky, Zeiler and Fergus, and Hybrid-CNN contribute almost equally to the 
�nal accuracy. Again, CNN-F, CNN-M, and CNN-S showed a di�erent trend in terms of the contribution of 
each layer to the �nal accuracy. Moreover, as shown in Fig. 4D–F, only these three models achieved human-level 
accuracy at di�cult levels (levels 6 and 7). �e accuracies of other DCNNs, however, are signi�cantly lower than 
humans at these levels (see the color-coded points in Fig. 4A–C,G which indicate the p-values computed by the 
Wilcoxon rank sum tests). We summarized the average accuracies across all levels for each layer of the models, 
shown as color-coded circles with error bars on the pink areas next to each plot. In most cases, layer 5 (the last 
convolutional layer - layer 6 in Overfeat) has the highest accuracy among layers. �is is summarized in Fig. 4I, 
which is actually the summary of results shown on pink areas. Figure 4I also con�rms that only CNN-F, CNN-M, 
and CNN-S achieve human-level accuracy.

We further compared the accuracies of all layers of the models with humans at the easy (level 1), intermediate 
(level 4) and di�cult (level 7) variation levels to see how each layer performs the task as the level of variations 
increases. Figure 5A–C show the accuracies for the uniform background condition. �e easy level is not very 
informative because of a ceiling e�ect: all models (but Overfeat) reach 100% accuracy. At the intermediate level, 

Figure 5. Classi�cation accuracy at easy (level 1), intermediate (level 4) and di�cult (level 7) levels for 
di�erent layers of the models. (A–C) Accuracy for di�erent layers at easy (A), intermediate (B) and di�cult 
(C) levels when objects had uniform backgrounds. Each curve represents the accuracy of a model. �e shaded 
areas show the accuracy of the Pixel representation (pale purple) and human (gray). Error bars are standard 
deviation. (D–F) Idem when objects had natural backgrounds.
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all DCNNs (except Overfeat) reached the human-level accuracy from layer 4 upwards (Fig. 5A), suggesting that 
even with intermediate level of variation, DCNNs have remarkable accuracies (note that objects had uniform 
background). �is is clearly not true for the HMAX and Overfeat networks. However, when models were fed with 
images from the most di�cult level, only the last layers (layers 5, 6, and 7) achieved human-level accuracy (see 
Fig. 5B). Notably the last three layers have almost similar accuracies.

When objects had natural backgrounds, somewhat surprisingly the accuracies of all DCNNs (but Overfeat) is 
maximal with layer 2, and drops for subsequent layers. �is shows that deeper is not always better. �e fact that 
the Pixel representation performs well at this level con�rms this �nding. At the intermediate level, the picture 
is di�erent: only the last three layers of DCNNs, excluding Overfeat, reach human-level accuracy (see Fig. 5E). 
Finally, at the seventh variation level, Fig. 5F shows that only three DCNNs reach human performance: CNN-F, 
CNN-M, and CNN-S.

In summary, the above results, taken together, illustrate that some DCNNs are as accurate as humans, even at 
the highest variation levels.

Do DCNNs and humans make similar errors? �e accuracies reported in the previous section only 
represent the ratio of correct responses. Indeed, they did not re�ect whether models and humans made similar 
misclassi�cations. To do a more precise and category-based comparison between the recognition accuracies of 
humans and models, we computed the confusion matrices for each variation level. Figure 6 provides the confu-
sion matrices for humans and the last layers of all models for both uniform (see Fig. 6A) and natural (see Fig. 6B) 
backgrounds, and for each variation level (see supplementary Fig. S1 to Fig. S10 for confusion matrices of all 
layers and models).

Despite a very short presentation time in the behavioral experiment, humans performed remarkably well at 
categorizing �ve object classes, either when object had uniform (Fig. 6A, last row) or natural (Fig. 6B, last row) 
backgrounds, with minimum misclassi�cations across di�erent categories and levels. It is, however, important to 
point out that the majority of human errors corresponded to ship - airplane confusions. �is was probably due to 
the shape similarity among these objects (e.g., both categories usually have bodies, sails, wings, etc.).

Figure 6 demonstrates that the HMAX model and Pixel representation misclassi�ed almost all categories at 
high variation levels. With natural backgrounds, they uniformly assigned input images into di�erent classes. 
Conversely, DCNNs show few classi�cation errors across di�erent categories and levels, though the distribu-
tion of errors is di�erent from one model to another. For example, the majority of recognition errors made by 
Krizehvsy, Zeiler and Fergus, and Hybrid-CNN belonged to car and motorcycle classes, while animal and airplane 
classes were mostly misclassi�ed by CNN-F, CNN-M, and CNN-S. Finally, Overfeat shows evenly-distributed 
errors across categories, con�rming its low accuracy.

