
Deep Networks on Toroids: Removing Symmetries Reveals the Structure of
Flat Regions in the Landscape Geometry

Fabrizio Pittorino 1 Antonio Ferraro 1 Gabriele Perugini 1 2 Christoph Feinauer 1 Carlo Baldassi 1

Riccardo Zecchina 1

Abstract

We systematize the approach to the investigation
of deep neural network landscapes by basing it on
the geometry of the space of implemented func-
tions rather than the space of parameters. Group-
ing classifiers into equivalence classes, we de-
velop a standardized parameterization in which
all symmetries are removed, resulting in a toroidal
topology. On this space, we explore the error land-
scape rather than the loss. This lets us derive a
meaningful notion of the flatness of minimizers
and of the geodesic paths connecting them. Using
different optimization algorithms that sample min-
imizers with different flatness we study the mode
connectivity and relative distances. Testing a va-
riety of state-of-the-art architectures and bench-
mark datasets, we confirm the correlation between
flatness and generalization performance; we fur-
ther show that in function space flatter minima
are closer to each other and that the barriers along
the geodesics connecting them are small. We also
find that minimizers found by variants of gradient
descent can be connected by zero-error paths com-
posed of two straight lines in parameter space, i.e.
polygonal chains with a single bend. We observe
similar qualitative results in neural networks with
binary weights and activations, providing one of
the first results concerning the connectivity in this
setting. Our results hinge on symmetry removal,
and are in remarkable agreement with the rich phe-
nomenology described by some recent analytical
studies performed on simple shallow models.

1AI Lab, Institute for Data Science and Analytics, Bocconi
University, 20136 Milano, Italy 2Dept. of Applied Science and
Technology, Politecnico di Torino, 10129 Torino, Italy. Correspon-
dence to: Fabrizio Pittorino <fabrizio.pittorino@unibocconi.it>,
Carlo Baldassi <carlo.baldassi@unibocconi.it>.

Preprint - Arxiv Version

1. Introduction
The loss landscape of a typical deep neural network per-
forming a supervised learning task is in general highly non-
convex. Moreover, even small networks (by the current
standards) have a huge number of configurations of small
loss, corresponding to zero or near-zero training error. In
this sense, most modern networks operate in a strongly over-
parameterized regime. Understanding how simple variants
of first-order algorithms are able to escape bad local min-
ima and yet avoid overfitting is a fundamental problem,
which has received a lot of attention from several perspec-
tives (Belkin et al., 2019; Rocks & Mehta, 2020).

A natural and promising approach for addressing this is-
sue is to investigate the geometrical properties of the loss
landscape. Broadly speaking, there are two related but con-
ceptually distinct main research directions in this area: one
is about the dynamics of gradient-based learning algorithms
(e.g. Feng & Tu (2021)); the other concerns a static descrip-
tion of the geometry, its overall structure and its relation to
the generalization properties of the network on unseen data
(e.g. Gotmare et al. (2018)). In this paper, we focus on the
latter.

A first basic observation is that (near-)minimizers of the loss,
corresponding to (near-)zero training error, can have dra-
matically different generalization properties (Keskar et al.,
2016; Liu et al., 2020; Pittorino et al., 2021). A growing
amount of evidence shows a consistent correlation between
the flatness of the minima of the loss and the test accuracy,
across a large number of models and with several alterna-
tive measures of flatness, see e.g. Dziugaite & Roy (2017);
Jiang* et al. (2020); Pittorino et al. (2021); Yue et al. (2020).
Moreover, several studies indicate that stochastic gradient
descent (SGD) and its variants introduce a bias, compared to
full-batch gradient descent, towards flatter minima (Keskar
et al., 2016; Chaudhari & Soatto, 2018; Feng & Tu, 2021;
Pittorino et al., 2021). This effect seems to be amplified by
other operating procedures, e.g. the use of the cross-entropy
loss function, drop-out, judicious initialization, ReLU trans-
fer functions (Baldassi et al., 2018; 2020; 2019; Liu et al.,
2020; Zhang et al., 2021). Therefore, in practical applica-
tions, bad minima are seldom reported or observed, even
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though they exist in the landscape.

In this paper, we present a coherent empirical exploration
of the structure of the minima of the landscape. Our work
has two main features that, taken together, sets it apart from
the majority of existing literature (see also sec. 2 on related
work): 1) The main object of our study is the (train) error
(also called “energy”) landscape, rather than the landscape
given by the objective loss with which networks are opti-
mized; 2) Our underlying geometrical space and topology
is that of networks, intended as functional relations, rather
than the space of parameters.

The first point is less crucial to our results, although it affects
the second one. Providing a detailed description of the
dynamics requires studying the train loss (usually the cross-
entropy) landscape. However, we argue that the train error
landscape is a similar but more basic object of study for a
static analysis, since it is directly related to the observable
behavior of the network, especially the generalization error.
This is assuming that the end goal of the training is to obtain
a classifier whose output is the argmax over the last layer.
The objective loss function on the other hand uses the entire
output of the layer, which is not normally needed after the
training is complete. The train error landscape is also more
amenable to theoretical analysis, e.g. Baldassi et al. (2015);
Dziugaite & Roy (2017).

The second point is inspired from similar considerations.
We posit that, after training, two networks that implement
the same input-output relation (not only on the training set,
but on any input) must be identified, even if their parameter-
ization differs, and as such we group them into equivalence
classes. In order to define a topology and a metric over this
space, we standardize the parameterization of the networks
(not during the training, but only for the geometrical de-
scription), thereby removing the symmetries that affect the
usual parameterizations. In most common networks there
are two of them: a continuous one, a scale invariance that
allows to renormalize the weights, and a discrete one, a
permutation symmetry that reflects the fact that in a hidden
layer the labels of units (or the labels of filters in convo-
lutional layers) can be exchanged. The latter in particular
means that two networks may appear to be very distant from
each other in parameter space even if they are very simi-
lar or even identical in the function they implement. For
example, this could happen if we measure the Euclidean dis-
tance between the parameters of two networks, where one
is identical to the other up to a permutation of the hidden
units within the layers. The scale symmetry can also have
this effect, and moreover it may affect many measures of
flatness making them imprecise at best and misleading at
worst (Dinh et al., 2017). These problems obviously affect
every other investigation, such as studying the paths that
join two configurations.

