
Deep Neural Nets as a Method for Quantitative Structure−Activity
Relationships

Junshui Ma,*,† Robert P. Sheridan,‡ Andy Liaw,† George E. Dahl,§ and Vladimir Svetnik†

†Biometrics Research Department and ‡Structural Chemistry Department, Merck Research Laboratories, Rahway, New Jersey 07065,
United States
§Computer Science Department, University of Toronto, Toronto, Ontario ON M5S, Canada

*S Supporting Information

ABSTRACT: Neural networks were widely used for quantitative structure−activity
relationships (QSAR) in the 1990s. Because of various practical issues (e.g., slow on
large problems, difficult to train, prone to overfitting, etc.), they were superseded by
more robust methods like support vector machine (SVM) and random forest (RF),
which arose in the early 2000s. The last 10 years has witnessed a revival of neural
networks in the machine learning community thanks to new methods for
preventing overfitting, more efficient training algorithms, and advancements in
computer hardware. In particular, deep neural nets (DNNs), i.e. neural nets with
more than one hidden layer, have found great successes in many applications, such
as computer vision and natural language processing. Here we show that DNNs can
routinely make better prospective predictions than RF on a set of large diverse
QSAR data sets that are taken from Merck’s drug discovery effort. The number of
adjustable parameters needed for DNNs is fairly large, but our results show that it is
not necessary to optimize them for individual data sets, and a single set of
recommended parameters can achieve better performance than RF for most of the data sets we studied. The usefulness of the
parameters is demonstrated on additional data sets not used in the calibration. Although training DNNs is still computationally
intensive, using graphical processing units (GPUs) can make this issue manageable.

■ INTRODUCTION

Quantitative structure−activity relationships (QSAR) is a very
commonly used technique in the pharmaceutical industry for
predicting on-target and off-target activities. Such predictions
help prioritize the experiments during the drug discovery
process and, it is hoped, will substantially reduce the
experimental work that needs to be done. In a drug discovery
environment, QSAR is often used to prioritized large numbers
of compounds, and in that case the importance of having each
individual prediction be accurate is lessened. Thus, models with
predictive R2 of as low as ∼0.3 can still be quite useful. That
said, higher prediction accuracy is always desirable. However,
there are practical constraints on the QSAR methods that might
be used. For example

1. QSAR data sets in an industrial environment may involve
a large number of compounds (>100 000) and a large
number of descriptors (several thousands).

2. Fingerprint descriptors are frequently used. In these
cases, the descriptors are sparse and only 5% of them are
nonzero. Also, strong correlations can exist between
different descriptors.

3. There is a need to maintain many models (e.g., dozens)
on many different targets.

4. These models need to be updated routinely (e.g.,
monthly).

Even in well-supported, high-performance in-house comput-
ing environments, computer time and memory may become
limiting. In our environment, an ideal QSAR method should be
able to build a predictive model from 300 000 molecules with
10 000 descriptors within 24 h elapsed time, without manual
intervention. QSAR methods that are particularly computer-
intensive or require the adjustment of many sensitive
parameters to achieve good prediction for an individual
QSAR data set are less attractive.
Because of these constraints, only a small number of the

many machine learning algorithms that have been proposed are
suitable for general QSAR applications in drug discovery.
Currently, the most commonly used methods are variations on
random forest (RF)1 and support vector machine (SVM),2

which are among the most predictive.3,4 In particular, RF has
been very popular since it was introduced as a QSAR method
by Svetnik et al.5 Due to its high prediction accuracy, ease of
use, and robustness to adjustable parameters, RF has been
something of a “gold standard” to which other QSAR methods
are compared. This is also true for non-QSAR types of machine
learning.6

In 2012, Merck sponsored a Kaggle competition (www.
kaggle.com) to examine how well the state of art of machine