Figure 6. Confusion matrices for multiclass invariant object categorization task. (A) Each color-coded 
matrix shows the confusion matrix of a model when categorizing di�erent object categories (speci�ed in the 
�rst matrix at the top-le� corner), when images had uniform backgrounds. Each row corresponds to a model. 
Last row shows human confusion matrix. Each column indicates a particular level of variation (levels 1 to 
7). Models’ name is depicted at the right end. (B) Idem with natural backgrounds. �e color bar at the top-
right shows the percentage of the labels assigned to each category, �e chance level indicated with an arrow. 
Confusion matrices were calculated only for the last layers of the models.
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We also examined whether models’ decisions are similar to those of humans. To this end, we computed the 
similarity between the humans’ confusion matrices and those of the models. An important point is to factor out 
the impacts of the mean accuracies (of humans and models) on the similarity measure, to only take the error dis-
tributions into account. �erefore, for each confusion matrix, we �rst excluded the diagonal terms and arranged 
the remaining elements in a vector and normalized it by its L2 norm. �en, the similarity between two confu-
sion matrices is computed using the Euclidean distance between their corresponding vectors subtracted from 
one (here we call it as 1 - Norm. Euclidean distance). In this way, we are just comparing the error distributions 
of humans and models independent of their accuracies. Figure 7 provides the similarities between models and 
humans across all layers and levels when objects had uniform background. Almost all models, including the Pixel 
representation, show the maximum possible similarity at low variation levels (levels 1 and 2). However, the simi-
larity of Pixel representation exponentially decreases from level 2 upwards. Overall, the highest layers of DCNNs 
(except Overfeat) are more similar to humans’ decisions. �is point is also shown in Fig. 7I, which represents the 
average similarities across all variation levels (each curve corresponds to one model). Note that due to the high 
recognition accuracies in uniform background condition, this level of similarity was predictable.

�e similarity between models’ and humans’ errors, however, decreases in the case of images with natural 
backgrounds. �e HMAX model had the lowest similiarity with human (see Fig. 8). Although DCNNs have 

Figure 7. Similarity between models’ and humans’ confusion matrices when images had uniform 
backgrounds. (A) Similarity between Krizhevsky et al.15 confusion matrices and that of humans (measured as 
1-normalized Euclidean distance). Each curve shows the similarity between human confusion matrix and one 
layer of Krizhevsky et al.15 (speci�ed on the right legend), across di�erent levels of variations. �e similarity 
between the confusion matrix of the Pixel representation and humans is shown using a dark purple, dashed line. 
(B–H) Idem for the Hybrid-CNN, Overfeat, CNN-F, CNN-M, CNN-S, Zeiler and Fergus, and HMAX models, 
respectively. (I) �e average similarity across all levels for each layer of each model (error bars are s.e.m.). Each 
curve corresponds to one model.
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reached human-level accuracy, their decisions and distribution of errors are di�erent from human’s. Interestingly, 
the Overfeat has almost a constant similarity across layers and levels. Comparing the similarities across DCNNs 
shows that CNN-F, CNN-M, and CNN-S have the highest similarities to humans, which is also re�ected in Fig. 8I.

To summarize our results so far: the best DCNNs can reach human performance even at the highest variation 
level, but their error distributions are di�erent to the average human one (similarity < 1 on Fig. 8). However, one 
needs a reference here, because humans also di�er between each other. Are these di�erence between humans 
smaller than di�erences between humans and DCNNs? To investigate this issue, we used the multidimensional 
scaling (MDS) method to visualize the distances (i.e., similarities) between the confusion matrices of humans and 
models (last layer) in 2-D maps (see Fig. 9). Each map corresponds to a certain variation level and background 
condition.

In the uniform background condition, humans have small inter-subject distances. As we move from low to 
high variations, the distance between DCNNs and humans becomes greater. In high variation levels, the Overfeat, 
HMAX, and Pixel models are very far from the human subjects as well as from the other DCNNs. �e other mod-
els remain indiscernible from humans.

In the natural background condition, the human between-subject distances are relatively higher than in the 
uniform condition. As the level of variations increases, the models tend to get further away from the human sub-
jects. But the CNN-F, CNN-M, and CNN-S are di�cult, if not impossible, to discern from humans.

