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ABSTRACT Due to the limitation of hardware, infrared (IR) images have low-resolution (LR) and poor

visual quality. Image super-resolution (SR) is a good solution to this problem. In this paper, we present a

new convolution network (CNN) to improve the spatial resolution of infrared (IR) images. Our network

is able to restore fine details by decomposing the input image into low-frequency and high-frequency

domains. In low-frequency domains, we reconstruct image structure by deep networks. In high frequency

domains, we reconstruct IR image details. Furthermore, we proposed another network to remove artifacts.

Additionally, we propose a new loss function using visible (VIS) images to enhance the details of IR images.

In training phase, we use VIS images to guide IR image restoration and in testing phase we get SR IR images

with LR IR images input only.We optimize our deep networkwith a targeted functionwhich penalizes images

at different semantic levels using the corresponding terms. Besides, we build a dataset where paired LR-VIS

images on the same scene are captured by a camera with both infrared and visible light sensors which both

sensors have the same optical axis. Extensive experiments demonstrate that the proposed algorithm achieves

superior performance and visual improvements against the state-of-the-arts.

INDEX TERMS Neural networks, infrared imaging, detail enhancement, super resolution.

I. INTRODUCTION

Infrared (IR) images provide valuable information for many

applications such as thermal analysis, video surveillance,

medical diagnosis, and remote sensing. The main reason

for the quality and resolution degradation of an IR image

is blurring effects due to non-ideal optics and finite detec-

tor size. Generally, IR images have poor quality and lim-

ited spatial resolution compared with visible (VIS) images.

To achieve high-accuracy thermal measurement, infrared

detectors are encapsulated in individual vacuum packages,

which is a time-consuming and expensive process [1]. Given

low-resolution (LR) infrared images, we focus on developing

effective algorithms to restore details through solving an

ill-posed inverse problem,which is essential to enable reliable

target detection and recognition tasks but only available in

high-resolution (HR) infrared images [2], [3].

Super-resolution (SR) method is a technique to recon-

struct a HR image of a single LR image or multiple LR

images [4]–[8]. And SRmethod is one of the best solutions to

The associate editor coordinating the review of this manuscript and

approving it for publication was Chih-Yu Hsu .

improve resolution of LR IR images. For example, Yao et al.

[9] presented a reconstruction method of super-resolving IR

images based on sparse representation. Still, there are limits

to improve the resolution only by IR images.

Due to the great performances achieved by deep learning

based methods, many researchers start to design deep neu-

ral networks to map LR images to HR images [10]–[14].

Although, many successful SR methods are proposed to

increase resolution of VIS images and work well on IR

images, but VIS images and IR images have different char-

acters and it is not clear what is the optimal strategy to

migrate a deep-learning-based method from VIS spectrum to

IR [15].

Compared with VIS images, IR images have many limits.

The most important one is the low Signal-to-Noise Ratio

(SNR), because there are various noises in infrared images

due to imperfection in infrared imaging systems and various

disturbances in the environment. Besides, the contrast ratio of

IR images is lower than that of VIS images, since objects and

surroundings are subjected to heat exchange, heat radiation

and absorption all the time, but temperature difference is not

too much generally.
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FIGURE 1. Our proposed architecture of deep networks, IDN is the denoise image output, and ID is the detail output,ISRM denotes the output of IGN. ISR
denotes the final output. W denotes filters share the same weight. The filters number is shown on the top of every unit.

In [16], they did experiments to analyze the relationship

between the objective/perceptual image quality, and their

results showed that the low-frequency (LF) sub-band has

a significant effect on the objective quality of the image,

while the high-frequency (HF) sub-band affects the percep-

tual quality significantly. Owing to this concept, we designed

a new convolution network (CNN) with two-branch cascaded

architecture, as illustrated in Fig.1. Our network is composed

by image generation network (IGN) and artifacts remove

network (ARN). IGN is used to generate HR IR images. But

perceptual learning strategies can maintain the visual authen-

ticity of the generated images but with a large number of

artifacts and indeterminate details. Additionally, we proposed

a ARN to remove artifacts.