Our approach is thus as follows: 1) we choose a normal-
ization method that leaves the network behavior unchanged
while fixing the norm of each of the hidden units, projecting
them onto a hyper-toroidal manifold; 2) when we compare
two networks, we normalize and align them first, and con-
sider the geodesic paths between them in normalized space.
With respect to the original goal of exploring function space,
this approach is approximate, mainly for computational rea-
sons (all our procedures are efficient and have polynomial
running time with the number of parameters), and because
in our characterization of the landscape we neglect the bi-
ases and batch-norm parameters. Yet, the approximation
appears to be very good and the effect is critical. We have
applied these techniques to several networks (continuous
and discrete1, multi-layer perceptrons and convolutional net-
works) and datasets (both real-world and synthetic). In each
case, we used different training protocols aimed at sampling
zero-error configurations (also called solutions) with dif-
ferent characteristics. In particular, we compared the kind
of solutions found by SGD or its variants with momentum,
with the (typically flatter and more accurate ones) found
by the Replicated-SGD (RSGD) algorithm (Pittorino et al.,
2021), and with some poorly-generalizing solutions found
by adversarial initialization (Liu et al., 2020). With these,
we could explore the local landscape of each solution and
the paths connecting any two of them.

Remarkably, our results display some qualitative features
that are shared by all networks and datasets, but which are
visible and stable only in the space of networks as described
above, and not in that of their parameters. Besides con-
firming that flatter minima generalize better than sharper
ones, we found that they are also closer to each other in
parameter space2 (with respect to the Euclidean distance
for networks with continuous weights and with respect to
the Hamming distance for networks with binary weights),
and that geodesic paths between them encounter lower bar-
riers. Also, with few exceptions, the solutions we find can
be connected by paths of (near-)zero error with a single
bend. Overall, our results are compatible with the analysis
of the geometry of the space of solutions in binary, shallow
networks reported in Baldassi et al. (2021a;b), according to
which efficient algorithms target large connected structures
of solutions with the more robust (flatter) ones at the center,
radiating out into progressively sharper ones.

2. Related Work
Early works relating flatness and generalization perfor-
mance are Hochreiter & Schmidhuber (1997); Hinton &

1For the discrete networks that we consider the rescaling sym-
metry is substituted with another discrete (sign-reversal) symmetry.

2See Fig. 5 for a discussion concerning the distances among
different types of solutions.
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Van Camp (1993). In Keskar et al. (2016), the authors show
that minimizers with different geometrical properties can
be found by varying algorithmic choices like the batch-size.
In Jiang* et al. (2020) a large scale experiment exploring
the correlation between generalization and different com-
plexity measures reported some flatness-based measures as
the most robust predictors of good generalization perfor-
mance. Several optimization algorithms explicitly designed
for finding flatter minima have been presented in the lit-
erature, resulting in improved generalization performance
in several settings (Chaudhari et al., 2019; Pittorino et al.,
2021; Yue et al., 2020). Some analytical investigations of
phenomena related to flatness, their relation to generaliza-
tion and algorithmic implications can be found in Baldassi
et al. (2015; 2016); Zhou et al. (2018); Dziugaite & Roy
(2017).

Several recent works analyze the topic of mode connectivity
empirically and analytically. In Draxler et al. (2018), the
authors construct low-loss paths between minima of net-
works trained on image data using a variant of the nudged
elastic band algorithm (Jónsson et al., 1998). In the closely
connected work Garipov et al. (2018), the authors develop a
method for finding low-loss paths as simple as a polygonal
chain with a single bend and use this insight for creating
a fast ensembling method. In Gotmare et al. (2018) the
authors show that minima found with different training and
initialization strategies can be connected by high accuracy
paths. Notably for the present work, the authors note that
some of these choices like batch size or the optimizers are
expected to have an effect on the flatness of the found so-
lutions. Mode connectivity in the context of adversarial
attacks has been studied in Zhao et al. (2020), where the
authors also propose to exploit mode connectivity to repair
tampered models. In Kuditipudi et al. (2019) it is shown
analytically that, given some suitable assumptions on the ro-
bustness of the network, a low-loss path can be constructed
between the solutions of ReLU networks with multiple lay-
ers. A similar result is derived in Shevchenko & Mondelli
(2020) for networks trained specifically with SGD.

The importance of symmetries for the question of flatness
has been highlighted in Dinh et al. (2017), where symme-
tries are used to show that simple notions of flatness are
problematic. In Brea et al. (2019), low-loss paths between
minimizers are constructed that cross ’permutation points’,
which are points where the weights associated with two
hidden neurons in the same layer coincide. In Tatro et al.
(2020), a method for aligning neurons based on matching
activation distributions is introduced and the authors show
analytically and empirically that this method increases mode
connectivity. In Singh & Jaggi (2020) a neuron alignment
method based on optimal transport is introduced in the con-
text of model fusion, where one tries to merge two or more
trained models into a single model. Among other results, the

authors show that matching is crucial when averaging the
weights of models trained in the same or different settings
(for example trained on different subsets of the labels). In
Entezari et al. (2021), the authors test the hypothesis that
barriers on the linear path between minima of ReLU net-
works found by SGD vanish if the permutation symmetry
is taken into account. They present evidence in the form of
extensive numerical tests, exploring different settings with
respect to the width, depth and architectures used.

3. Numerical tools for the study of the energy
landscape geometry

As stated in the introduction, our aim is to study the ge-
ometry of the error landscape (which we will also call the
“energy” landscape) in the space of networks. In partic-
ular, after sampling solutions (zero-error configurations)
with different characteristics we study their flatness pro-
files and two types of paths connecting them: geodesic
and optimized paths. The latter are obtained by finding
a midpoint between two networks, using it as the start-
ing point of a new optimization process that reaches zero
error, and then connecting the new solution to the two
original endpoints via two geodesic paths (this is a mod-
ified procedure of what is called polygonal chains with
one bend in Garipov et al. (2018), where the authors use
euclidean geometry and do not account for the permuta-
tion symmetry). To make these definitions precise, we first
need to describe the tools by which we remove the sym-
metries in the neural networks (code available at https:
//gitlab.com/bocconi-artlab/matchingnn).

We will use the following notation. We denote a whole
neural network (NN) with Θ, and with L the number of
its layers. We use the index ` = 1, . . . , L for the layers,
and denote the number of units in the layer by H`. Each
layer has associated parameters that we collectively call θ`

(which include batch-norm parameters if used). The input
weights for the k-th unit are w`k and its bias b`k. For all
layers except the last, the activations are x`k = ReLU

(
∆`
k

)
,

where ∆`
k are the pre-activations. In binary networks we

change the ReLU with a sign. The last layer is linear and
the output of the network is given by argmaxk(xLk ). In
binary classification tasks we use a single output unit, and a
sign instead of an argmax.

3.1. Breaking the symmetries

3.1.1. NORMALIZATION

Networks with continuous parameters and ReLU activation
functions are invariant to the rescaling of the weights of
the units in each hidden layer by a positive real value (that
may be different for each unit), since the ReLU function
has the property ReLU(a∆) = aReLU(∆) for any a > 0.

https://gitlab.com/bocconi-artlab/matchingnn
https://gitlab.com/bocconi-artlab/matchingnn
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To break this symmetry, we apply the following normaliza-
tion procedure, starting from the first layer and proceeding
upward, see alg. 1.