Figure 8. Similarity between models’ and humans’ confusion matrices, when object images had natural 
backgrounds. (A–H) Similarities between the confusion matrices of Krizhevsky, Hybrid-CNN, Overfeat, CNN-
F, CNN-M, CNN-S, Zeiler and Fergus, HMAX model and that of humans. Figure conventions are identical to 
Fig. 7. (I) �e average similarity across all levels for each layer of each model (error bars are s.e.m.). Each curve 
corresponds to a model.
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So far, we have analyzed the accuracies and error distributions of models and humans, when features were 
used by a SVM classi�er. However, such analyses do not inform us about the internal representational geometry 
of models and their similarities to those of humans. It is very important to investigate how di�erent categories are 
represented in the feature space.

Representational geometry of models and human. Representational similarity analysis has become a pop-
ular tool to study the internal representation of models20,27,47,48 in response to di�erent object categories. �e rep-
resentational geometries of models can then be compared with neural responses independently of the recording 
modality (e.g. fMRI20,48, cell recording27,47,49, behavior19,50–52, and MEG53), showing to what degree each model 
resembles the brain representations. Here, we calculated representational dissimilarity matrices (RDM) for mod-
els and humans44. We then compared the RDMs of humans and each model and quanti�ed the similarity between 
these two. Model RDMs were calculated based on pairwise correlation between the feature vectors of two images 

Figure 9. �e distances between models and humans visualized using the multidimensional scaling (MDS) 
method. Distances between models and humans when images had uniform (A) and natural backgrounds (B). 
Light gray circles show the position of each human subjects and larger black circle shows the average of all 
subjects. Color circles represent models.



www.nature.com/scientificreports/

1 5Scientific RepoRts | 6:32672 | DOI: 10.1038/srep32672

(see Materials and methods). To calculate the human RDM, we used their behavioral scores recorded in the psy-
chophysical experiment (see Materials and methods as well as19).

Figure 10 represents the RDMs for models and human across di�erent levels of variation both for objects on 
uniform (Fig. 10A) and natural (Fig. 10B) backgrounds. Note that these RDMs are calculated from the object rep-
resentations in the last layers of the models. For better visualization, we show only 20 images from each category; 
therefore, the size of RDMs is 100 ×  100 (reported RDMs were averaged over six random runs; See Supplementary 
Fig. S11 to Fig. S20 for RDMs of all layers and models).

As expected, human RDM clearly represents each object category, with minimum intra-class dissimilarity and 
maximum inter-class dissimilarity, across all variation levels (last row in Fig. 10A,B for uniform and natural back-
grounds, respectively). However, both HMAX and Pixel representation show a random pattern in their RDMs 
when objects had natural backgrounds (Fig. 10B, rows 8 and 9), suggesting that such low and intermediate visual 
features are unable to invariantly represent di�erent object categories. �e situation is slightly better when object 
had uniform background (Fig. 10A, rows 8 and 9). In this case, there is some categorical information, mostly 
across low variation levels (levels 1 to 3, and 4 to some extent), for animal, motorcycle, and airplane images. Such 
information is attenuated at intermediate and high variation levels.

In contrast, DCNNs demonstrate clear categorical information for di�erent objects across almost all levels, for 
both background conditions. Categorical information is more evident when objects had uniform background, 
even at high variation levels, while this information almost disappears at intermediate levels when object had nat-
ural backgrounds. In addition, Overfeat did not clearly represent di�erent object categories. �e Overfeat model 
is one of the most powerful DCNNs with high accuracy on the Imagenet database, but it seems that the features 
are not suitable for our invariant object recognition task. It uses no fewer than 230400 features! �is might be one 
reason for poor representational power: it probably leads to a nested and complex object representation. Besides, 
this high number of features may also explain the poor classi�cation performance we obtained, due to over�tting. 
Based on visual inspection, it seems that some DCNNs are better at representing some speci�c categories. For 
example, Krizhevsky, Hybrid-CNN, Zeiler and Fergus could better represent animal, car and airplane classes 
(lower within-class dissimilarity for these categories), while ship and motorcycle classes are better represented 
by CNN-F, CNN-M, and CNN-S. Interestingly, this has been re�ected on the confusion matrix analysis, suggest-
ing that combining and remixing of features from these DCNNs could result in a more robust invariant object 
representation20.