Considering the low SNR of IR images, we recover

image structures and remove noise in the first stage for

the low-frequency (LF) part. Then we recover image details

with a relatively smaller receptive field. For the high-

frequency(HF) part, we restore IR images details guided by

VIS images as a part of our loss function. We get the HR

image by adding the output of those two parts. Learning from

[17] and. [18], we designed a artifacts remove network based

on attention module. The correlation of HF part of HR image

and LR image is calculated through attention module, and

artifacts is removed by this way. Our experiments demon-

strate that the proposed deep networks can achieve better

performance compared with state-of-the-art SR methods.

Regarding the perceptual function, state-of-the-art

approaches use different levels of features to restore the

original image; this choice determines whether they focus

on local information such as edges, mid-level features such

as textures or high-level features corresponding to semantic

information [19]–[21]. To apply it on IR images SR tasks,

we propose a novel method benefited from loss designed by

characters of IR images. Figure 12 shows an overview of our

proposed loss function.

FIGURE 2. The structure of our VIS/IR camera. The color Bayer mosaic
CCD sensor and Near-IR (monochrome) CCD sensor have the same optical
path and divided by prism.

It is thus highly desired that we need a training dataset

consisting of paired IR and VIS images. Due to the fact that

existing IR and VIS dataset like CVC14 [22], IR images

and VIS images are unpaired, we should register two images

before inputting into network. And TNO [23], IR and VIS

images are blurry and hard to be used on network training. In

this paper, we aim to construct a paired and high-resolution

IR/VIS dataset. Specifically, we capture images of the same

scene using a camera with both IR sensor and VIS sensor,

as shown in Fig.2. These two camera systems have the same

optical axis, and a dichroic prism is used to split light which

projects into two imaging devices. IR and VIS image pairs

are collected in this way. The dataset contains various indoor

and outdoor scenes, providing a good benchmark for training

and evaluating IR and VIS image algorithms in practical

applications.

The main idea of our article is to improve image spatial

resolution of images while reconstructing rich details. Our

purpose is not to reconstruct images as the same as the ground

truth IR images. Considering the low-quality of ground truth

IR images, we try to restore clear IR images of the real scene

as shown in Fig.5. Additionally, we analyze the relationship

between IR/VIS images in Sec.IV-A. Besides, we do not want
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to impose much information of VIS images on IR images.

We just use VIS images boundary to guide IR images restore

clear details, in our loss function. VIS images are just used

as a part of loss function in training phase, and in testing

phase, we get the SR IR images with only IR images input.

Considering the IR/VIS images pairs are difficult to acquire

in real applications, our method is more effective than image

fusion methods, and the images we recovered are closer to the

results obtained by high-quality real infrared cameras.

Major contribution of our the proposed method includes:

• We show the relationship between IR/VIS images

high-frequency (HF) and the low-frequency(LF) sub-bands,

which lays an important foundation to push forward the

super-resolution of IR images.

• We proposed a network designed by IR image character-

istics, which uses VIS images to guide IR images to restore

more high-frequency details. VIS images are just used as

a part of loss function in training phase and we only input

IR images in testing phase. Besides, we presented a stage

network to recover the image structure as well as remove

noise. The deep supervision with the loss function proposed

by us improved the performance of our network.

• We built a paired IR/VIS dataset consisting of precisely

aligned IR and VIS image pairs, providing a general purpose

benchmark for IR super-resolution model training and evalu-

ation.

II. RELATED WORK

A. SINGLE-IMAGE SUPER-RESOLUTION

Single image SR is an under-determined inverse problem.

Most conventional CNN-based SR techniques are developed

for VIS images only, they are meaningful because they can be

directly applied to IR images. Classic learning based methods

such as neighbor embedding(NE) [24], [25],anchored neigh-

borhood regression(ANR) [26], sparse coding(SCSR) [27]

attempt to constrain the solution spacewith prior information.

Timofte et al. [26] utilized a number of linear regressors

to anchor the neighborhood embedding of a LR patch the

nearest atom in the dictionary and to pre-compute the cor-

responding embedding matrix. Yang et al. [27] assumed that

LR patched share the same sparse representation with corre-

sponding HR counterparts. Then the LR dictionary are passed

to corresponding HR dictionary for HR patches reconstruc-

tion. Besides Glasner et al. [2] exploited the self-similarity

prior that patches in a natural image tend to recur within

and across scales of the same image. Although self-similarity

based approaches do not require a training process, they

involve time-consuming internal patch searching processes.