Algorithm 1 Neural Network Normalization
Input: A NN with continuous weights, L layers, parame-
ters {θ`}L`=1 and ReLU activations.
for ` = 1 to L− 1 do
{|w`k|}H

`

k=1 = ComputeUnitNorms(θ`)

Rescale(θ`, {|w`k|}H
`

k=1)

InverseRescale(θ`+1, {|w`k|}H
`

k=1)
end for
|w|L = ComputeLayerNorm(θL)
Normalize(θL, |w|L)

For each layer `, starting from the first and up to L− 1, we
calculate the norm |w`k| of each hidden unit k in the layer,
and we multiply its incoming weights, bias and batch-norm
parameters by |w`k|−1, and its outgoing weights by |w`k|. As
a result, all the units in the layer have norm 1, while the
function realized by the network (and also its loss) remains
unaffected. The last layer does not have this symmetry,
but it can be globally rescaled by a positive factor since
the output of the network is invariant with respect to this
operation (as a consequence of using the argmax operation).
For consistency with the other layers, we normalize the
last layer to

√
HL. The resulting space is a product of

normalized hyper-spheres (one for each hidden unit apart
from the ones in the last layer, which is globally normalized
to a single hyper-sphere), inducing a generalized hyper-
toroidal topology.

This normalization choice is rather natural, results in simple
expressions for the computation of the geodesics (see be-
low), and leads to sensible results; it is certainly not the only
possible (or reasonable) one, and other possibilities might
be worth exploring.

3.1.2. ALIGNMENT

Multi-layer networks (continuous or discrete) also have a
discrete permutation symmetry, that allows to exchange the
units in the hidden layers (neurons in fully-connected layers
and filters in convolutional layers). When comparing two
networks Θa and Θb, we break the symmetry by first nor-
malizing both networks, and then by applying the following
alignment procedure, again starting from the first layer and
proceeding upward, see alg. 2.

For each layer ` = 1, . . . , L − 1, we use a matching
algorithm to find the permutation π of the indices of
the second network that maximizes the cosine similarity3

3We can ignore the norms, thanks to our choice of the nor-
malization and the fact that we do not match the last layer. For

Algorithm 2 Neural Network Alignment
Input: Two normalized NNs of the same type Θa, Θb

with L layers and parameters {θ`a}L`=1, {θ`b}L`=1.
for ` = 1 to L− 1 do
π` = Match(θ`a, θ

`
b)

PermutePrev(θ`b, π
`)

PermuteNext(θ`+1
b , π`)

end for

∑H`

k=1(wa)`k · (wb)`π(k). The permutation is applied to both
the ingoing and the outgoing indices of the weights of
layer ` of the second network (as well as other parameters
associated to the units such as the biases and the batch-
norm parameters). For the matching algorithm, we use
linear sum assignment from SciPy (Virtanen et al.,
2020), which uses a quadratic modified Jonker-Volgenant
algorithm. Any algorithm solving the minimum weight
matching in bipartite graphs problem would be appropriate.

In the case of discrete networks, we use the sign activation
function instead of the ReLU, thus instead of a continuous
rescaling symmetry there is a discrete sign-reversal one (al-
lowing to flip the signs of all ingoing and outgoing weights
of any hidden unit). We break this symmetry during the
alignment step: in the matching step, we use the absolute
value of the cosine similarities in the optimization objective,
then we apply the permutation, and finally for each unit we
either flip its sign or not based on which choice maximizes
the cosine similarity.

This procedure is not guaranteed to realize a global distance
minimization between the two networks in a worst-case
scenario (and it is not clear whether such goal would be
computationally feasible). It also does not take into account
the biases, if present. However, it guarantees that if Θa and
Θb are the same network with shuffled hidden units labels,
at the end they will be perfectly matched almost surely.
Furthermore, it is simple to implement, computationally
efficient, and rather general (it applies to fully-connected
and convolutional layers, to continuous or discrete weights).
Basing the matching on the weights (as opposed to using
e.g. the activations) is also data-independent and consistent
with our overall geometrical picture.

3.1.3. GEODESIC PATHS

Given two (non-normalized) continuous networks Θa and
Θb, we want to consider the geodesic paths between the
networks in function space. Formally, this is defined as
the shortest path between all possible permutations of
the networks in the normalized space. We approximate
this with the path between the normalized-and-aligned

the same reasons, this is also equivalent to minimizing a squared
distance.
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networks, which can be computed easily thanks to our
choice of the normalization. Consider first a hyper-sphere
of norm n, and two vectors v1, v2 on it. The angle be-
tween them is φ = arccos(v1 · v2/n2), and their (geodesic)
distance is nφ. A generic point along the geodesic, lo-
cated at distance xnφ from v1 where x ∈ [0, 1], can
be expressed as nNormalize(v1 + t(x)(v2 − v1)) where
t(x) = (1− cos(φ) + sin(φ)/ tan(φx))

−1. This is eas-
ily extended to the metric on the full network: given two
normalized-and-aligned networks, we can simply apply this
formula independently (but with the same x) to each hid-
den unit of the first L − 1 layers (with norm 1) and to the
last layer (with norm

√
HL). Similarly, the overall squared

geodesic distance is just the sum of the squared geodesic
distances within each spherical sub-manifold.

For discrete binary networks we use the Hamming distance
to measure the discrepancy between two (aligned) networks.
In this case there is no analog to the geodesic path, since
there are multiple shortest paths connecting any two net-
works: each path corresponds to a choice of the order in
which to change the weights that differ between the two
networks. In our tests, we simply pick one such path at
random. In this case, all curves are averaged over different
random paths realizations, and although there is of course
some variability (see error bars in the plots), it does not af-
fect the results. Optimizing the curves using e.g. simulated
annealing turned out to be too computationally expensive.

3.2. Minima with Different Flatness and Generalization

We sample different kinds of solutions by using different
algorithms. The standard minima are found by using the
Stochastic Gradient Descent (SGD) algorithm with Nes-
terov momentum. In order to find flatter minima, we use
replicated-SGD (RSGD), see Pittorino et al. (2021), which
was designed for this purpose. To find sharper minima, we
use the the adversarial initialization described in Liu et al.
(2020) followed by the SGD algorithm without momentum.
We call this method ADV; it was developed to overfit the
dataset and produce poorly generalizing solutions, but since
there is a known correlation between flatness and general-
ization error, we expect (and indeed confirm a posteriori)
that these solutions are sharp.

In all cases, we do not use `2 regularization or data augmen-
tation; the only image pre-processing in our experiments is
normalization of images to zero mean and unit variance.

