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Abstract This paper presents a novel class of systems assist-

ing diagnosis and personalised assessment of diseases in

healthcare. The targeted systems are end-to-end deep neu-

ral architectures that are designed (trained and tested) and

subsequently used as whole systems, accepting raw input

data and producing the desired outputs. Such architectures

are state-of-the-art in image analysis and computer vision,

speech recognition and language processing. Their appli-

cation in healthcare for prediction and diagnosis purposes

can produce high accuracy results and can be combined

with medical knowledge to improve effectiveness, adaptation

and transparency of decision making. The paper focuses on

neurodegenerative diseases, particularly Parkinson’s, as the

development model, by creating a new database and using it

for training, evaluating and validating the proposed systems.

Experimental results are presented which illustrate the abil-

ity of the systems to detect and predict Parkinson’s based on

medical imaging information.
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Introduction

Current biomedical signal analysis, including medical imag-

ing, is based on signal processing for feature extraction,

segmentation, quantitative and qualitative analysis. Recent

advances in Machine Learning and Deep Neural Networks

(DNNs) have boosted state-of-the-art performance in all

related signal processing tasks. DNNs are the state-of-the-

art in machine learning and big data analytics, being used in

a large number of applications, ranging from defence and

surveillance to human computer interaction and question

answering systems [12,21,22]. DNNs can also be applied

as end-to-end-architectures which are composed of different

network types and are trained to analyse signals, images, text

and other inputs [12,19]. However, they lack on-line adap-

tation capability and transparency in decision making. This

makes their use difficult in fields such as healthcare, where

personalisation and trust are key issues.

The current paper aims at advancing the state-of-the-art,

by developing and using DNNs able to perform effective

analysis of complex data for healthcare, with focus on neu-

rodegenerative diseases, in particular Parkinson’s [3,11]. For

Parkinson’s disease (PD), we have the required medical sup-

port and expertise and a new public dataset, which enables

us to design an end-to-end neural architecture and platform

that can be adaptable to patient-specific data. We describe

a novel DNN system evaluated on a rich public Parkinson’s

dataset, which can serve as a model for many other related

fields.

Whilst Parkinson’s will provide the test-bed for the pro-

posed end-to-end deep neural system, this system will

provide an extensible handle for other neurodegenerative dis-

eases. This aligns directly with the Pathway Analysis across

Neurodegenerative Diseases described in [16], as ‘there

is clinical, genetic and biochemical evidence that similar
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molecular pathways are met in different neurodegenerative

diseases: Alzheimer’s and dementias, Parkinson’s and related

disorders, Huntington’s, motor neuron, prion, spinocerebel-

lar ataxia and spinal muscular atrophy’.

The target of this paper was to design and imple-

ment end-to-end deep neural architectures that can assist

doctors and clinicians in providing improved and more

accurate predictions and assessments, while overcoming

existing limitations. Focusing on a specific healthcare prob-

lem, we design DNN systems integrating imaging, demo-

graphic/epidemiological and clinical data, to support doctors

in patient-specific prediction and assessment. To achieve this

goal, we present a novel approach, developing a combined

supervised and unsupervised learning methodology. First,

data-driven supervised training of deep neural networks is

performed and, then, clustering of the derived network struc-

tures is applied to improve the derived results and allow

adaptation and handling of new subject cases.

Section “Generation of the Parkinson’s database” presents

the new Parkinson’s database, that we have been developing,

providing the necessary datasets for training and testing the

developed deep neural network systems. Section “Design of

deep neural architectures for healthcare” describes the design

of DNN architectures for prediction and diagnosis in health-

care applications. The proposed deep neural systems are

based on deep Convolutional (CNN) and Recurrent Neural

Networks (RNN), which prove to be able to process all types

of available data. A novel methodology for network adapta-

tion when facing new subjects, for personalised assessment,

as well as for providing transparency to the network’s per-

formance, is presented in Section “A novel method for deep

neural network adaptation and transparency”. An experimen-

tal study, illustrating the performance of the generated deep

neural architectures, is provided in Section “Experimental

study”. Conclusions and further planned work are given in

Section “Conclusions and further work” of the paper.

Generation of the Parkinson’s database

We have been creating a novel public dataset, currently

composed of 55 patients with Parkinson’s and 23 sub-

jects with Parkinson-related syndromes, including subjects’

MRI, DaT Scans and clinical data. Our target is that the

database soon includes 100 patients’ and 40 non-patients’

data. The database is becoming publicly available as Parkin-

son Dataset–v1 [27].