In recent years, deep learning has been successfully applied

in various computer vision tasks (e.g., object classification

[28], pedestrian detection [29], and image de-nosing [30])

and achieves breakthrough improvements. Dong et al. [12]

proposed SRCNN, applied CNN technique to SR for the

first time. SRCNN directly learned an end-to-end mapping

between LR and HR images represented as a deep CNN

that takes the LR images as the input and outputs the

HR images. The same author also developed a fast ver-

sion(FSRCNN) to accelerate SRCNN [31] and achieved a

real-time speed. In 2015, Kim et al. [32] introduced a very

deep CNN-based SR(VDSR) with deep network structure by

employing visual geometry group(VGG) network. And they

used residual-learning and high learning rates to optimize the

network, applied gradient clipping to ensure training stability.

As a result, they achieved the best result on network at that

time. But VDSR contains a large number ofmodel parameters

which are impractical for real-time implementation. The effi-

cient sub-pixel convolution layer was proposed by ESPCN

[33] to upscale the final LR feature maps into HR output to

solve the problem of over-smooths and blurs in the original

LR image. But these methods do not consider images of

different frequencies separately and tend to produce a blurred

result.

B. MULTI-IMAGE SUPER-RESOLUTION

The first multi-image super-resolution work was proposed

by Tsai [34], they used a frequency-domain technique to

combine multiple under-sampled images with sub-pixel dis-

placements to improve the spatial resolution. Farsiu et al.

[35] presented an algorithm to enhance the quality of a set

of noisy blurred images and produce a HR image with less

noise and blur effects. Their method removes outliers effi-

ciently, resulting in images with sharp edges. Kawulok et al.

[36] proposed a method which can be highly optimized to

benefit from parallel processing performed, and their method

is sufficient for some real-time applications. Molini et al. [37]

proposed a novel framework integrates the spatial registration

task directly inside the CNN, and allows one to exploit the

representation learning capabilities of the network to enhance

registration accuracy. And the whole network can be trained

end-to-end to recover a single high-resolution image from

multiple unregistered low-resolution images.

C. OBJECTIVE FUNCTION

Despite variant architectures proposed for the SISR task,the

behavior of optimization-based methods is principally driven

by the choice of the objective function. The objective func-

tions used by these works mostly contain a loss term with

the pixel-wise distance between the super-resolved and the

ground-truth HR images. However, using this function alone

leads to blurry and over-smoothed super-resolved images due

to the pixel-wise average of all plausible solutions.

Based on the idea of perceptual similarity [38],

Johnson et al. [39] proposed perceptual loss to minimize

the error in feature space. After that, a number of papers

have used this optimization to generate images [40]–[42].

Similarly, contextual loss [43] is proposed to generate images

with natural image statistics, which focuses on the feature

distribution rather than merely comparing the appearance.

Although these works generate near-photorealistic results,

they can not be used on IR image super-resolution because

they do not take the characters of IR image into consideration

and could not improve the visual quality.
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III. IR/VIS DATASET

As we stated earlier, existing IR/VIS datasets do not contain

high-resolution IR and VIS image pairs, and we should use

additional program to pair IR and VIS images to improve

image details, which will cause other problems.

To build a dataset of real-world IR/VIS models, we pro-

posed to collect images by multi-spectral prism camera with

two CCDs. This camera can simultaneously capture visible

and IR images through the same optical path by two CCDs

with 1296×966 active pixels per channel. Figure 2 shows the

basic structure of our camera, the color Bayer mosaic CCD

sensor and IR (monochrome) CCD sensor have the same

optical axis, using prism to split light which projects into two

imaging sensors.

We use aperture priority mode and adjust aperture accord-

ing to the depth-of-field (DoF). Basically, we select enough

aperture value to make DoF cover the scene and avoid severe

diffraction. The white balance is set to automatic mode. As

the VIS and IR imaging sensors share the same optical axis,

we can acquire both VIS and IR images of the same scene at

the same time.

To ensure the generality of our dataset, we take photos

in both indoor and outdoor environments. For each scene,

we record VIS and IR images of the same scene for a period,

and select two best paired images as our dataset. Finally,

we select 100 VIS and IR image pairs as our dataset.