In the case of discrete binary networks we used the same
techniques, but based on top of the BinaryNet training
scheme (see e.g. Simons & Lee (2019)), which is a variant
of SGD tailored to binary weights. Our implementation
differs from the original one (Hubara et al., 2016) in that the
output layer is also binary (details in SI Sec. B).
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Figure 1. Flatness and generalization for several algorithms. Green
triangles: RSGD; blue circles: SGD; red squares: ADV. Columns
1 and 3: local energies as a function of noise amplitude; columns 2
and 4: corresponding local energies (at maximal reported noise)
versus test error. Shades and error-bars are standard deviations
(over 100 sampled configurations for each noise amplitude).

4. Neural Networks with Continuous Weights
In this section we present results on the energy landscape ge-
ometry and connectivity obtained on NNs with continuous
weights. We consider 3 different architectures of increasing
complexity: a) a multi-layer perceptron (MLP) with 2 hid-
den layers of 512 units; b) a small LeNet-like architecture
with 2 convolutional layers of 20 and 50 5×5 filters followed
by a 2× 2 MaxPool and one fully-connected layer of 500
units; c) the VGG16 architecture (Zhang et al., 2015) with
batch normalization (the only network we train with batch-
normalization: the corresponding parameters and running
means/variances have to be permuted/rescaled coherently
with the other layers’ parameters). We train architectures a)
and b) on MNIST, Fashion-MNIST and CIFAR-10, while
architecture c) is trained on the CIFAR-10.

4.1. Flatness and generalization

We train these 3 networks with the 3 algorithms described
in Sec. 3.2 (RSGD, SGD, ADV) for 300 epochs, sufficient
to find a configuration at zero training error (or with error
< 1% (Jiang* et al., 2020)). In Fig. 1 we show that the
flatness of the solutions, measured by the local energy, fol-
lows the expected ranking between the algorithms, and the
expected correlation with the generalization error, confirm-
ing that flatter minima generalize better. The local energy
δEtrain is defined as the average train error difference ob-
tained by perturbing a given configuration w with a multi-
plicative Gaussian noise of varying amplitude σ, in formulas:
δEtrain(w, σ) = Ez Etrain(w+σz�w)−Etrain(w) where�
is element-wise multiplication and z ∼ N (0, 1). We notice
here that the local energy is one among possible flatness
definitions (with respect to weights perturbations) that corre-
lates with generalization, and that other choices are possible,
e.g. the robustness with respect to input perturbations.
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4.2. Landscape geometry and connectivity

Analyzing the connectivity of minima with different flatness
levels allows us to explore the fine structure of the energy
landscape, shedding light on the geometry of possible con-
nected basins and/or on the presence of isolated regions. To
this aim we choose 5 distinct pairs of solutions (in order
to calculate standard deviations, represented by shaded ar-
eas in the figures) for each of the 6 possible paths among
the 3 types of solutions: the paths between solutions of
the same flatness (RSGD-RSGD, SGD-SGD, ADV-ADV)
and of different flatness (RSGD-SGD, RSGD-ADV, SGD-
ADV). We calculate the train error of configurations along
the paths connecting these different solutions and define the
barrier along the path as the highest encountered train error
(solutions are at training error < 1%).

Let us notice that what we call energy along the paper, i.e.
the train error, is directly related to applications and exhibits
more symmetries (e.g., in the norm of the last layer) than the
objective loss with which the networks have been optimized
(in our work the cross-entropy). When calculating the loss
along the one-dimensional paths and the bi-dimensional
sections, defining representatives for the equivalence classes
is less straightforward, and results are less uniform across
models. This is possibly due to the fact that the last layer,
that is not normalized when considering the loss rescaling
symmetry, may result in having very different norms across
different solutions.

Geodesic paths We show the error along the geodesic
paths connecting pairs of minima for the different networks
and datasets in Fig. 2. The top row in the figure demon-
strates the effect of accounting for the symmetries, by show-
ing three sets of curves - one set per panel, left to right:
linear paths between raw configurations as output by the
algorithms; linear paths in which the endpoint networks are
aligned but not normalized4; the geodesic path between the
normalized-and-aligned networks. We can see that: a) tak-
ing into account the permutation symmetry the barriers are
lowered; b) following the geodesic removes the distortion in
the paths, such that they appear flatter towards flatter solu-
tions as they should c) considering these two symmetries the
barriers heights (in particular their maximal value) follow
a general overall ranking which is correlated to the flatness
level of the corresponding solutions: the RSGD-RSGD one
is consistently the lowest, followed by RSGD-SGD and
SGD-SGD, then RSGD-ADV and SGD-ADV, and finally
ADV-ADV is consistently the highest.

The top row of Fig. 2 is a representative example; analogous
figures for all the other networks/datasets considered in the
paper are reported in the Appendix, Sec. A.2. In all cases,

4We still maximize the layers’ cosine similarity when perform-
ing the alignment.

accounting for the symmetries of the network is indeed
critical to reveal these seemingly very general geometrical
features. Let us notice that while the principal effect on
the barrier’s height is due to the permutation symmetry,
moving along the geodesic path reflects in the particular
shape of the path itself and on distances along the path
(see also Fig. 5); as the train error is invariant w.r.t. the
normalization procedure, large variations in barriers’ height
when considering this symmetry are not expected (but still
possible due to the change in the path). In the case of
solutions with different flatness level, a left-right asymmetry
in the geodesic paths appears (even if not always with the
same intensity), by coherently assigning a flatter profile
towards the flatter configuration.

Notably, by sampling solutions with high flatness level using
RSGD, we are able to target increasingly connected struc-
tures, even in cases like VGG in which they could appear as
missing, see the black path in the lower-right panel of Fig. 2.
We obtain, for example, much smaller barriers for linear
mode connectivity than the ones found for the same type of
network and dataset in (Entezari et al., 2021), although the
barriers are still around 20% of train error.
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Figure 2. Error landscape along one-dimensional paths connecting
minima of different flatness (minima appear on left/right following
the up/down order of the legend). All distances have been rescaled
in [0, 1]. The top row highlights the general effect of the symme-
tries in a representative example (LeNet on Fashion-MNIST). All
other panels report the geodesic-aligned paths representing the
final result of our analysis. Shades are standard deviations over 5
distinct pairs of solutions.
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Optimized paths Our procedure to find the optimized
paths is the following: we first align the two endpoint net-
works, then find their midpoint, optimize it for 300 epochs
with SGD in order to reach zero training error, and explore
the two aligned geodesics connecting the optimized mid-
point and the endpoints. The barrier in this case is defined
as the highest training error encountered along the union of
these two geodesics. We define the optimized path in this
way (Garipov et al., 2018) because we seek a low-error path
that is close to a straight path and also simple to find and
define.