MRI data The rapid evolution of non-invasive medical imag-

ing techniques, over the past decades, has opened new

possibilities for the analysis of the brain. The basic imag-

ing technique is Magnetic Resonance Imaging (MRI) which

can yield from hundreds to even thousands of images per

scan. The assessment of this extremely large set of images

per patient can be complicated and time-consuming for doc-

tors. In Parkinson’s Disease, the MRI can show the extent to

which the different structures of the brain have been degen-

erated. Figure 1 shows an example of an MRI. Our main

interest regarding Parkinson’s is the lentiform nucleus (green

line in Fig. 2) and the capita of the caudate nucleus (red line

in Fig. 2). Since we focus on volume estimation, we pro-

cess the image sequences in batches, each composed of 3–4

consecutive frames.

DaT scan The second brain imaging technique included in

the database is Dopamine Transporters (DaT) Scan. This

examination is a form of Single-Photon Emission Computer

Tomography (SPECT) with Ioflupane Iodide-123 as it is con-

trast agent. In this examination, we can detect the extent of

dopaminergic innervations to the Striatum from the Substan-

Fig. 1 A frame of an axial T1 sequence from a brain MRI (right). Location of the previous slice is placed with regard to a sagittal view of the

brain (left)
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Fig. 2 An image from an axial T1 sequence. The lentiform nucleus is

depicted with a green line, while the capita of the caudate nucleus with

a red line

tia Nigra. A series of images is produced in this way, as shown

in Fig. 3.

The doctor selects the most representative ones (the 8th in

the sequence of Fig. 3), and marks the areas corresponding to

the head of the caudate nucleus. An automated system then

compares these areas with a neutral one (e.g., the cerebellum)

and produces the ratios shown at the bottom of Fig. 4. Diagno-

sis is based on comparison of these ratios with normal ones.

Clinical data These define the patient’s clinical status. We

focused on the following scales: UPDRS, the patient’s stage,

UDysRS, PDQ-39, FOG, MMSE and two, timed tests [4].

The Unified Parkinson’s Disease Rating Scale (UPDRS)

[9] is a metric that examines the patient’s whole clinical per-

formance in 4 parts: motor/non-motor experiences of daily

living, motor examination and complications. These contain

13, 13, 18 and 6 elements, respectively, with each ranging

from 0 to 4 for a max score of 234.

The patient’s stage [14] represents the evolution of the

disease and ranges from asymptomatic (0) to bedridden (5).

The Unified Dyskinesia Rating Scale (UDysRS) [10] was

created for evaluating the involuntary movements associated

with PD; it has two parts measuring the dyskinesia and dys-

tonia appearing “on” and “off” phases, respectively. The first

part has 11 while the second 15 elements, all ranging from 0

(asymptomatic) to 4 (severe symptoms), for a total of 150.

The Parkinson’s Disease Questionnaire consists of 39

questions assessing patient’s functionality and quality of life

(PDQ-39) [17]. It can be separated into 8 different categories,

while each question represents the frequency of a specific

incident, ranging from 0 (never occurring) to 5 (always occur-

ring), for a total of 156.

The “Freezing of Gait” (FOG) [8] is one of the most char-

acteristic PD symptoms. The quantification of this symptom

is achieved through the homonymous questionnaire which

contains 16 elements for a max rating of 24.

The Mini Mental State Examination (MMSE) [24] is an

11-question questionnaire meant to measure the cognitive

impairment associated with PD, with a max rating of 30.

Each of MRI and DaT Scan sets includes sequences/

multiple scans. For training, we combine annotated data from

both types to create thousands of input data, sufficient to train

the proposed systems.

Fig. 3 A sequence of frames

from a DaT scan
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Fig. 4 DaT scan with expert selection (left). Same image without the markings (right). Ratios, representing the dopamine deficiency, that are used

for the diagnosis (bottom)

Design of deep neural architectures for healthcare

Our main goal is to design deep neural architectures and

to evaluate their ability to extract correlations in the avail-

able datasets, providing a novel platform for assisting doctors

in detecting and assessing disease states. Validation is done

using the above-described Parkinson’s dataset. We also tar-

get at endowing our system with adaptation capabilities and

to test and validate it when handling new patient cases.

The technologies which we use and extend, in order to

develop the novel end-to-end deep neural architecture for

diagnosis and prediction are:

Deep convolutional neural networks Deep CNNs are archi-

tectures that try to exploit the spatial structure of input

information [12]. They have been used with great success in

various applications, including image analysis, vision, object

and emotion recognition. The most successful CNN was used

for classifying millions of images in 1000 classes [21].