IV. PROPOSED METHOD

In this section, we first describe the relationship between

IR/VIS images detail, and additionally, we described

the low-frequency and high-frequency sub-bands of IR

images, analyzing the importance of those sub-bands in

super-resolution tasks. Finally we proposed an IR image

super-resolution model architecture and suggested the net-

work we used and the loss function design.

A. RELATIONSHIP BETWEEN IR/VIS IMAGE DETAIL

VIS images contain the sunlight reflection information of

scenes. It is characterized by clear details and rich color

information, which is more conducive to the visual obser-

vation of the human eyes. However, it is also easy to be

affected by environments during the imaging process. The

working principle of infrared sensor is to obtain infrared

images formed by different thermal infrared rays by infrared

difference between itself and the background. Although the

position and shape of the target can be roughly sketched,

the details of the target cannot be clearly expressed. Due to

its special imaging principle and special use environment,

obtained images have poor visual effect, and the resolution of

images is obviously lower than that of visible light. Therefore,

in IR image super-resolution tasks, we propose to use VIS

images to guide the restoration of IR images. Additionally,

we improve the detail performance of image SR task which

affect the perceptual quality significantly.

Comparing with IR images, VIS images contain more

details which means the boundary of VIS images is more

TABLE 1. The SSIM and correlation coefficient between IR and VIS
images boundary in our dataset.

obvious than IR images. As shown in Fig.3, VIS image

boundary contains more information than IR image. That is,

we can reconstruct rich detail information when we restore

IR images guided by VIS images.

Our IR/VIS dataset was taken based on the same scene, and

hence the boundary of VIS images has high correlation with

boundary of IR images. To prove this, we did a experiment by

calculating SSIM [44] of images boundary and the correlation

coefficient of their frequency spectrum.

SSIM [44] is a measure of the similarity between two

images. This indicator was first proposed by the Laboratory

for Image and Video Engineering at the University of Texas

at Austin. Structural similarity ranges from 0 to 1. When the

two images are exactly the same, the value of SSIM is equal

to 1.

Correlation coefficient is a statistical index used to reflect

the closeness of the correlation between variables. It is calcu-

lated by the product difference method, which is also based

on the deviation of the two variables and their respective aver-

ages, and the degree of correlation between these two vari-

ables is reflected by multiplying the two deviations, focusing

on the linear single correlation coefficient. It is conducted by

r =
Cov(X ,Y )
√

δx
√

δy
, (1)

where X ,Y denote two images and δ denotes the variance of

image. And r range from −1 to 1.

We use SSIM [44] to measure the similarity between IR

and VIS images boundary and use correlation coefficient

to represent the correlation of its frequency spectrum. We

calculate SSIM [44] and correlation coefficient of dataset we

proposed in Sec.II-A. The result is shown in Tab.1, we can

find that there is a strong correlation between IR and VIS

images boundary. As a result, we can use VIS image to guide

the restoration of IR image super-resolution without causing

too much error.

B. LOW-FREQUENCY AND HIGH-FREQUENCY

SUB-BANDS OF IR IMAGES

For an image, low-frequency component means that the color

changes slowly. that is, the grayscale changes slowly, which

means it is a continuously gradual area. Generally, the content

inside the edge is most of the information of the image which

is low frequency. That is the general overview of the image

and contour.

The high-frequency component corresponds to the part

where the image changes drastically, such as edge, noise and

details of the image.

Figure 4 shows a HF component and LF component of

one image from CVC14 [22]. The middle image is the LF
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FIGURE 3. The boundary comparisons between IR and VIS image. The IR image, VIS image, IR boundary image and VIS boundary
image are arranged from left to right.

FIGURE 4. Comparison of the high-frequecy (HF) and low-frequency (LF)
part of infrared (IR) image. The left image is original IR image, and the
middle image is LF part of IR image extracted by gaussian filters with
30 × 30 kernel and σ equal to 8. The right image is the correspond HF part
by the same gaussian filter.

component of this image extracted by gaussian filers with

kernel size 30 × 30 and σ = 8. The HF component which

is shown in the right line on the figure shows more detail

information with much noise.