To quantify the similarity between models’ and humans’ RDMs, we calculated the correlation between them 
across all layers and levels (measured as Kendall τa rank correlation). Each panel in Figs 11 and 12 represents the 

Figure 10. Representational Dissimilarity Matrices (RDM) for models and humans. RDMs for humans 
and models when images had uniform (A) and natural (B) backgrounds. Each element in a matrix shows the 
pairwise dissimilarities between the internal representations of the two images (measured as 1– Spearman’s rank 
correlation). Each row of RDMs corresponds to a model (speci�ed on the right) and each column corresponds 
to a particular level of variation (from level 1 to 7). Last row illustrates the human RDMs, calculated from the 
behavioral responses. �e color bar on the top-right corner shows the degree of dissimilarity. For the sake of 
visualization, we only included 20 images from each category, leading to 100 ×  100 matrices. Model RDMs were 
calculated for the last layer of each model.
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correlation between models’ and humans’ RDMs across all layers and variation levels (each color-coded curve 
corresponds to one layer) when object had uniform and natural backgrounds, respectively. Overall, as shown in 
these �gures, the correlation coe�cients are high at low variation levels, but decrease at higher levels. Moreover, 
correlations are not signi�cant at very di�cult levels, as speci�ed with color-coded points on the top of each plot 
(blue point: signi�cant, gray point: insigni�cant).

Interestingly, comparing the cases of uniform (Fig. 11) and natural (Fig. 12) backgrounds indicates that the 
maximum correlation (~0.3 at level 1) did not change a lot. However, for the uniform background condition, the 
correlation across other levels increased to some extent. Besides, it can also be seen that the correlations of the 
HMAX model and Pixel representation are higher and more signi�cant than with natural backgrounds (Figs 11H 
and 12H). Note that the correlation values of the �rst layer of almost all DCNNs (but Zeiler and Fergus) are sim-
ilar to those of Pixel representation, suggesting that in the absence of viewpoint variations, very simple features 

Figure 11. Correlation between humans’ and models’ RDMs, across di�erent layers and levels, when 
objects had uniform backgrounds. (A) Correlation between human RDM and Krizhevsky et al.15 RDM 
(Kendall τa rank correlation), across di�erent layers and levels of variations. Each color-coded curve shows 
the correlation of one layer of the model (speci�ed on the right legend) with the corresponding human RDM. 
�e correlation of Pixel representation with human RDM is depicted using a dashed, dark purple curve. �e 
color-coded points on the top of the plots indicate whether the correlation is signi�cant. Blue points indicate 
signi�cant correlation while gray points show insigni�cant correlation. Correlation values are the average over 
10,000 bootstrap resamples. Error bars are the standard deviation. (B–H) Idem for Hybrid-CNN, Overfeat, 
CNN-F, CNN-M, CNN-S, Zeiler and Fergus, and HMAX, respectively. (I) �e average correlation across all 
levels for each layer of each model (error bars are STD). Each curve corresponds to one model. �e shaded area 
shows the average correlation for the Pixel representation across all levels. All correlation values were calculated 
using the RSA toolbox (Nili et al.44).
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(i.e., gray values of pixels) can achieve acceptable accuracy and correlation. �is means that DCNNs are built to 
perform more complex recognition tasks, as it has been shown in several studies.

Not surprisingly, in the case of natural background, the correlation between Pixel and human RDMs are very 
low and almost insigni�cant at all levels (Fig. 12 dashed dark purple line copied on all panels). Similarly, the 
HMAX model shows a very low and insigni�cant correlation across all layers and levels. We also expected a low 
correlation for the Overfeat model, as shown in Fig. 12C. Interestingly, the correlation increases as images are 
processed across consecutive layers in DCNNs, with lower correlations at early layers and higher correlations at 
top layers (layer 5, 6, and 7). As for the accuracy results, the correlations of fully connected layers of DCNNs are 
very similar to each other, suggesting that these layers do not greatly add to the �nal representation.

We summarized the correlation results in Figs 11I and 12I, by averaging the correlation coe�cients across lev-
els for every model layer. It is shown that the correlations for DCNNs evolve across layers, with low correlations at 
early layers and high correlations at top layers. Moreover, Fig. 11I shows that the correlation of the HMAX model 
(all the layers) with human �uctuates around the correlation of Pixel representation (speci�ed with shaded area).

Note that although the correlation coe�cients are not very high (~0.2), Zeiler and Fergus, Hybrid-CNN, and 
Krizhevsky models are the most human-like. It is worth noting that the best models in terms of performance, 
CNN-F, CNN-M, and CNN-S do not have the most human-like RDMs. Conversely, the model with the most 
human-like RDM, Zeiler and Fergus, is not the best in terms of classi�cation performance.

Figure 12. Correlation between humans’ and models’ RDMs, across di�erent layers and levels, when 
objects had natural backgrounds. (A–H) Correlation between humans’ RDM and the one of KirZhevsky, 
Hybrid-CNN, Overfeat, CNN-F, CNN-M, CNN-S, Zeiler and Fergus, and HMAX, across all layers and levels. 
Figure conventions are identical to Fig. 11. (I) �e average correlation across all levels for each layer of each 
model (error bars are STD).
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More research is needed to understand why the Zeiler and Fergus’ RDM is signi�cantly more human-like than 
those of other DCNNs. �is �nding is consistent with a previous study by Cadieu et al.27, in which the Zeiler and 
Fergus’ RDM was found be more similar to monkey IT RDM than those of the Krizhevsky and HMAX models.