Transfer learning Transfer learning [22] is the main approach

to avoid learning failure due to overfitting, when training

complex CNNs with small amounts of (image) data. In trans-

fer learning, we use networks previously trained with large

image datasets (even of generic objects) and fine-tune the

whole, or parts of them, using the small training datasets.

Recurrent neural networks RNNs are very powerful for pro-

cessing sequential data [18]. A very successful model, the

Long Short-Term Memory (LSTM) [25], uses hidden units

with gates that explicitly control data flow in terms of both

hidden states and inputs. Bidirectional (B-LSTM) models are

obtained by combining forward and backward processing of

input data. Gated Recurrent Units (GRUs) [2,12] can be used

in place of the BLSTM ones; they have fewer parameters than

LSTMs, since they do not include an output gate. Based on

our tests with Parkinson’s data, GRUs have produced bet-

ter performances and are used in the experiments of Section

“Experimental study”.

We propose an end-to-end deep neural architecture includ-

ing both CNN and RNN components. CNNs derive rich

internal representations from input data; B-LSTM/GRU

RNNs correlate/analyse time evolution of the inputs, pro-

viding the final predictions. The CNN system we consider

follows the basic structure of the so called Deep Residual

Net (ResNet), which contains 50 layers [13]. This network

has won the first places on the tasks of ImageNet detection,

ImageNet localization, COCO (object) detection and COCO

(object) segmentation.

Following the convolutional and pooling layers we use

up to 3 fully connected layers, with the so-called Rectified

Linear Units (ReLU) neuron models, i.e., neurons with a

linear activation function, for positive input values, and a

zeroing function else-where. Other networks such as VGG-

16 (e.g. [23]) could also be used, but they have been mainly

designed for human face analysis applications. MRI and DaT
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Fig. 5 The CNN part of the CNN-RNN architecture feeds the RNN

part which yields the final outputs

Scans are provided at the input of these networks. When

epidemiological and clinical data values are to be considered,

they will be provided directly to the FC1 layer.

Figure 5 shows the CNN–RNN architecture. The CNN

part of the neural architecture, using a linear FC3 layer pro-

vides continuous clinical data estimation. The CNN feeds the

RNN part with the neuron outputs of its second FC layer (F).

The RNN accepts F1, F2, F3. . ., FN and delivers predicted

values O(1), …, O(N) through time, at its output. A total

of 4 images are given to the architecture as a single input.

These include 3 greyscale consecutive frames from an axial

T1 MRI and a colour DaT scan.

To implement this architecture, we first perform transfer

learning of the weights of the convolutional and pooling parts

of, e.g., the ResNet network to it. These parts are then fixed

during the training phase, where we only train the fully con-

nected layers of the system. The pre-trained convolutional

networks have already learnt to generate rich image repre-

sentations that have proven adequate for image classification

and segmentation. These representations are abstract enough

to help with specialized tasks, such as the analysis of MRIs

and DaT Scans.

This leaves the fully connected part of the network, which

is the only part of the network that we actually train in

the CNN case. Many variants of this approach have been

designed and tested. We selected to freeze the weights of

some of the fully connected layers, particularly those belong-

ing to the first FC layer. We have also considered some

additional weights of the network as free parameters, by

applying fine tuning (a smaller learning rate value) to the

weights of (some of) the convolutional layers of the ResNet

network, while using a normal learning rate value for the FC

part of it.

We use the TensorFlow Platform as the main tool for

generating the software implementation of the presented

architecture. TensorFlow is a toolkit which got published by

Google, under Apache License 2.0. It is mainly implemented

using C++, with a significant bit of Python. Its architecture

provides the ability to deploy computation to one or more

CPUs or GPUs in a desktop, server, or mobile device with a

single API.

A novel method for deep neural network

adaptation and transparency

We aim at providing the deep neural architecture with the

ability to adapt to new subject cases, assisting doctors with

efficient patient-specific analysis and treatment selection,

without forgetting its former knowledge. Our methodol-

ogy is based on a new network retraining approach which

extends the work in [5,19]. This approach uses clustering

[26] of trained system internal representations, in particular,

of the neurons’ outputs at the last fully connected CNN layer

(denoted, in vector form, as F in Fig. 5), or at the last hidden

RNN layer (let us denote them, in vector form, as u, and con-

sider them feeding the output units o). We use the centres of

these clusters as knowledge extracted from the data-driven

supervised training of the DNN architecture.