Considering this, we designed a two-branch cascaded neu-

ral network. In the first branch, we recover the LF sub-bands

of IR image to suppress noise, and in the subsequent stage,

we reconstruct part of detail information. Generally, we will

lose much detail information when we suppress noise, and

details play an important role in super-resolution tasks. In the

second branch, we extract HF sub-bands of image and use

VIS image to guide its reconstruction, And then the restored

HF image is added into the final stage pixel-by-pixel to

preserve information integrity and reduce noise components

in image.

C. PROPOSED NETWORK

In this paper we present a cascaded architecture of deep

networks to address the challenging problem of infrared

image SR. Figure1 shows the overall structure of the proposed

algorithm. Our algorithm is composed by image generation

network (IGN) and artifacts remove network (ARN).

1) IGN

Our IGN consists of three steps: First, we extract LF infor-

mation and use it to restore image structure IDN . We remove

much noise of IR images by this step. Then we use some con-

volution blocks to reconstruct detail information of IR image.

Futhermore, HF information of IR image ID is reconstructed

by VIS image. The reconstructed HF part is added onto LF

branch and outputs the super-resolution image ISR. Note that

we train the entire network jointly, end-to-end.

As shown in Fig.1, we first use a de-convolution block to

increase image size by

DI = DConv3(x), (2)

where DI denotes the de-convolution image, DConvk (·)
denotes de-convolution with kernel k × k . The image is

decomposed into HF and LF part by a gaussian filter with

kernel size 30 × 30 and σ = 8.

Early layers of a network return low-level spatial infor-

mation regarding local relations, such as information about

edges. Hence we use two convolution blocks to extract detail

of images. One convolution block contains a convolution

and relu [45] as illustrated in Fig.1. The reconstructed detail

image can be expressed by

ID = Conv15(Conv
1
5(D

HF
I )), (3)

where DHFI denotes HF part of DI , Conv
n
k means n stacked

convolution layers with kernel k × k and relu.

For denoise images in the middle network, we consider

using three parallel lines to extract different features of image.

In the parallel network, feature extraction is realized by pass-

ing the state of preceding layer to six convolution blocks

with 3 × 3 kernels. In the top line, we use small amount

of convolution blocks with 5 × 5 kernel to repair part of

image details, preserving image information completeness.

In the second line, we just use two convolutions to extract

underlying image information. Additionally, we use global

residual learning to fuse multi-layer features. Those module

can be expressed by

IDN = concat{FH ,FL ,FG}, (4)

where FH is high-level features extracted by six convolution

blocks, FL is low-level features extracted by two convolu-

tion blocks and FG represent the global residual learning

mechanism.

We concatenate those three parallel lines to make use of

different information of image to rebuild IDN . Further, we use

six convolution blocks and add the HF part to get the final

output of our network by

ISRM = Conv63(IDN ) + ID. (5)

2) ARN

It is generally known that the loss designed for percep-

tual improvement can push the generator to generate results
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keeping in line with the true manifold but also add less

meaningful high-frequency artifacts that is irrelevant to the

input image. To address this issue, we design an effective

subnetwork ARN to extract edge features that are useful for

identification, so that the network can focus on the real edge

information to achieve the purpose of removing artifacts.

As shown in Fig.1, the ARN module takes ISRM and ID
obtained from IGN as input. We use Gaussian filter to detect

and extract the edges of ISRM , then six convolution blocks

with 3 × 3 kernels are used to extract the feature by

FSRM = Conv63(ISRM − G(ISRM )), (6)

where FSRM is the features of ISRM edge. G(·) denotes gaus-
sian procedure.

The features of ID are extracted by the same way without

gaussian filter, besides the filters share the same wight. We

get the output image through

ISR = ISRM + FSRM ⊗ (softmax(FSRM ⊗ FD)), (7)

D. PROPOSED NETWORK

E. LOSS FUNCTION

The state-of-the-art approaches such as [20] and [21] estimate

perceptual similarity by comparing the ground-truth and the

predicted super-resolved image in a deep feature domain by

mapping both HR and SR images into a feature space using

a pre-trained classification network. The output of a specific

convolution layer is used as the feature map.

Let x be the input LR image and θ be the set of network

parameters to be optimized. General super-resolution tasks is

to learn a mapping function f for generating a high-resolution

image ISR = f (x; θ) closed to the ground truth HR image y.