In a complementary experiment, we computed the category separability index for the internal representations 
of each model by computing the ratio of within-category relative to between-category dissimilarities (see Fig. S22 
of the supplementary information). �is experiment also con�rms that models with higher separability indexes 
do not necessarily perform better than other models. In fact, it is the actual positions of images of di�erent cate-
gories in the representational space which determines the �nal accuracy of a model, not just the mean inter- and 
intra-class distances.

A very deep network. In previous sections we studied di�erent DCNNs, each having 8 or 9 layers with 5 
or 6 convolutional layers, from various perspectives and compared them with the human feed-forward object 
recognition system. Here, we assess how exploiting many more layers could a�ect the performance of DCNNs. 
To this end, we used Very Deep CNN32 that has no fewer than 19 layers (16 convolutional and 3 fully connected 
layers). We extracted features of layers 9 to 18 from images with natural backgrounds, to investigate if more layers 
in the Very Deep CNN a�ects the �nal accuracy and human-likeness.

Figure 13A illustrates that the classi�cation accuracy tends to improve as images are processed through con-
secutive layers. �e accuracies of layers 9, 10, and 11 are almost the same. But, the accuracy gradually increases 
over the next layers and culminates in layer 16 (the topmost convolutional layer), which signi�cantly outperforms 
humans even at the highest variation level (see the color-coded circles above this �gure). Here again, the accuracy 
drops in fully connected layers that are optimized for the Imagenet classi�cation. Nevertheless, the accuracies of 
the highest layer (layer 18) are still higher than those of humans for all variation levels.

Figure 13B demonstrates the accuracies of the last and best-performing layers of all models in comparison 
with humans for the highest variation level (level 7) in the natural background task. �e color-coded matrix 
on the right shows the p-values for all pairwise comparisons between models and humans computed by the 
Wilcoxon rank sum test. It can be seen that the Very Deep CNN signi�cantly outperforms all other DCNNs 
in both cases. It is also evident that the best-performing layer of this model signi�cantly outperforms humans. 
However, the accuracies of all other DCNNs are below the humans, and the gap is signi�cant for all models but 
CNN-S and CNN-M.

We also computed the RDM of the Very Deep model for all variation levels and layers 9 to 18 in the natu-
ral background condition (See supplementary Fig. S21). Calculating the correlations between the model’s and 
humans’ RDMs shows that the last three layers had the highest correlations with human RDM. �e correlation 
values of other layers drastically decrease down to 0.05, indicating that these layers are less robust to object var-
iations than the last layers. However, the statistical analysis demonstrates that almost all correlation values are 
signi�cant (see color-coded points above the plot), suggesting that although the amount of similarity between 
the RDM of humans and that of the Very Deep model’s layers are small, these similarities are not random but 
statistically meaningful. Hence, it can be said that the layers of Very Deep CNN process images in a somewhat 
human-like way. Finally, Fig. 13D compares the correlation values between the RDM of humans and the one of 
the last as well as the best-correlated layers of all DCNNs in the natural background condition. As can be seen, 
the Very Deep CNN and Zeiler and Fergus models have the highest correlation values in both cases, with large 
statistical di�erence compared to other models.

Discussions
Invariant object recognition has always been a demanding task to solve in computer vision, yet it is simply done 
by a two-year old child. However, the emergence of novel learning mechanisms and computational models in 
recent years has opened new avenues for solving this highly complex task. DCNNs have been shown to be a novel 
and powerful approach to tackle this problem15,16,27,54–60. �ese networks have drawn scientists’ attention not only 
in vision sciences, but also in other �elds of science (see ref. 55), as a powerful solution for many complex prob-
lems. DCNNs are among the most powerful computing models inspired by computations performed in neural 
circuits. To our interest, recent studies also con�rmed the abilities of DCNNs in object recognition problems (e.g. 
refs 15, 27 and 61). Besides, several studies have tried to compare the responses of DCNNs and primate visual 
cortex in di�erent object recognition tasks.