Received: December 17, 2014

Article

pubs.acs.org/jcim

© XXXX American Chemical Society A DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

www.kaggle.com
www.kaggle.com
pubs.acs.org/jcim
http://dx.doi.org/10.1021/ci500747n

learning methods can perform in QSAR problems. We selected
15 QSAR data sets of various sizes (2000−50 000 molecules)
using a common descriptor type. Each data set was divided into
a training set and test set. Kaggle contestants were given
descriptors and activities for the training set and descriptors
only for the test set. Contestants were allowed to generate
models using any machine learning method or combinations
thereof, and predict the activities of test set molecules.
Contestants could submit as many separate sets of predictions
as they wished within a certain time period. The winning entry
(submitted by one of the authors, George Dahl) improved the
mean R2 averaged over the 15 data sets from 0.42 (for RF) to
0.49. While the improvement might not seem large, we have
seldom seen any method in the past 10 years that could
consistently outperform RF by such a margin, so we felt this
was an interesting result.
The winning entry used an ensemble of different methods,

including deep neural net (DNN), gradient boosting machine
(GBM),3 and Gaussian process (GP) regression.7 Here we
focus on DNN, since it is the major contributor to the high
prediction accuracy of the winning entry, and we would like to
investigate the usefulness of DNN by itself as a QSAR method.
DNNs were one of the increasingly popular methods in the

machine learning community in the past 8 years and produced
disruptively high performance in speech recognition,8 computer

vision,9 and other artificial intelligence applications. One of the
major differences between DNNs today and the classical
artificial neural networks widely used for chemical applications
in the 1990s is that DNNs have more than one intermediate
(i.e., hidden) layer and more neurons in each layer and are thus
both “deeper” and “wider.”
The classical neural networks suffered from a number of

practical difficulties. For example, they could handle only a
limited number of input descriptors. Therefore, descriptor
selection or extraction methods had to be applied to reduce the
effective number of descriptors from thousands to tens or at
most hundreds. Valuable predictive information was thus lost.
Also, to avoid overfitting the training data and to reduce
computation burden, the number of hidden layers was limited
to one, and the number of neurons in that hidden layer had to
be limited. Thanks to the advancements in theoretical methods,
optimization algorithms, and computing hardware, most of the
issues with classical neural networks have been resolved.
Nowadays, neural networks with multiple hidden layers and
thousands of neurons in each layer can be routinely applied to
data sets with hundreds of thousands of compounds and
thousands of descriptors without the need of data reduction.
Also, overfitting can be controlled even when the nets have
millions of weights.

Table 1. Data Sets for Prospective Prediction

data set type description
number of
molecules

number of unique AP, DP
descriptors

Kaggle Data Sets

3A4 ADME CYP P450 3A4 inhibition −log(IC50) M 50000 9491

CB1 target binding to cannabinoid receptor 1 −log(IC50) M 11640 5877

DPP4 target inhibition of dipeptidyl peptidase 4 −log(IC50) M 8327 5203

HIVINT target inhibition of HIV integrase in a cell based assay −log(IC50) M 2421 4306

HIVPROT target inhibition of HIV protease −log(IC50) M 4311 6274

LOGD ADME logD measured by HPLC method 50000 8921

METAB ADME percent remaining after 30 min microsomal incubation 2092 4595

NK1 target inhibition of neurokinin1 (substance P) receptor binding −log(IC50) M 13482 5803

OX1 target inhibition of orexin 1 receptor −log(Ki) M 7135 4730

OX2 target inhibition of orexin 2 receptor −log(Ki) M 14875 5790

PGP ADME transport by p-glycoprotein log(BA/AB) 8603 5135

PPB ADME human plasma protein binding log(bound/unbound) 11622 5470

RAT_F ADME log(rat bioavailability) at 2 mg/kg 7821 5698

TDI ADME time dependent 3A4 inhibitions log(IC50 without NADPH/IC50 with
NADPH)

5559 5945

THROMBIN target human thrombin inhibition −log(IC50) M 6924 5552

Additional Data Sets

2C8 ADME CYP P450 2C8 inhibition −log(IC50) M 29958 8217

2C9 ADME CYP P450 2C9 inhibition −log(IC50) M 189670 11730

2D6 ADME CYP P450 2D6 inhibition −log(IC50) M 50000 9729

A-II target binding to Angiotensin-II receptor −log(IC50) M 2763 5242

BACE target inhibition of beta-secretase −log(IC50) M 17469 6200

CAV ADME inhibition of Cav1.2 ion channel 50000 8959

CLINT ADME clearance by human microsome log(clearance) μL/min·mg 23292 6782

ERK2 target inhibition of ERK2 kinase −log(IC50) M 12843 6596

FACTORXIA target inhibition of factor Xla −log(IC50) M 9536 6136

FASSIF ADME solubility in simulated gut conditions log(solubility) mol/L 89531 9541