But the ground truth of IR images is blurred, as a result,

we propose to design a network to learn a mapping function

close to IR image convoluted by matrix shown in Fig.12.

And we present to use VIS images information to generate

IR images with more details. We do not want to introduce

additional information of VIS images on IR images, which is

different from images fusion methods. As stated previously,

IR images generally contain less detail information compared

with VIS images and early layers of a CNN return low-level

spatial information regarding local relations, such as informa-

tion about edges and blobs. As shown in Fig. 12, we use VIS

image to enhance IR image detail by estimating the feature

distance of an early CNN layer between ID and VIS images,

which focusesmore on low-level spatial information.Besides,

VIS images is just used in our training phase as a part of loss

function, in testing phase, we get SR IR images with LR IR

images input only. Mid-level features are mostly representing

textures and high-level features amount to the global semantic

meaning.We computemid-level CNN features to estimate the

perceptual similarity between IR and SR images. Considering

that there are not many high-frequency information compo-

nents in the IR images, we use a filter shown on Fig. 12 to

convolute HR IR image and get IR image with clear edges,

then we compute mix-level CNN features to estimate the

similarity between them.

The overall loss function is given as:

L=α · Gs (ISR,F(IIR))+β · Gb (ID, IVIS)+γ · Gl (IDN , IIR) ,

(8)

where α, β and γ are the corresponding weights of the loss

terms used for the overall, detail and LF loss. F(·) denotes
the filter operator. Gs, Gb and Gl are the functions to calculate

different feature space distances between two given images.

In our experiments, we use L = l1 norm for those three

functions, because l1 loss function does not over-penalize

larger errors, and proved to bemore powerful for performance

and convergence [46].

By this way, we remove noise in denoise network and noise

cannot be reproduced in following steps, the network can

provide more image details of image and better visual effects.

V. EXPERIMENTAL RESULTS

In this section, first, we describe the training parameters and

dataset in details, then we evaluate our proposed method in

terms of qualitative and quantitative analysis.

A. IMPLEMENTATION AND TRAINING DETAILS

In our proposed method, the size and number of filters are

shown in Fig.1. We initialize the convolution filters using

the method of He et al. [47]. All the convolutional layers

are followed by ReLU [45] and we pad zeros around the

boundaries before applying convolution to keep the size of

all features maps the same as the output of de-convolutional

layers.

We first use CVC14 [22] as our training set for 50 epochs

and use IR images as the detail restoration network ground

truth. Then we use our dataset proposed in Sec.II-A, and use

VIS images as the detail restoration network ground truth

for 100 epochs. In each training batch, we randomly sample

64 patches with the size of 128 × 128. An epoch has 1,000

iterations of back-propagation. We augment the training data

in three ways: Scaling, Rotation and Flipping. Following

the protocol of existing methods [12], we generate the LR

training patches using the bicubic downsampling. Draw on

the experience of [39],the weights of each term in our loss

function α, β and γ were set to 100, 20 and 50. The Adam

optimizer [48] was used during both steps. The learning rate

was set to 1× 10−3 and then decayed by a factor of 10 every

30 epochs.

B. IMAGE QUALITY ASSESSMENT METRICS

General image quality assessment metrics like PSNR and

SSIM [49] are not very well matched to perceived visual

quality. If we use those methods as image quality assessment

metrics of our results, we should reconstruct images as the

same as ground truth. But as shown in Fig.5, our results are

better than ground truth images perceptually. Besides our

method tries to produce an image with a clear image edge
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TABLE 2. Results obtained on 2× scaling factor for quantitative comparison with the current state-of-the-art methods.

TABLE 3. Results obtained on 4× scaling factor for quantitative comparison with the current state-of-the-art methods.

which cause pixel difference with ground truth, considering

IR image is generally blurred, which means the SSIM of our

method is lower than other method.

Entropy is a concept which originally arose from the study

of the physics of heat engines. It can be described as a

measure of the amount of disorder in a system. In the case

of an image, these states correspond to the gray levels which

the individual pixels can adopt. As the entropy of the image

is decreased, so is its information content, which means the

image with high entropy can express rich details.