Khaligh-Razavi and Kriegeskorte20 compared the representational geometry of neuronal responses in human 
(fMRI data; see ref. 48) and monkey IT cortex (cell recording; see ref. 49) with several computational models, 
including one DCNN, on a 96-image dataset. �ey showed that supervised DCNNs can explain IT representa-
tion. However, �rstly, their image database only contained frontal views of objects with no viewpoint variation. 
Secondly, the number and variety of images were very low (only 96 images), compared to the wide variety of 
complex images in natural environment. Finally, images had a uniform gray background, which is very di�erent 
from natural vision. To overcome such issues, Cadieu et al.27 used a large image database, consisting of di�erent 
categories, backgrounds, transformations, and compared the categorization accuracy and representational geom-
etry of three DCNNs and neural responses in IT and V4 of monkey. �ey showed that DCNNs closely resemble 
the responses of IT neurons either in accuracy or geometry27,47. One issue in their study is the long stimulus 
presentation time (100 ms), which might be too long to only account for feed-forward processing. Moreover, they 
included only three DCNNs in their study. In another attempt, Güçlü et al.28 mapped di�erent layers of a DCNN 
onto the human visual cortex. More speci�cally, they computed the representational similarities among di�erent 
layers of a DCNN and the fMRI data from di�erent areas in human visual cortex. Although these studies have 
shown the power of several DCNNs in object recognition, advancements in developing new DCNNs are quick, 
which requires continuous assessments of recent DCNNs using di�erent techniques. Moreover, the ability of 
DCNNs in tolerating object variations (mostly 3-D variations) had not been carefully evaluated before.
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Here, we comprehensively tested eight best performing DCNNs, reported in the literature15–18,31,32, in a very 
challenging vision task, namely invariant object recognition. �is list of DCNNs has shown remarkable accuracies 
in classi�cation of big and challenging image databases such as Imagenet, VOC 2007, and Caltech 205. Moreover, 

Figure 13. �e accuracy and human-likeness of the Very Deep CNN with natural backgrounds.  
(A) Classi�cation accuracy of the Very Deep CNN (layers 9–18) and humans across the seven levels of 
object variations. Each colored curve shows the accuracy of one layer of the model. �e accuracy of the Pixel 
representation is depicted using a dashed, dark purple curve. �e gray curve indicates human categorization 
accuracy across the seven levels. �e color-coded points at the top of the plot indicate whether there is a 
signi�cant di�erence between the accuracy of humans and each layer of the model (Wilcoxon rank sum test). 
Each color refers to a p-value, speci�ed on the top-right (*p <  0.05, **p <  0.01, ***p <  0.001, ****p <  0.0001). 
We plot the mean accuracies + /−  STD over 15 runs. Colored circles with error bars, on the pink area show the 
average accuracy of each layer across all variation levels (mean + /−  STD). �e horizontal lines underneath 
the circles, indicate whether the di�erence between human accuracy (gray circle) and each layer of the model 
is signi�cant (Wilcoxon rank sum test; black line: signi�cant, white line: insigni�cant). (B) Top: the accuracy 
comparison between the best-performing layer in each model and humans at the last variation level (level 7). 
�e color-coded matrix, on the right of the bar plot, shows the p-values for all pairwise comparisons between 
humans and models (Wilcoxon rank sum test). Numbers, written around the p-value matrix, correspond to 
models (H stands for human). Bottom: idem with the last layers. (C) Correlation between humans and the Very 
Deep CNN RDMs, across di�erent layers (layers 9–18) and levels. Each color-coded curve shows the correlation 
of one layer of the model with corresponding human RDM. �e color-coded points at the top of the plot 
indicate whether the correlation is signi�cant (Blue: signi�cant; Gray: insigni�cant). Correlation values are the 
average over 10,000 bootstrap resamples + /−  STD. (D) Top: correlations between the most correlated layer in 
each model and humans at the last variation level (level 7). P-value matrix was calculated using similar approach 
to B. Bottom: idem with the last layers.
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we compared the DCNNs with human subjects performing the same task with the same images to investigate the 
extent to which DCNNs resemble humans.

DCNNs achieve human-level performance in rapid invariant object recognition task. Humans 
are very fast and accurate at categorizing objects5,62,63. Numerous studies have investigated this remarkable per-
formance under ultra-rapid image presentation64–66. It is believed that rapid object categorization is mainly 
performed by the feed-forward information �ow through the ventral visual pathway63,67. Experimental and theo-
retical evidence suggests that feed-forward processing is able to perform invariant object recognition3,4,6,7. Here, 
we measured human accuracy when categorizing �ve object categories in a rapid presentation paradigm. Objects 
varied in six dimensions and the task di�culty was controlled using seven variation levels. Results showed that 
humans achieved high accuracy across all levels (under 2- and 3-D variations) while objects were only presented 
for 25 ms.

Using the same image database, we also evaluated eight state-of-the-art DCNNs15–18,31, largely inspired by 
feed-forward processing of visual cortex. Results indicated that these DCNNs can mimic human accuracy (see 
Figs 2 to 5). However, the HMAX model, as one of the early successful models, showed very poor performance 
in almost all experiments. We also showed in our previous study that such shallow feed-forward models fails to 
achieve human-level accuracy in invariant object categorization19.