Whenever a new subject’s data are applied to the input

of the DNN end-to-end architecture, the latter computes the

respective internal representations and provides a prediction

at its output. Our approach is next to compute the distances of

these representations from the above described cluster cen-

tres and use them to validate, or not, the DNN prediction on

these new data. If one of these distances is small, compared

to some appropriate threshold, then classification of the new

data is made in the same category (patient/non-patient) with

that of the specific cluster, generally coinciding with the DNN

prediction. If all distances are large, then a drift in the DNN

modelling procedure is detected. In the case of drift, we need

to train again the DNN including the new data. However, we

do not perform the usual fine-tuning procedure. We choose

to retrain the fully connected CNN layers and/or the RNN

hidden and output layers, using, on the one hand, the input

(image) data corresponding to the cluster centres (Existing

Knowledge) and, on the other hand, the new data.

Following this retraining procedure, we avoid the catas-

trophic forgetting problem in DNN systems, which occurs

when we apply repeated fine-tuning to new data cases. This

is so, because we keep both the old knowledge (through

the cluster centres’ information) and the new information

provided by specific subject cases. Following retraining, we

update the cluster centres as well, after medical validation of

the new data, so as to create personalised system knowledge

instances.

In particular, the retraining procedure can be implemented

as follows:

Let us first consider that, based on the training of the deep

neural architecture for Parkinson’s, a specific set, say Sb,

including the training input data corresponding to the previ-

ously computed cluster centres and the respective annotations
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(patient/non-patient), has been created. Let y(i) denote the

network output when applied to a new data sample, i =

1, 2, . . ., not included in the previous network training data

set.

Let wb include all already computed weights of the fully

connected and output layers in a CNN network—and of hid-

den layers in a CNN–RNN network—before retraining and

wa the new (updated) weight vector which will be obtained

through retraining. In particular, let wl
b and wl

a , respectively,

denote the weights connecting the outputs of the last hidden

layer, say u, to the network outputs, y.

A training set St is assumed to include the new input

(image) data; this will normally include a rather small num-

ber of data.

In the proposed retraining procedure, the new network

weights, wa , are computed by minimizing the following error

criterion:

Ea = Et,a + η · E f,a (1)

where Et,a denotes the error performed over training set

St , i.e., over current input information and E f,a is the cor-

responding error performed over training set Sb, i.e., over

previous deep neural network knowledge. Parameter η is a

weighting factor accounting for the significance of the cur-

rent training set compared to the former one. In our approach,

we minimize (1) by assuming that a small perturbation of the

weights of the fully connected (and/or hidden) layers in the

CNN (or CNN–RNN) network is enough to achieve good

classification performance in the current conditions. Conse-

quently, we get:

wa = wb + �w (2)

and, similarly,

wl
a = wl

b + �wl (3)

with �w and �wl being small weight increments. This

assumption permits linearization of the nonlinear activation

neuron function, using a first-order Taylor series expansion.

It is possible to use the Mean Square Error (MSE) criterion

for both quantities in the right-hand side of (1). In this case,

we use normal deep learning for CNN and/or RNN networks

[12], implemented in the TensorFlow environment. It can

be also possible to stress the importance of current data in

the minimization of (1). In this case, we replace the first

term in the right-hand side of it by the constraint that the

actual network outputs za(i), after retraining, are equal to

the desired ones, i.e.,

za(i) = d(i), for all data i in St (4)

Let us denote the difference of the actual network outputs,

after and before retraining, in the case of a CNN network, as

follows:

�z(i) = za(i) − zb(i) (5)

Through linearization and using the fact that the outputs z

are weighted averages of the last hidden layer’s outputs u,

with the wl weights, it can be shown that

za(i) = zb(i) + f ′
b · wl

b · �ul(i) + �wl
· ul

b(i) (6)

where f ′ accounts for the derivative of the activation function

of the network output neuron(s).

Using Eq. (4) in (6) we get

d(i) − zb(i) = f ′
b · wl

b · �ul(i) + �wl
· ul

b(i) (7)

All quantities in Eq. (7) are based on former network values,

apart from the updates of the weights �wl and of the outputs

�ul . Thus Eq. (7) relates the targeted weights updates in the

network output with the outputs of the last hidden layer.

By continuing linearization of the difference of the u val-

ues, towards the previous fully connected layers, we replace

the �ul(i) term with its equivalent in terms of the weights

of the former layers. This continues until we reach the last

convolutional layer, which we use with no retraining, and

therefore �u is zero.

In this way, similarly to [5] we compute the weight incre-

ments �w by solving a set of linear equations, over all data

in St :

c = A · �w (8)

with matrix A being computed in terms of previously trained

weights, as was above described, while the elements of vector

c are defined as follows:

c(i) = d(i) − zb(i), for all data i in St (9)

and zb(i) denotes the outputs of the originally trained net-

work, when this is applied to the data in St .