In the spatial domain, the grayscale difference between

adjacent pixels of images is large, that is, the edges are sharp

and the gradient is large. The Brenner metric [50] is a form

of a spatial domain derivative:

FBrenner =
∑

i

∑

j

(

Gij−Gi+2j

)2 ‖i < Nx , j+2<Ny, (9)

whereGij is the grayscale intensity at pixel position ij,Nx and

Ny are the image width and height. It has been shown to be a

very robust autofocus metric [51].

Reference [52] proposed a new evaluation function named

Sum Modulus Difference 2 (SMD2) based on gray scale

difference using product of adjacent pixels difference in the

horizontal and vertical direction as core function by

D(f)=
∑

y

∑

x

|f(x, y)−f(x+1, y)| ∗ |f(x, y)−f(x, y+1)|,

(10)

where f (x, y) denotes the pixel value of point (x, y) and

D(x, y) denotes result value.

As introduced in [53], Tenengrad gradient function uses

Sobel operator to extract gradient values in horizontal and

vertical directions by

D(f) = 6y6x|G(x, y)| (G(x, y) > T), (11)

G(x, y) =
√

G2
x(x, y) + G2

y(x, y), (12)

where is the detection threshold,Gx andGy is gradient values

in horizontal and vertical directions.

Reference [54] introduced a novel no-reference image

quality assessment index called No-Reference Structured

Sharpness (NRSS) for quality evaluation of blurred images.

This method constructed a reference image by a low-pass

filter, and assessed the image quality by computing the SSIM

between the original image and the reference one, thus con-

sidering the mathematical model of imaging system as well

as the advantages of SSIM. NRSS is calculated by

NRSS = 1 −
1

N

N
∑

i=1

SSIM (xi, yi) , (13)

where xi and yi is different image patch of image x and y.

In our article, we use image quality assessment

above-mentioned as our image quality evaluation metrics.

C. QUALITATIVE RESULTS

We compare the proposed method with 4 state-of-the-art

SR algorithm: SRCNN [12], VDSR [32], LapSRN [55],

IDN [56]. The source codes of those methods are pro-

vided by their authors. All of these methods are trained

using the same dataset to ensure fair comparison. We carry

out extensive experiments using real IR dataset: CVC14

[22] and our dataset. CVC14 [22] is composed by two

sets of sequences. These sequences are named as the day

and night sets, which refers to the moment of the day

they were acquired, and Visible and IR depending the

camera that was user to record the sequences. For train-

ing 3695 images during the day, and 3390 images during

night, with around 1500 mandatory pedestrian annotated

for each sequence. For testing around 700 images for both

sequences with around 2000 pedestrian during day, and

around 1500 pedestrian during night.

Figure5 and 6 shows the output of our model, along with

the outputs of other state-of-the-art models for visual compar-

ison. It can be observed that the up-sampled image generated

by our model contains more details and is visually more

similar to the ground truth than other images. It is observed

that both methods output blurry SR results except ours. That
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FIGURE 5. Visualisation of the upsampled images for qualitative comparison with the
current state-of-the-art methods on 2× scaling factor.

FIGURE 6. Visualisation of the upsampled images for qualitative comparison with the
current state-of-the-art methods on 4× scaling factor.

is mainly because the ground truth of IR image is usually

blurred and those SR methods cannot exceed this limit.

To quantitatively compare the performance of our model

with other state-of-the-art models, we computed the average

of image quality evaluation metrics values stated in Sec.V-B

between all the predicted images and their corresponding

ground-truths.

Table 2 and 3 shows the results on CVC14 [22] with

different scaling factors, obtained by current state-of-the-art

methods and ours. It is evident that our method outperforms

all the cited methods. On average, our method outperforms

other state-of-the-art SR methods by large margins. More-

over, the performance of our method is very stable and it

achieves the best SR results.

To prove our method is effective on real images, we eval-

uate our data generation method as well as the proposed

network on real captured images. As shown in Fig.8 and 7,

those methods cannot generate clear images. By contrast,

we achieve better results with sharper edges and finer details,

which demonstrates the effectiveness of our method.