We further performed layer-speci�c analysis to investigate how accuracy and representational geometry 
evolve across consecutive layers in DCNNs. Results illustrated that accuracies tend to increase as images are pro-
cessed through the layers; however, some layers achieved very similar accuracies. If some layers do not consider-
ably contribute to the �nal accuracy, at least in our task, one is tempted to remove it, to reduce the computational 
load of the DCNN, which is typically very high. For example it has been shown that eliminating one of the middle 
layers leads to just 2% accuracy drop in Krizhevsky model on the Imagenet database15. More research is needed 
to systematically evaluate the role of di�erent layers by removing each layer and evaluating the resulting accuracy. 
However, this should be done using di�erent image databases since these DCNNs were optimized for Imagenet 
database. �erefore, the layer-speci�c e�ect might be database dependent.

�e layer-speci�c analysis is interesting as it shows that not only the accuracy, but also the representational 
geometry evolves through layers. To our knowledge, only one study20 had investigated the layer-speci�c responses 
in one DCNN. A possible future study would be comparing the responses of several visual cortical areas with 
di�erent layers of DCNNs as it helps to understand what is missing in models and layers. Cadieu et al.27 compared 
the responses of monkey IT and V4 neurons with the penultimate layer of three DCNNs, but they did not tested, 
for example, how V4 responses are correlated to other layers.

RDMs (Fig. 10) and confusion matrices (Fig. 6) of the last layer of DCNNs demonstrated that increasing the 
level of object variations can disturb object representations and increase the misclassi�cation rate, but less so for 
the higher layers. Conversely, for low variation levels, shallow models actually outperform both deeper ones and 
humans. �is means that, even if deep nets have attracted a lot of attention recently, deeper is not always better. 
To classify images with weak viewpoint variations (e.g. passport photos), a shallow model might lead to the best 
performance. In addition, its computational load will be much lower, and training will require much fewer labeled 
examples.

It is possible, and even likely, that having incongruent backgrounds can a�ect the human accuracy in some 
cases. However, we ran the same exact experiments with uniform backgrounds. �is helped us to �nd an upper 
bound for the human performance (see Fig. 2). Even in this case, models can reach human-level accuracy. 
Moreover, since both humans and DCNNs saw the objects in a congruent context during the development, elimi-
nating the contextual information in the background, or using an incongruent background, presumably similarly 
a�ect the humans and the models.

In summary, our results demonstrate the ability of DCNNs to reach human (feed-forward vision) accuracy 
in invariant object recognition. �is con�rms the success of these computational models to mimic the perfor-
mance of the visual neural circuits in such a di�cult task. When variation level is high, shallow networks have 
low accuracies, while as we move through the layers of DCNNs the invariance gradually increase in such a way 
that the Very Deep network (with 19 layers) can even outperform the humans. Another important point is that 
both 2-D and 3-D variations could be handled by 2-D features extracted through the layers of DCNNs. Although 
some 2-D variations, such as position, are treated through many convolutional layers (using shared-weight �l-
ters in di�erent positions), DCNNs do not have any built-in mechanism to overcome 3-D variations (such as 
in-depth-rotation). �us, these invariances must be learned. Regarding to di�erent theories of how the brain 
reaches 3-D invariance, our results suggest that 3-D rotation invariance can be achieved using 2-D features and 
not necessarily by construction of 3-D object models. However, the di�erence between the error distributions 
and object representations of DCNNs and humans suggest that they use di�erent information to handle invari-
ant object recognition, presumably due to structural and learning di�erences. �e human visual system exploits 
feedback signals, bottom-up and top-down attentions, continuous visual information, and temporal learning. So 
if using more layers can substantially improve the performance of machine vision algorithms, adding other prop-
erties of the visual system can make more advances. �is could, in reverse, give important clues about the nature 
of neural processing in the visual cortex.

Network architecture plays a very important role. Here, we evaluated several DCNNs with di�erent 
architectures and training sets, which led to di�erent accuracies. Zeiler and Fergus, CNN-M and CNN-S achieved 
higher accuracies than Keizhevsky model, while they used smaller receptive �elds and smaller stride in the �rst 
convolutional layer. Besides, CNN-M and CNN-S outperformed Zeiler and Fergus using more convolutional fea-
tures in layers 3, 4 and 5. Nevertheless, Overfeat that exploits extensively more features in these layers had troubles 
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with invariant object recognition. Interestingly, Very Deep CNN, which signi�cantly outperforms all models as 
well as humans, has about twice convolutional layers as other DCNNs but smaller (3 ×  3) receptive �elds.