The size of vector c is smaller than the number of unknown

weights �w, thus many solutions exist for (8). Uniqueness,

however, is imposed by an additional requirement which is to

select the solution that causes a minimal degradation of the

previous network knowledge. This is of great significance in

our approach, since this knowledge (and the respective clus-

ter centres) has been, normally, already validated by medical

experts and, therefore, should be changed the least possible.

Thus, the retraining problem results in minimization of

(1) subject to constraints (3) and the constraint for small

weight increments. A variety of methods can be used for this
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Fig. 6 MRI scan of a patient without Parkinson’s Disease. Axial orientation—T1 sequence

Fig. 7 MRI scan of a patient with Parkinson’s Disease. Axial orientation—T1 sequence

minimization. One of them is the gradient projection method,

which, starting from a feasible point, moves in a direction

which decreases the error criterion and satisfies the above

constraints. This is used for CNN network retraining in the

TensorFlow environment. Extension in the CNN–RNN case

is more complex, also taking into account the time evolution

and derivatives of the u values.

In addition to personalized diagnosis and prediction, the

proposed approach allows the deep neural architecture to

exhibit transparency in its decision making. In particular, for

each cluster centre, the respective medical input and desired

output data are stored in the database, as representative of

all data belonging to this cluster. Whenever, upon presen-

tation of new input data to the DNN, the obtained output

vector matches that of a specific cluster centre, then the

respective input image and medical data are presented to the

clinician/user to illustrate that this similarity has been taken

into account by the network in computing its prediction.

Experimental study

The current size of the generated fully annotated database is

78 subjects (over a half of the size to be finally generated),

with a ratio of 2:1 between Parkinson’s patients and non-

Parkinson’s patients. At this stage, it consists of MRI and DaT

scans, annotated as belonging to subjects with Parkinson’s or

not.

Dataset generation

We generated a dataset of about 100.000 combinations of

color DaT scans with triplets of consecutive MRI gray scale

images, covering both patient and non-patient categories.

Each input (combination) consists of three MRI images and

one RBG DaT scan image. To obtain a balanced dataset,

we applied various augmentation techniques, such as over-

sampling the latter category, or under-sampling the former

[1]. The above were then used as data for designing the end-

to-end deep neural architectures.

Fig. 8 DaT scan from a patient without Parkinson’s Disease (left).

Respective image from a patient with Parkinson’s (right)

We used about 70% of this data for training the deep neural

architectures. Moreover, we kept the original data (corre-

sponding to the rest 30% of augmented data) of 15 subjects

(out of the current 78 in our database) for validation and test-

ing. It should be emphasized that our target has been to test

the ability of the networks to learn from a number of patients

and generalize their performance to other subjects, who have

not been included in the training set. For this reason, the

test data consisted of six new subjects, four with Parkinson’s

(PD patients) and two without (Non-PD patients, denoted

NPD), to provide about 1.200 test input samples. The net-

works had two linear outputs, with targeted values (1,0) and

(0,1), respectively, for the two categories.

As a reference, 10 consecutive frames from an axial T1

brain MRI are presented in Fig. 6 for a patient without Parkin-

son’s, and 10 more in Fig. 7 for a patient with the disease.

Figure 8 shows two DaT scans of patients without and with

Parkinson’s Disease, respectively. The dopamine deficiency

can be seen in these images.

Network training

As a first approach, we selected to train the CNN and

CNN–RNN deep neural networks from scratch; starting from

random initial weights in the convolutional and fully con-

nected (FC) parts of the CNNs, or the convolutional and
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Table 1 Performance (on test data) of the trained end-to-end CNN

architecture for Parkinson’s

CNN architec-

tures: 2 output

units (PD/NPD)

Number of fully

connected (FC)

layers

Number of units

in each FC Layer

Accuracy

1 1 1000 0.57

2 1 2622 0.60

3 2 2622–500 0.90

4 2 2622–1000 0.91

5 2 2622–1500 0.94

6 2 2622–2000 0.93

hidden layers of the CNN–RNNs. As a second approach,

we adopted transfer learning, i.e., transfer of the weights of

the convolutional and pooling layers of a pretrained CNN,

to the generated networks. Then, the ‘upper’ FC part of the

targeted CNN network, as well as the RNN hidden layers of

the CNN–RNN, were designed and trained with the above

dataset. For the initialization of these weights, we used the

ResNet-50 CNN, which has been pre-trained with millions

of general type RGB images for this purpose. A separate

system was used for each of the image types in our inputs,

i.e., one focusing on the MRI triplets and another focusing

on the DaT scan. We concatenated the outputs of these two

ResNet substructures at the input of the first FC layer of the

CNN network. It is at this layer, that epidemiological data

will be concatenated as well, when the whole database will

have been generated.