HERG ADME inhibition of hERG channel −log(IC50) M 50000 9388

HERG (full data
set)

ADME inhibition of hERG ion channel −log(IC50) M 318795 12508

NAV ADME inhibition of Nav1.5 ion channel −log(IC50) M 50000 8302

PAPP ADME apparent passive permeability in PK1 cells log(permeability) cm/s 30938 7713

PXR ADME induction of 3A4 by pregnane X receptor; percentage relative to rifampicin 50000 9282

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/ci500747n

On the other hand, DNNs, as with any neural network
method, require the user to set a number of adjustable
parameters. In this paper, we examine 15 diverse QSAR data
sets and confirm that DNNs in most cases can make better
predictions than RF. We also demonstrate that it is possible to
have a single set of adjustable parameters that perform well for
most data sets, and it is not necessary to optimize the
parameters for each data set separately. This makes DNNs a
practical method for QSAR in an industrial drug discovery
environment. Previously, Dahl et al.10 used DNNs for QSAR
problems, but with a less realistic classification formulation of
the QSAR problem, and on public data without a prospective
time-split of training and test sets. Additionally, Dahl et al.
optimized adjustable parameters separately on each assay and
did not focus on the practicalities of industrial drug discovery
tasks.

■ METHODS

Data Sets. Table 1 shows the data sets used in this study.
These are in-house Merck data sets including on-target and
ADME (absorption, distribution, metabolism, and excretion)
activities. The 15 labeled “Kaggle Data Sets” are the same data
sets we used for the Kaggle competition, which are a subset of
the data sets in the work of Chen et al.11 A separate group of 15
different data sets labeled “Additional Data Sets” are used to
validate the conclusions acquired from the Kaggle data sets.

For this study, it is useful to use proprietary data sets for two
reasons:

1. We wanted data sets that are realistically large and whose
compound activity measurements have a realistic amount
of experimental uncertainty and include a non-negligible
amount of qualified data.

2. Time-split validation (see below), which we consider
more realistic than any random cross-validation, requires
dates of testing, and these are almost impossible to find
in public domain data sets.

The Kaggle data sets are provided as Supporting Information.
Due to the proprietary nature of the compounds, as in the
Kaggle competition, the descriptor names are disguised so the
compound structures cannot be reverse engineered from the
descriptors. However, comparisons can be made between
different QSAR methods.
A number of these data sets contain significant amounts of

“qualified data”. For example, one might know IC50 > 30 μM
because 30 μM was the highest concentration tested. It is quite
common for affinity data in the pharmaceutical industry to have
this characteristic. Most off-the-shelf QSAR methods can
handle only fixed numbers, so for the purposes of regression
models, those activities were treated as fixed numbers, for
example, IC50 = 30 μM or −log(IC50) = 4.5. Our experience is
that keeping such data in the QSAR models is necessary;

Figure 1. Architecture of deep neural nets.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/ci500747n

otherwise, less active compounds are predicted to be more
active than they really are.
In order to evaluate QSAR methods, each of these data sets

was split into two nonoverlapping subsets: a training set and a
test set. Although a usual way of making the split is by random
selection, i.e. “split at random,” in actual practice in a
pharmaceutical environment, QSAR models are applied
“prospectively”. That is, predictions are made for compounds
not yet tested in the appropriate assay, and these compounds
may or may not have analogs in the training set. The best way
of simulating this is to generate training and test sets by “time-
split”. For each data set, the first 75% of the molecules assayed
for the particular activity form the training set, while the
remaining 25% of the compounds assayed later form the test
set. We have found that, for regressions, R2 from time-split
validation better estimates the R2 for true prospective
prediction than R2 from “split at random” scheme.12 Since
training and test sets are not randomly selected from the same
pool of compounds, the data distributions in these two subsets
are frequently not the same, or even similar to, each other. This
violates the underlying assumption of many machine learning
methods and poses a challenge to them. Both the training and
test data sets of the Kaggle data sets are provided as Supporting
Information.
Descriptors. Each molecule is represented by a list of