Although it is not clear why some DCNNs perform better than others, our results suggest that networks with 
deeper architecture, and convolutional layers with small �lter size but with more feature planes can achieve higher 
performances. In any case, an extensive optimization is required to �nd the best architecture and parameter set-
tings for DCNNs. It is also important to point out that despite utilizing similar architectures but di�erent training 
datasets, Keizhevsky and Hybrid-CNN models had close performances. �ese results suggest that architecture is 
more important than the training set. Hence, future studies should focus on how to evaluate di�erent architec-
tures to �nd the optimum one.

DCNNs lack important processing mechanisms that exist in biological vision. We tried to only 
allow feed-forward processing in our psychophysical experiment by using short presentation time and backward 
masking, weakening the e�ect of back projections. However, this does not completely rule out the e�ects of 
feedback connections in the visual system. Conversely, DCNNs are feed-forward only models without any feed-
back mechanisms from upper to lower layers (note that error back propagation is not considered as a feedback 
mechanism because it only occurs during the learning, not the recognition). Adding a feedback mechanism to 
DCNNs could increase their performance, and this could be useful for complex visual tasks (e.g., variation level 7 
in our data). �is would inevitably increases the computational load of DCNNs and that might be the reason why 
DCNNs still lack a feedback mechanism. Another issue is how to learn feedback connections.

In addition to object recognition, feedback connections plays a pivotal role in other visual processes such as 
�gure-ground segregation68,69, spatial and feature-based attention70, and perceptual learning71. As shown in our 
results, the accuracies of DCNNs signi�cantly drops in case of objects with natural backgrounds. �is could be 
due to the lack of a �gure-ground segregation in the models. Indeed, the primate visual system is able to separate 
the parts of image which belong to the target object from the background and other objects. It has been suggested 
that recurrent processing is required for the completion of �gure-ground segregation (see refs 68 and 69). Also, 
the mechanisms of bottom-up and top-down attention in the human visual system emphasizes the most salient 
and relevant parts of the images, which contain more information and can facilitate the categorization process. 
Several studies42,72,73 have shown that recurrent processing can enhance object representations in IT and facilitate 
invariant object recognition. DCNNs lack such mechanisms, and they could help to increase the recognition 
accuracy, especially in cluttered images and this could be another direction for future improvement of DCNNs.

Future directions. Our image database has several advantages for studying invariant object recognition. 
Firstly, it contains a large number of object images, changing across di�erent levels of variations of position, 
scale, and in-depth and in-plane rotations, and background. Secondly, we had a precise control over the amount 
of variations that let us generate images with di�erent degrees of complexity/di�culty; �erefore, enabling us to 
scrutinize the behavior of humans and computational models, while the complexity of object variations gradu-
ally increases. �irdly, similar to several studies27,47,74,75, by eliminating dependencies between objects and back-
grounds, we were able to study invariance, independently of contextual e�ects.

However, there are several e�ective parameters in invariant object recognition for both humans and models 
that should be further investigated. It is important to explore how the consistency between objects and surround-
ing environment would a�ect the object recognition process76–79 and it should be further studied in invariant 
object recognition. Also, other parameters such as illumination, contrast, texture, noise, and occlusion need to be 
investigated in controlled experiments.

Another important question that needs to be clearly addressed is whether all types of variations impose the 
same di�culty to humans and models. A simple and short answer is “No”; however, it remains unclear which 
types of variation are more challenging, what the underlying mechanisms for it are. It has been shown that the 
brain responds di�erently to di�erent types of object variations. For instance, scale invariant responses appear 
faster than position invariant ones80. Interestingly, scale invariant responses in the human brain emerge early in 
development while view invariance responses tend to emerge later, suggesting that simple processes such as scale 
invariance could be built-in, while we would need more training to perform view invariant object recognition81. 
�erefore, it is important, for both neuroscientists and computational modelers, to understand how the brain 
deals with di�erent types of variations. From a computer vision point of view, it seems that 3-D variations (e.g., 
rotations in-depth) are more challenging than 2-D transformations (e.g., changes in position and scale)21,22,47. Due 
to the structure of DCNNs and the computations performed in such networks, they easily tackle with changes in 
position and, to some extent, in the scale of the objects. However, there is no built-in mechanism for invariance 
to 3-D transformations. Adding such a mechanism to the models should increase their accuracy as well as their 
resemblance to neurophysiological data. A very recent modeling study82, inspired by physiological data from 
monkeys brain, shows that adding a view invariance mechanism to a feed-forward model can surprisingly explain 
face processing in monkey face patches83,84.
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