Based on this procedure, we separately trained both a deep

CNN network and a deep CNN–RNN network for Parkin-

son’s disease diagnosis.

Experimental evaluation

Table 1 summarizes the results obtained through different

configurations of the CNN network, i.e., ones with different

numbers of hidden layers and hidden units per layer. An accu-

racy of 96% on training data set was obtained (with network

weights selected based on the performance on the validation

data set); an accuracy of 94% on testing dataset was obtained

in this experiment, as shown in Table 1, which is very satis-

factory.

Table 2 summarizes the accuracy obtained by the CNN–

RNN (with GRU neuron model) architecture, for different

respective structures, with weights selected similarly, based

on performance on the validation data set). The addition of

the RNN part allows the deep neural architecture to better fol-

low time varying correlations in the MRI sequence of triplets

of frames, thus increasing the accuracy of Parkinson’s pre-

diction to 98% on the testing data set.

There are some additional metrics obtained in terms of the

above results. In the best reported case (line 3 of Table 2),

Table 2 Performance on test data of the trained end-to-end CNN–RNN

architecture for Parkinson’s

CNN–RNN architectures: Number of units

in the FC layer

Accuracy

1 Fully connected layer

2 Hidden layers (128 units each)

2 (linear) output units

1 500 0.91

2 1000 0.96

3 1500 0.98

4 2000 0.97

Fig. 9 CNN Performance on validation data, during training epochs

Fig. 10 CNN–RNN Performance on validation data, during training

epochs

the MSE value was very low, equal to 0.02. Considering the

binary problem examined in this paper (PD/NPD), precision

attained was 1.00 and recall was 0.96 (F1 value was 0.98).

Figures 9 and 10 show the accuracy obtained by the end-to-

end deep CNN and CNN–RNN architectures, respectively,

on the validation/test data set, during training. It can be shown
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Table 3 Testing performance of trained CNN–RNN Architecture on

each subject

Subject number

in the database

Category Correct classifications

(normalized [0, 1])

26 PD 0.90

4 PD 1.00

6 PD 0.985

9 PD 0.956

17 NPD 1.00

21 NPD 1.00

that the best accuracy of the CNN architecture is obtained

early in the learning phase, afterwards reaching overfitting

conditions. It can also be observed that the Deep CNN–RNN

architecture takes longer to derive the best performance than

the CNN one.

It should be mentioned that the best performance of the

CNN–RNN architecture was 99,97% on the training data

and 98% on the test data. The test data set consisted of about

1200 input data (original, i.e., not augmented, MRI triplets

and DaT Scans) from six subjects; none of their data had been

included in the training data set. About 600 data concerned

each one of the PD and NPD categories. The performance on

test data was 96% for PD and perfect, i.e., 100%, for NPD

patients. In particular, Table 3 shows the percentage of correct

classifications for each test subject’s data (combinations of

MRIs and DaT scans).

This is an excellent result, which shows the potential of

the deep CNN–RNN architecture to provide very accurate

predictions of Parkinson’s disease.

We then applied the proposed clustering procedure on the

representations (vector of neurons’ outputs) generated at the

last hidden layer of the trained CNN and CNN–RNN archi-

tectures. The best results were obtained with 5 clusters, 3

corresponding to the Parkinson’s Disease (PD) cases and 2

to the Non-Parkinson’s (NPD) case, as described in the next

Section.

Clustering visualization

In order to visually illustrate the distribution of data in cate-

gories, Principal Component Analysis (PCA) was performed

on the representations obtained through processing of the test

data. Focus was put on the derived two main principal com-

ponents, as shown in Figs. 11a and 12a, for the CNN and

CNN–RNN architectures, respectively.