We report a representative example in Fig. 3 (for the other
networks/datasets see Appendix Sec. A.2). Again, we con-
trast three situations, one in which we use straight seg-
ments between non-normalized unaligned configurations,
one where we remove the permutation symmetry, and one
where we use the geodesic paths. The barriers are much
lower than for the unoptimized paths even in the unaligned
linear case, but removing the permutation symmetry has
still an important effect in lowering the barriers, and in most
cases (like the one shown here) it removes them entirely.
The presence of non-zero barriers in the SGD-ADV and
RSGD-ADV cases in the left panel of Fig. 3, which would
seem counter-intuitive given the absence of barriers in the
ADV-ADV case, is removed after taking symmetries into
account, thus showing an example of the need of this op-
eration in order to obtain uniform and interpretable results.
Intriguingly, in the (very high-dimensional) VGG case, the
optimized barriers are smaller than 0.1% in all cases (see
lower-right panel of Fig. 10), even though the barriers in the
linear connectivity remain significantly different from zero
even after removing symmetries (see lower-right panel of
Fig. 2).
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Figure 3. Removing the permutation symmetry eliminates the bar-
riers that may appear in the single-bend optimized paths. Left
to right: linear path; linear-aligned path; geodesic-aligned path.
Shades are standard deviations over 5 distinct pairs of solutions.

Bi-dimensional visualizations Following Garipov et al.
(2018), we study the error landscape on bi-dimensional
sections of the parameters space using the Gram-Schmidt
procedure. This procedure consists in considering the 3

solution vectors that specify the bi-dimensional plane, defin-
ing an orthonormal basis of this plane containing these 3
vectors, defining a Cartesian grid in this basis and evaluating
the error of the networks corresponding to each of the points
in the grid (see Garipov et al. (2018) for details).

In Fig. 4 we show the results on the planes defined by an
RSGD solution (left-most point), an unaligned ADV solu-
tion (right-most point) and the corresponding aligned ADV
solution (top point). We show the non-normalized (left pan-
els) and normalized (right panels) cases. In the normalized
case, the plane as a whole does not lie in normalized space
(only the three chosen points do) and thus the plot suffers
from some (presumably mild) distortion. Nevertheless, we
can still see that accounting for the permutation symmetry
alone reduces the distance between different minima and
can lower the barriers between them, but also that only after
normalization the expected relative sizes of the basins are
revealed.
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Figure 4. Bi-dimensional landscape sections obtained using the
Gram-Schmidt procedure (see main text). Top row: LeNet,
Fashion-MNIST. Bottom row: VGG16, CIFAR10. Left column:
without normalization, lines are linear paths. Right column: with
normalization, lines are distorted geodesics. In each panel the left
point is RSGD, the right point unaligned ADV, the middle/top
point is aligned ADV. Aligning the NNs can lower the barriers
(not for VGG in this RSGD-ADV case), normalization reveals the
geometry around them.

Distances. We studied the distances between pairs of so-
lutions, categorized according to their flatness. Some repre-
sentative results are reported in Fig. 5, the full results are in
Appendix Sec. A.4. When NNs are normalized and aligned,
we consistently find that flatter solutions are closer to each
other than sharper ones. In optimized paths, the optimized
midpoints end up closer to the flatter solutions. Although
our sampling is very limited, these results (together with all
the previous ones) are compatible with the octopus-shaped
geometrical structures described in (Baldassi et al., 2021b).
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Figure 5. Distances between configurations, MLP on MNIST.
(Left panel) Euclidean distance between configurations indepen-
dently sampled by different algorithms (on the x-axis: R≡RSGD;
S≡SGD; A≡ADV). (Middle panel) Euclidean distance between
the optimized midpoint initialized as the mean of the two configu-
rations in the x-axis with the one indicated on the left; (left panel)
same as the middle panel but the distance is between the optimized
midpoint and the configuration indicated on the right in the x-axis.

5. Neural Networks with Binary Weights
In this section we present some results on the error landscape
connectivity of binary NNs, in which each weight (and
activation) is either 1 or −1, a topic that is almost absent in
literature.

We considered two main scenarios: shallow networks on
synthetic datasets, for which a comparison with some the-
oretical results is possible, and deep networks, both MLP
and convolutional NNs, on real data.

5.1. Over-parameterized Shallow Networks on
Synthetic Datasets

In order to bridge the gap with the theory, we performed
numerical experiments on the error landscape connectivity
in shallow binary architectures trained on data generated by
the so called Hidden Manifold Model (HMM), also known
as Random Features Model (Goldt et al., 2020; Gerace et al.,
2020; Baldassi et al., 2021a).

The HMM is a mismatched student-teacher setting. The
teacher generating the labels is a simple one-layer network,
whose inputs are D-dimensional random i.i.d. patterns.
The students does not see these original patterns, but a
non-linear random projection onto an N -dimensional space.
By varying the relative size N/D of the projection, the
degree of overparameterization can be controlled. This
arrangement aims to provide an analytically tractable model
that retains some relevant features of the most common
real-world vision datasets (Goldt et al., 2020).

We trained both a binary perceptron and a fully connected
binary committee machine (CM), i.e. a network with a
single hidden layer where the weights of the output layer are
fixed to 1. Using data from a HMM, we analyzed the error
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Figure 6. Fully connected binary CM trained on HMM data (see
text). Top Left: Local energies for different classes of solutions.
Inset: local energy at a fixed distance from a solution (δ in the
main plot) as a function of the number of parameters. Top right:
Test errors decrease with overparameterization and correlate with
local energies. Bottom left: Average hamming distances between
different solutions, before and after removal of symmetries. All dis-
tances grow with overeparameterization. Bottom right: Maximum
barrier height (train error percentage) along a random shortest path
connecting two solutions. Barriers go to zero with overparameteri-
zation.

landscape around solutions of different flatness, at varying
levels of overparameterization (all implementation details
are reported in Appendix Sec. B).

In this regime, the analysis of Baldassi et al. (2021a) sug-
gests a scenario where algorithmically accessible solutions
are arranged in a connected zero-error landscape, with flatter
solutions surrounded by sharper ones. Overall, the numeri-
cal findings we report here are consistent with this scenario.

In Fig. 6 we report the results for the binary CM (similar
results were obtained for the binary perceptron, see Ap-
pendix Sec. B). As the number of parameters is increased,
the flatness of all the solutions increases (while the rank-
ing RSGD-SGD-ADV is preserved), and the generalization
error is correlated with the flatness, as expected. As more
parameters are added and solutions become flatter, the aver-
age maximum error along random linear paths connecting
two solutions decreases. We observe a robust correlation
between barrier heights and flatness: the flatter the solu-
tion, the lower the barrier. However, the barriers are not
significantly affected by aligning the networks.

5.2. Deep Architectures on Real-World Datasets

We consider two deep binary NNs: a MLP with 3-hidden-
layers of 1001 units each, trained on the Fashion-MNIST
dataset, and a 5-layers convolutional NN trained on CI-
FAR10 (implementation details in Appendix Sec. B).