D. USER STUDY

Drawing on the user study method of [57],we performed

a user study to compare the reconstruction quality of dif-

ferent approaches to see which images are more appealing

to users. Five methods were used in the study: SRCNN

[12], VDSR [32], LapSRN [55], IDN [56] and ours. During

the experiment, super-resolution images reconstructed by the

mentioned approaches were shown to each user. Users were

requested to vote for the most appealing images. All images

FIGURE 7. Results on real images with 4× scaling factor.

FIGURE 8. Results on real images with 2× scaling factor.

were presented in a randomized fashion to each person.

In order to maximize the number of participants, we created

our online assessment tool for this purpose. In total, 56 per-
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FIGURE 9. Comparison on our method trained with IR boundary and VIS boundary.

FIGURE 10. Visualisation of the boundary output images with different weight, we reverse the background from 0 to 255.

FIGURE 11. SR results on our model trained on different datasets.

FIGURE 12. Loss function overview. IVIS denotes VIS image, ISR denotes
IR image, ID is the detail output of our network, IDN is the denoise
output, conv in this figure is used to convolute IR image. We use a
pretrained VGG16 network for image classification to measure perceptual
differences in detail, low frequency and overall part between images. The
loss network remains fixed during the training process.

sons participated in the survey. Figure 13 illustrates that the

images reconstructed by our approach are more appealing

to the users by a large margin. These results confirm that

our approach reconstructs visually more convincing images

compared to mentioned methods for the users.

FIGURE 13. The results of the user study. Our method produces visual
results that are the preferred choice for the users by a large margin in
terms of percentage of votes.

FIGURE 14. SR results on our model trained on different loss function.

E. ABLATION STUDY

1) DATASET

To demonstrate the advantages of our dataset, we conduct

experiments to compare the super-resolution performance of

our model trained on TNO [23] and our dataset and we use
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FIGURE 15. SR results on our model trained with/without ARN.

CVC14 [22] as test dataset for fair comparison. The result is

shown in Fig.11. One can see that, our model trained on TNO

dataset cannot generate clear images because IR and VIS

images of this dataset is blurry and hard to be used on network

training. Training on our dataset brings much improvement

over ground truth.

2) LOSS FUNCTION

To validate the effectiveness of our loss function, we calculate

the loss of the SR images and HR images and train the

proposed network with l1 and l2 loss function. As illustrated

in Fig.14, SR images reconstructed by our full model contain

relatively clean and sharp details. Both methods trained by

our network show better results compared with ground truth,

which demonstrate the effectiveness of our model.

3) EFFECTIVENESS OF THE VIS IMAGES

To analyse the efficacy of VIS images, we trained the net-

work after replacing the VIS images IVIS with IR images. As

shown in Fig.9, the image trained with IR images generates

much noise, result from the inherent noise properties of IR

images. As a comparison, the image trained with VIS images

suppressed noise greatly and generated clear image edge

(e.g. character A in Fig.9)

4) ANALYSIS OF THE WEIGHT OF DETAIL LOSS

As stated in Sec.IV-E, our loss function is composed of three

part: the overall, detail and LF loss. The overall loss is a data

fidelity term to make sure the generated image is similar to

the original image. The detail part is to generate more fine

details of the VIS image. If the weight of the detail loss is

too large, it will introduce noise. Contrarily, if the weight of

detail loss is too small, it will be useless.

Figure.10 shows the detail output images with different

weights. In order to display the detail of images better,

we reverse the background from 0 to 255. As shown in Fig.10,

the detail images with weight 20 cannot predict images.

Images with weight 200 will introduce much noise on the

road. Images with weight 50 can predict image edge accu-

rately and suppress noise.

5) ARN

For a analysis on proposedARN,we remove theARNmodule

and re-train the network. We use the output of module IGN

as the final super-resolution output. As shown in Fig.15, our

method trained with ARN could generate image with rich

details while less artifacts and noise.

VI. CONCLUSION

We proposed a new network to generate clear IR images

guided by VIS images. In addition, we constructed paired

IR/VIS images dataset to ensure accurate pixel-wise align-

ment between image pairs. The proposed algorithm compares

favorably against state-of-the-art methods both quantitatively

and qualitatively, and more importantly, our method breaks

the limitation caused by infrared image blur. In the future,

we will enlarge the dataset by collecting more image pairs

with more types of cameras, and investigate new SR model

training strategies on it.
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