Figure 11a shows the distribution of the representations

obtained for PD and NPD subjects, as derived from the CNN

architecture. It should be mentioned that the last CNN fully

connected layer consisted of 1500 neurons. However, due to

the ReLU activation function, only about 30 neurons yielded

Fig. 11 a The two main principal components of the CNN representa-

tion. b Visualization of (three) cluster boundaries for the NPD category

provided by an OCSVM approach. c Histogram of the derived OCSVM

outputs

non-zero values in this representation. Figure 11b verifies

the ability of a one-class support vector machine (OCSVM)

[26], to determine clusters corresponding to the NPD class,

as shown in Fig. 11b.
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Fig. 12 a The two main principal components of the CNN–RNN rep-

resentation. b Visualization of (one) cluster boundary for the NPD

category provided by an OCSVM approach. c Histogram of the derived

OCSVM outputs

It is interesting to mention the variability of the PD cases

compared to the NPD ones. This is in accordance with the

lower accuracy obtained by the DNN architecture in the PD

Table 4 Cluster precision on the training set

Cluster category 1 2 3 4 5

PD 0 5 18277 1516 18163

NPD 2822 25393 0 0 0

Fig. 13 Projection in 3-D of cluster centres’ representations

class, when compared to the NPD case. Figure 11c shows a

histogram of the OCSVM values also illustrating this obser-

vation.

The respective results obtained for the representations pro-

vided by the CNN–RNN architecture are shown in Fig. 12a–

c. It should be mentioned that, in this case, the obtained

representations consisted of 128 neuron output values, com-

puted through the tanh activation function. However, only

about 20 of the neurons provided significant non-zero values;

the rest yielded very small, practically negligible, values.

By comparing these results with the respective ones in

Fig. 11a–c, it is concluded that the CNN–RNN architecture—

which has achieved a better performance than CNN—has

been able to produce much more compact representations

for each category, with well separated clusters.

There were five clusters generated by the proposed

approach, three for the PD category and 2 for the NPD one.

An indication of the purity (precision) of the clusters in the

augmented training data set can be viewed in Table 4. Four

clusters have a precision equal to 1.00, with one having a

0.9998 precision.

We computed the cluster centres, as the mean values of

all 128-dimensional vector representations included in each

cluster. Their projection in 3-D is shown in Fig. 13, show-

ing the significant distance values between them. Moreover,

Table 5 shows the corresponding maximum mean squared

distance of the representations in each cluster from the cor-

responding cluster centre.
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Table 5 Maximum intra-cluster distance

Cluster 1 2 3 4 5

Distance (MSE) 0.01 0.02 1.565 0.158 0.14

Figure 14a–e illustrate the input images corresponding to

the 5 cluster centres that were derived from the CNN–RNN

architecture. The clusters have been sorted by the level of

degeneration of the basal ganglia (lentiform nucleus, caudate

nucleus). The 5 cluster centres roughly represent the 3 stages

of DaT loss in PD, as confirmed by medical experts. This

provides transparency and is the basis for interpretability of

the decision making process implemented and achieved by

the proposed deep neural architecture.

Let us now proceed with analysis of new subject data

which have not been included in the developed system design

phase. Let us consider the test data described in Table 3 for

this purpose. Since the six subject cases span different pos-

sible scenarios, we will evaluate them in two different steps.

Let us first consider, the 4, 17 and 21 subjects of Table 3

(one from the PD category and two of the NPD category),

all data of whom are correctly predicted (100% accuracy)

by the CNN–RNN architecture. The internal representations

(128-dimensional vectors) generated at the output of the sec-

ond hidden layer of the RNN were also correctly classified,

based on their distances from the centres of the clusters

derived from the trained CNN–RNN respective internal rep-

resentations. All classifications provided by the trained DNN

architecture for the data of these three subjects have been,

therefore, accepted by our derived end-to-end contextualiza-

tion approach and formed the finally obtained predictions.

Since the training database has now been increased with

three new subject datasets, we can perform an updating of

the centres of the clusters to which the new data have been

included. Let us assume that a single vector m[ j], j = 1, 128,

is used to update the centre ci of the i-th cluster composed

of Ni members. Then, the new class centre ci,new will be

slightly modified, as follows:

ci,new[ j] = Ni · ci,old[ j]/(N + 1) (10)

Consequently, an updated, slightly different, system memory

is produced, incorporating the new knowledge about the new

subjects’ data.

Let us now focus on the three remaining cases of Table 3,

all referring to PD patients. 10 input combinations, out of

120, 3 out of 204 and 8 out of 184 input combinations, respec-

tively, have been erroneously classified, as NPD cases, both

by the CNN–RNN architecture and the cluster-based repre-

sentation. It should, however, be stressed that in all these

cases the distances of the computed representations from the

5 cluster centres have been larger than the respective max-

imum intra-cluster distances presented in Table 5. This has

been the criterion for considering these cases, as new ones,

which require insertion of new cluster centres and retraining

of the DNN network with them.