For both architectures we analyzed the error landscape along
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Figure 7. Three hidden layer binary MLP trained on the Fashion-
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percentage along random linear paths connecting solutions, for
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Insets: errors along the optimized paths. The change in distance
due to symmetries removal may be appreciated in the x-axis.

random shortest paths connecting pairs of solutions with dif-
ferent flatness. Results are reported in Fig. 7. As expected,
the average barrier height correlates with the local energies
of the solutions (and in turn with test errors). The barriers
are lowered when symmetries are removed, and are lowered
further when the paths are optimized (although they remain
considerably large, especially for the convolutional NNs).

The effect of removing symmetries on the error landscape
connectivity can be appreciated in Fig. 8 (see also Ap-
pendix Fig. 23 for analogous results on the convolutional
network), where we projected the error landscape onto the
plane spanned by the different solutions. We used the in-
ternal continuous weights used by BinaryNet (of which the
actual weights are just the sign) and proceeded as in the
continuous case (Sec. 4.2), but at each point we binarized
the configurations in order to obtain the errors (details in
Appendix Sec. B). The resulting projections are a heavily
distorted representation, but the effect of symmetry removal
on the barriers is rather striking, especially in the case of
the wider minima, revealing the presence of a connected
structure.

6. Conclusions and discussion
We investigated numerically several features of the error
landscape in a wide variety of neural networks, building on
a systematic geometric approach that dictates the removal
of all the symmetries in the represented functions. The
methods we developed are approximate but simple, rather
general and efficient, and proved to be critically important to
our findings. By sampling different kinds of minima, inves-
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tigating the landscape around them and the paths connecting
them, we found a number of fairly robust features shared
by all models. In particular, besides confirming the known
connection between wide minima and generalization, our
results support the conjecture of Baldassi et al. (2021a): that,
for sufficiently overparameterized networks, wide regions of
solutions are organized in a complex, octopus-shaped struc-
ture with the denser regions clustered at the center, from
which progressively sharper minima branch out. Intrigu-
ingly, a similar phenomenon has been recently observed
also in the—rather different—context of systems of coupled
oscillators (Zhang & Strogatz, 2021).

Our work lies at the intersection of two lines of research
that have seen significant interest lately: one on mode con-
nectivity and the structure of neural network landscapes and
the other on flat minima and their connection to generaliza-
tion performance. In this context, our work contributes to
a deeper understanding of how deep neural networks oper-
ate. This may have algorithmic implications, for example
previous investigations led to enabling better ensembling
schemes (see, e.g. Garipov et al. (2018)), hyperparame-
ter choices (see, e.g. Foret et al. (2021)) and methods for
improving generalization (Pittorino et al., 2021), and has
the potential to also help architecture design. Work is in
progress to investigate the algorithmic implications of our
results. We believe that further systematic explorations of
the topics treated in this paper can produce results of great
theoretical interest and significant algorithmic implications.
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Goldt, S., Mézard, M., Krzakala, F., and Zdeborová, L.
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A. Neural Networks with Continuous Weights
We report complete and additional results on the Neural Networks (NNs) with continuous weights studied in the main paper.

A.1. Numerical details and parameters

The training parameters for the 3 algorithms for all the networks/datasets tested in the main paper are: (SGD) SGD
with Nesterov momentum and initial learning rate 0.02 with cosine annealing (0.002 for MLP on CIFAR-10); (RSGD)
Replicated-SGD with Nesterov momentum and initial learning rate 0.05 with cosine annealing, y = 5 replicas, with an
exponential schedule on the interaction parameter γt = γ0(1 + γ1)t with γ0 and γ1 automatically chosen (see Pittorino
et al. (2021) for details on this algorithm); (ADV) for the configurations obtained with the adversarial initialization, we use
vanilla SGD and initial learning rate 0.02 with cosine annealing (see Liu et al. (2020) for details on the generation of this
initialization: we replicate one time the dataset with random labels, i.e. R = 1, and we zero-out a 10% random fraction of
the pixels in each image). We train all networks with batch-size 128 and for 300 epochs in order to reach training errors
< 1%. Neither data augmentation nor `2 regularization are used in our experiments.

A.2. One-Dimensional Paths

We add here further results on the comparison among Linear, Linear-Aligned and Geodetic-Aligned one-dimensional paths
on the networks/dataset with continuous weights studied in the main paper. We report in Fig. 9 the paths without optimizing
the midpoint, while in Fig. 10 the results obtained by optimizing it (the single-bend optimized paths).
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Figure 9. Error landscape along one-dimensional paths connecting minima of different flatness (minima appear on left/right following
the up/down order of the legend). For each network/dataset the comparison highlights the general effect of the symmetries. The
geodesic-aligned paths represents the final result of our analysis.
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Figure 10. Removing the permutation symmetry eliminates the barriers that may appear in the single-bend optimized paths. For each
network/dataset, left to right: linear path; linear-aligned path; geodesic-aligned path. For these optimized paths with one bend, the
midpoint is optimized with batch-size 128 for 300 epochs with Nesterov momentum and initial learning rate 0.02 with cosine annealing
in order to reach training error equal or almost equal to zero.

A.3. Bi-Dimensional Visualization

In this section we report bi-dimensional visualizations for some of the networks/datasets explored in the main paper. In
Fig. 11 we compare train and test errors for LeNet on Fashion-MNIST (RSGD-ADV); In Figs. 12 and 13 we report
visualizations for all pairs of LeNet on Fashion-MNIST (without and with normalization respectively); In Figs. 14 and 15
we report visualizations for all pairs of MLP on CIFAR-10 (without and with normalization respectively); in Fig. 16 we
show the effects of permutation symmetry removal on VGG16 on CIFAR-10 for solutions of varying sharpness.
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Figure 11. Bi-dimensional sections, LeNet on Fashion-MNIST. Train errors (panels 1 and 3) and test errors (panels 2 and 4). Comparison
of RSGD (left points), unaligned ADV (right points), aligned ADV (top points). Panels 1 and 2: without normalization. Panels 3 and 4:
with normalization. Dashed lines represent linear (panels 1 and 2) and geodesic paths (panels 3 and 4).
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Figure 12. Bi-dimensional sections of the train error, LeNet on Fashion-MNIST, without normalization. Top points are the aligned version
of the right point w.r.t. the left point. Top row: (left) left-right points: RSGD-RSGD; (middle) left-right points: SGD-SGD; (right)
left-right points: ADV-ADV. Bottom row: (left) left-right points: RSGD-SGD; (middle) left-right points: RSGD-ADV; (right) left-right
points: SGD-ADV. Aligning the NNs lowers the barriers and in some cases reveals that solutions lie in closer and connected basins.
Dashed lines represent linear paths.