We should mention that, these cases constitute only a 9%,

1.5 and 4.5 of the data obtained by each of these patients,

respectively. Thus, we assume that clinician only examines

them and provides his/her own diagnosis. Following this val-

idation, two new clusters have been added to the PD existing

ones, one of which has been close, but distinct, to the 1st

NPD cluster centre and the other close, but distinct, to the

2nd NPD cluster centre.

In addition, we used the adaptation methodology described

in Section “A novel method for deep neural network adap-

tation and transparency” to successfully retrain the DNN

architecture so as to accurately classify the new data as well,

while keeping the formerly achieved performance. The new

dataset in Eqs. (1) and (4) consisted of the above described

21 input data samples. The performance obtained by the

network, after weight adaptation, was similar to the one

obtained, when retraining the network with all available data

in the database.

In all the above experiments, for DNN training, we used

the Adam optimizer algorithm, in mini batches, considering

the Mean Squared Error (MSE) as cost function.

Hyper-parameter value selection

For the CNN architecture, the hyper-parameter values were

selected as follows: a batch size of 30 (15 examples from

each category), a constant learning rate of 0.001; 2622 and

1500 hidden units, respectively, in each fully connected layer

and dropout after each fully connected layer with a value of

0.5. We also used biases in the fully connected layers.

For the CNN–RNN architectures the hyper-parameters

were selected to match the previous ones, apart from the

batch size which was 40 (20 examples from each category)

and the number of hidden units in the GRU layers, both of

which were 128.

The weights of the fully connected layers were initialized

from a Truncated Normal distribution with a zero mean and

a variance equal to 0.1 and the biases were initialized to 1.

Training was performed on a single GeForce GTX TITAN

X GPU and the training time was about 2–3 days.

Conclusions and further work

We have designed novel end-to-end deep neural architec-

tures, composed of CNN and RNN components, appropri-

ately trained with medical imaging data, and have obtained

very good performances in diagnosis and prediction of

Parkinson’s disease. We have been developing and publi-

cizing a new database, which we have used for training and
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Fig. 14 a The first cluster

centre corresponds to a typical

frame from a DaT scan of an

individual not suffering from

PD. b The second cluster centre

represents an interesting case of

an image that seems to be

pathological but belongs to a

healthy individual. Though the

lentiform Nucleus appears to be

completely gone, there is no

diffusion of the contrast agent in

the brain. The latter could be

viewed as an indication that the

main structures are, in fact,

intact. c The third cluster

represents the early stages (1–2)

of the degeneration associated

with PD, as both lentiform

nuclei appear to be diminishing.

d The fourth cluster is a typical

stage 2 DaT loss. Both lentiform

nuclei are completely gone; the

only signal is from the caudate,

which appear as two almost

symmetrical circular areas. e

The fifth cluster is the most

advanced stage of DaT loss,

stage 3. Here the basal ganglia

appear further degenerated,

while there is significant activity

in the rest of the brain. This is an

indication that these structures

have lost their ability to contain

the contrast agent and it has

diffused throughout the brain

evaluating the performance of the new deep neural architec-

tures.

Moreover, we have proposed a novel unsupervised app-

roach, based on clustering of the trained DNN internal

representations, which provides the deep neural architecture

with the ability to adapt to new data cases, without suffer-

ing the catastrophic forgetting problem, usually met in DNN

fine-tuning adaptation methodologies. This procedure also

provides a type of transparency in the decision making pro-

cess implemented by the deep neural architecture.
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In our current research, with the aid of medical experts, we

correlate the generated clusters with the medical and clinical

data and try to create descriptions relating the DNN decisions

with the developed cluster characteristics, as well as using

more detailed grading schemes in the data annotation and

more categories in the classification task. This is the basis for

providing explanations of the network’s performance, thus,

rendering its use transparent and trustful, while providing

more detailed predictions about Parkinson’s disease evolu-

tion.

A lot of research has been made on neuro-symbolic

learning and reasoning, i.e., merging neural networks with

knowledge representation, also involving deep neural net-

works [7,20] and on extracting rules from trained networks

[15]. We will also investigate the use of these methods to

provide formal representations of the generated Parkinson’s

knowledge and/or extract additional rules that may further

justify the predictions and assessments of the designed deep

neural architectures.

Our future research aims at extending the developments

obtained for the Parkinson’s case to other degenerative dis-

eases, which are based on similar input medical imaging

information. We first target dementias and Alzheimer’s, using

a recently presented database in [6]. Following the approach

proposed in the paper, we will use transfer learning to retrain

the DNNs designed for Parkinson’s on datasets describing

other diseases.
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