10 0 10 20 30 40

20

0

20

40

60

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

10 0 10 20 30 40

20

0

20

40

60

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

10 0 10 20 30 40

20

0

20

40

60

0.063

0.088

0.15

0.4

1.3

4.5

16

60

> 60

10 0 10 20 30 40

20

0

20

40

60

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

10 0 10 20 30 40

20

0

20

40

60

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

10 0 10 20 30 40

20

0

20

40

60

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

Figure 13. Bi-dimensional sections of the train error, LeNet on Fashion-MNIST, with normalization. Top points are always the aligned
version of the right point w.r.t. the left point. Top row: (left) left-right points: RSGD-RSGD; (middle) left-right points: SGD-SGD; (right)
left-right points: ADV-ADV. Bottom row: (left) left-right points: RSGD-SGD; (middle) left-right points: RSGD-ADV; (right) left-right
points: SGD-ADV. Normalization reveals the geometry around the solutions. Dashed lines represent distorted geodesic paths.
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Figure 14. Bi-dimensional sections of the train error, MLP on CIFAR-10, without normalization. Top points are the aligned version of the
right point w.r.t. the left point. Top row: (left) left-right points: RSGD-RSGD; (middle) left-right points: SGD-SGD; (right) left-right
points: ADV-ADV. Bottom row: (left) left-right points: RSGD-SGD; (middle) left-right points: RSGD-ADV; (right) left-right points:
SGD-ADV. Aligning the NNs lowers the barriers and in some cases reveals that solutions lie in closer and connected basins. Dashed lines
represent linear paths.
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Figure 15. Bi-dimensional sections of the train error, MLP on CIFAR-10, with normalization. Top points are always the aligned version of
the right point w.r.t. the left point. Top row: (left) left-right points: RSGD-RSGD; (middle) left-right points: SGD-SGD; (right) left-right
points: ADV-ADV. Bottom row: (left) left-right points: RSGD-SGD; (middle) left-right points: RSGD-ADV; (right) left-right points:
SGD-ADV. Normalization reveals the geometry around the solutions. Dashed lines represent distorted geodesic paths.



Deep Networks on Toroids: Removing Symmetries Reveals the Structure of Flat Regions in the Landscape Geometry

20 0 20 40 60 80 100 120

50

0

50

100

150

200

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

50 0 50 100 150 200 250

100

0

100

200

300

400

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

50 0 50 100 150 200 250 300

100

0

100

200

300

400

500

0

0.025

0.091

0.33

1.2

4.5

16

60

> 60

Figure 16. Bi-dimensional sections of the train error, effect of the permutation symmetry on VGG16 trained on CIFAR-10. Top points are
the aligned version of the right point w.r.t. the left point. (Left) left-right points: RSGD-RSGD; (Middle) left-right points: SGD-SGD;
(right) left-right points: ADV-ADV. Aligning the NNs lowers the barriers and in some cases reveals that solutions lie in closer and
connected basins (for RSGD-RSGD and to a lesser extent for SGD-SGD), while it is not sufficient in other cases (ADV-ADV). Dashed
lines represent linear paths.

A.4. Distances

We report in Fig. 17 the distances between configurations and optimized midpoints for the networks/datasets studied in the
main paper.
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Figure 17. Distances between optimized configurations. For all networks/datasets: (Left panel) distance between configurations indepen-
dently sampled by different algorithms (on the x-axis: R≡RSGD; S≡SGD; A≡ADV). (Middle panel) distance between the optimized
midpoint initialized as the mean of the two configurations in the x-axis with the one indicated on the left; (left panel) same as the middle
panel but the distance is between the optimized midpoint and the configuration indicated on the right.
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B. Neural Networks with Binary weights
Here we provide implementation details for the experiments presented in Section 5, as well as additional numerical tests. In
all our experiments we used the BinaryNet training scheme (see e.g. Simons & Lee (2019)), which is a variant of SGD
tailored to binary weights. Notice that our implementation differs from the original one (Hubara et al., 2016) because we use
binary weights in the whole network, including the output layer. In all the cases, for each solution type (ADV, SGD, RSGD)
we were able to obtain solutions with zero or close to zero (< 1%) train error.

Local Energies The local energy provides a robust measure of the flatness of a given solution. It has been shown to be
highly correlated with generalization errors (Jiang* et al., 2020; Pittorino et al., 2021). It is defined as the average error as a
function of the distance from a reference solution. In the case of binary weights neural networks, we perturb a solution
by changing sign to a random fraction ε of the weights, and measure the train error for random choices of the perturbed
weights. δE(w, ε) = Eε [E(w, ε)] − E(w, ε = 0), where E(w, ε = 0) is the train error of the unperturbed solution. By
varying ε we are able to obtain the profile of the errors as a function of the hamming distance from the reference solution. In
all the experiments, for each value of ε we average the errors over 10 independent realizations of the choice of the perturbed
weights.

Random Linear Paths and Optimized Paths In order to explore the barriers between different solutions we measured
the train error along the shortest paths connecting them. Given a source solution and a destination solution, we simply count
the number of weights with different sign (that corresponds to the extensive hamming distance), progressively change the
sign of those weights in the source solution in order to approach the destination solution, and measure the errors along
the path. In all the experiments we consider 3 solutions for each ADV, SGD, RSGD (see Sec. 3.2). The reported paths
are averaged over all the 6 possible paths among solutions of a given type (back and forth), and over 5 realizations of the
random path (the weight flipping order).

Optimized paths are random linear paths with one bend. We take a weight vector located at equal distance between two
solutions, and use it to initialize SGD. In all the experiments the middle point has been optimized using the same parameters
of SGD-type solutions. We then report the random linear paths between the source and the optimized middle point, and the
optimized middle point and the destination. For each of the 6 possible couples of solutions we averaged over 3 independent
choices of the middle point and 5 realization of the random paths.

Shallow binary networks and the Hidden Manifold Model We trained both a binary perceptron and a binary fully-
connected committee machine (CM) on synthetic data generated by the so-called Hidden Manifold Model (HHM) (Goldt
et al., 2020; Gerace et al., 2020; Baldassi et al., 2021a), also known as the Random Features Model (Mei & Montanari,
2019).

In the HMM the data are first generated in a D-dimensional manifold, where a perceptron teacher {wTi }Di=1 assigns to a set
of P random i.i.d. patterns {ξµ}Pµ=1 a label, according to yµ = sign

(
wT · ξµ

)
. Then the student sees a non-linear random

projection of the data into an N-dimensional manifold: xµi = sign
(∑D

k=1 Fikξ
µ
k

)
, where F ∈ RN×D is a fixed random

matrix with i.i.d. elements, and classify them according to the teacher label. In our experiments we fixed the size of the
perceptron teacher (i.e. the dimension of the data points in their hidden manifold) to D = 501 and the pattern number to
P = 1503, so that we are working at αT ≡ P/D = 3. By increasing the size N of the projection, we are able to study the
system in the over-parameterized regime (αD ≡ D/N → 0) (see also (Baldassi et al., 2021a)). In the case of the CM we
fixed the hidden layer size to H = 101 and vary the input size N .

In Fig. 18 we report the results for the binary perceptron, analogous to the ones presented in the main text in Fig. 6. In the
perceptron case there is no redundancy in the function expressed in the student model, so that solutions do not need to be
aligned. As for the CM, in the limit D/N → 0 we can see that solutions get flatter and the maximum error along random
paths connecting them approaches zero. Even in this case, we observe a strong correlation among flatness (as measured with
the local energy), generalization errors and maximum barrier heights.

We report training parameters for both models. Each model is trained with batchsize 100 for 200 epochs with binary cross
entropy loss and SGD without momentum. For both the binary perceptron and the CM we used the following parameters:
(SGD) lr= 1.0, (RSGD) lr=1.0, with 5 replicas coupled with an elastic constant γ(t) = 0.002 ∗ (1.002)t, where t is the
epoch. (ADV) networks have been first trained on a modified train set with randomized labels with lr= 10.0 for 500 epochs.
The resulting configuration is used as an initial condition and has been optimized with SGD for 200 epochs and lr= 5.0.
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Figure 18. Binary Perceptron trained on data generated by the Hidden Manifold Model (see also Fig. 6) (Left) Local energy of different
solutions. Inset: local energy at a fixed distance (δ) as a function of the number of parameters. (Center Left) Generalization errors of
different solutions as a function of the number of parameters. (Center Right) Average hamming distance of different solutions. (Right)
Average maximum train error (percentage) along random linear path connecting different solutions.

Binary Multi-layer Perceptrons We consider two binary Multi-layer perceptron (MLP) architectures: a) a two hidden
layer MLP trained on 10k MNIST images (binary classification of the parity of digits), and b) a three hidden layer MLP
trained on FashionMNIST. For architecture a) we analyzed the effect of removing symmetries as the network size is
increased, by increasing the width of the hidden layers, while MLP b) has three hidden layer of fixed size H = 1001.
In case a), for all hidden layer widths, we optimized the binary cross-entropy loss for 1000 epochs using SGD with no
momentum, with fixed batchsize 100 and lr=10.0. For the ADV solutions we used as a starting point for SGD the results of
1000 epochs of SGD optimization on a train set where the label have been randomized. For RSGD solutions we used 5
replicas coupled with an epochs-dependent elastic constant γ(t) = 0.002 ∗ (1.002)t. In case b) we used Adam optimization
with lr=0.001 for both SGD and RSGD solutions. For RSGD we used the same number of replica and elastic constant as in
case a). The ADV solutions have been obtained by first training with SGD with no momentum and lr=5.0 for 500 on the
train set with random labels, and then for other 1000 epochs with the same lr and optimization algorithm.

Results for case b) are reported in the main text (see Fig. 7, 8).

In case a) we performed analogous experiments as the one presented for shallow binary NNs on the HMM (see Fig. 18, 6).
The results are reported in Fig. 19. As in the simpler synthetic dataset scenario, there is a strong correlation between flatness,
generalization errors and barrier heights. However, while in this case removing the permutation and sign-reversal symmetries
between solutions considerably lowers the respective barriers and average distances, the barriers do not seem to approach
zero error in the limit of a large number of parameters.
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Figure 19. Binary MLP with 2 hidden layers with H units each, trained on 10k examples of the MNIST dataset (binary classification).
(Left) Local energy for the tree type of solutions considered at H = 201. Inset: local energy at a fixed distance δ as a function of the
number of parameters. (Center Left) Test errors for the three type of solutions as a function of the number of parameters. (Center Right)
Average hamming distance among solutions, before (light colors) and after (dark colors) solutions have been aligned. (Right) Maximum
barrier heights (in percentage of train errors) along random linear paths connecting solutions, before and after solutions have been aligned.

Binary Convolutional Network We trained a 5 layers convolutional networks with binary weights. The first two layers
are convolutional layers with 20 and 50 5 × 5 filters with no padding, each followed by a 2 × 2 maxpool layer and sign
activation function. The two convolutional layers are followed by 3 fully connected layers with 2001 units each. We
used the following optimization parameters: (SGD) we trained the model for 400 epochs with Adam optimization with
batchsize=128 and lr=0.005 that is multiplied by 0.5 every 50 epochs. (RSGD) We used 3 replicas coupled with an elastic
constant γ(t) = 0.001 ∗ (1.001)t, where t is the epoch. All the other parameters are the same as SGD, except that we
optimized for 300 epochs. (ADV) We first initialize the solutions by optimizing a modified train set where the labels have
been randomized for 200 epochs with SGD with lr=10.0, and then train them for 200 epochs using Adam with lr=0.01 that
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is halved at epoch 10, 20, 50 and then every 50 epochs.

Bi-Dimensional Error Landscapes We describe the procedure to produce the bi-dimensional error landscape plot
reported in the main text (Fig. 8). Given three solutions, we pick the continuous weights associated with the binary ones5 and
use them to construct an orthonormal basis using the Gram-Schmidt procedure (as for the case of continuous NNs, Sec. 4.2).
At each point in the plane, we binarize the weights by taking their sign, and report the train error. With this bi-dimensional
projection of the error landscape one can graphically appreciate the effect of removing symmetries. In Fig. 20, 21, 22 we
report the error landscape for the three types of solutions considered (ADV, SGD, RSGD) in the case of the 2-hidden layer
MLP trained on MNIST, as a function of the number of parameters. Without taking into account symmetries, the solutions
appear to be isolated, while their flatness increase. However, once solutions are aligned by removing symmetries, a different
landscape appears, where they are connected with low errors paths. In Fig. 23 we show the effect of removing symmetries
for ADV and RSGD solutions of the binary convolutional network (analogous to Fig. 8).

Figure 20. Bi-dimensional error landscape for ADV solutions of a 2-hidden layer MLP trained on MNIST. From top to bottom the width
of hidden layers is increased. Left column: raw solutions. Right column: top and right solutions have been aligned to the left solutions.

5see (Hubara et al., 2016) for more insights on the relation between continuous and binary weights in the BinaryNet optimization
scheme
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Figure 21. Bi-dimensional error landscape for SGD solutions of a 2-hidden layer MLP trained on MNIST. From top to bottom the width
of hidden layers is increased. Left column: raw solutions. Right column: top and right solutions have been aligned to the left solutions.
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Figure 22. Bi-dimensional error landscape for RSGD solutions of a 2-hidden layer MLP trained on MNIST. From top to bottom the width
of hidden layers is increased. Left column: raw solutions. Right column: top and right solutions have been aligned to the left solutions.
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Figure 23. Train errors in the plane spanned by three solutions (for both ADV and RSGD solutions) for a binary convolutional NN
trained on CIFAR-10 (see also Fig. 8). Going from left to right panels one can appreciate the effect of removing symmetries in the error
landscape.