features, i.e. “descriptors” in QSAR nomenclature. Our previous
experience in QSAR favors substructure descriptors (e.g., atom
pairs (AP), MACCS keys, circular fingerprints, etc.) for general
utility over descriptors that apply to the whole molecule (e.g.,
number of donors, LOGP, molecular weight, etc.). In this
paper, we use a set of descriptors that is the union of AP, the
original “atom pair” descriptor from Carhart et al.13 and DP
descriptors (“donor−acceptor pair”), also called “BP” in the
work of Kearsley et al.14 Both descriptors are of the following
form:

− −i jatom type (distance in bonds) atom type

For AP, atom type includes the element, number of
nonhydrogen neighbors, and number of pi electrons; it is
very specific. For DP, atom type is one of seven (cation, anion,
neutral donor, neutral acceptor, polar, hydrophobe, and other).
Random Forest. The main purpose of this paper is to

compare DNN to RF. RF is an ensemble recursive partitioning
method where each recursive partitioning “tree” is generated
from a bootstrapped sample of compounds and a random
subset of descriptors is used at each branching of each node.
The trees are not pruned. RF can handle regression problems
or classification problems. RF naturally handles correlation
between descriptors, and does not need a separate descriptor
selection procedure to obtain good performance. Importantly,
while there are a handful of adjustable parameters (e.g., number
of trees, fraction of descriptors used at each branching, node
size, etc.), the quality of predictions is generally insensitive to
changes in these parameters. Therefore, the same set of
parameters can be effectively used in various problems.
The version of RF we are using is a modification of the

original FORTRAN code from the work of Breiman.1 It has
been parallelized to run one tree per processor on a cluster.
Such parallelization is necessary to run some of our larger data
sets in a reasonable time. For all RF models, we generate 100
trees with m/3 descriptors used at each branch-point, where m
is the number of unique descriptors in the training set. The tree

nodes with 5 or fewer molecules are not split further. We apply
these parameters to every data set.

Deep Neural Nets. A neural network is network composed
of simulated “neurons”. Figure 1a shows a neuron in its detailed
form and simplified form. Each neuron has multiple inputs (the
input arrows) and one output (the output arrow). Each input
arrow is associated with a weight wi. The neuron is also
associated with a function, f(z), called the activation function,
and a default bias term b. Thus, when a vector of input
descriptors X = [x1 ··· xN]

T of a molecule goes through a
neuron, the output of the neuron can be represented
mathematically in eq 1:

∑= +
=

O f wx b()
i

N

i i

1 (1)

A row of neurons forms a layer of the neural network, and a
DNN is built from several layers of neurons, which is illustrated
in Figure 1b.
Normally, there are three types of layers in a DNN:

(1) the input layer (i.e., the bottom layer), where the
descriptors of a molecule are entered

(2) the output layer (i.e., the top layer) where predictions are
generated

(3) the hidden (middle) layers; the word “deep” in deep
neural nets implies more than one hidden layer.

There are two popular choices of activation functions in the
hidden layers: (1) the sigmoid function and (2) the rectified
linear unit (ReLU) function. Both functions and their
derivatives are shown in Figure 2.
The output layer can have one or more neurons, and each

output neuron generates prediction for a separate end point
(e.g., assay result). That is, a DNN can naturally model multiple
end points at the same time. The activation function of the
neurons in the output layer is usually a linear function, which is
shown in Figure 3.
The layout of a DNN, including the number of layers and the

number of neurons in each layer, needs to be prespecified,
along with the choice of the activation function in each neuron.
Therefore, to train a DNN is to maximize an objective function
by optimizing the weights and bias of each neuron

⌀ = = = +w b i N j L({ }, { }, 1, ..., , 1, ..., 1)i j j j,

where Nj is the number of neurons in the jth layer and L is the
number of hidden layers. The extra one layer of j is for the
output layer.
The training procedure is the well-known backward

propagation (BP) algorithm implemented using mini-batched
stochastic gradient descent (SGD) with momentum.15 The
individual values for ⌀ are first assigned random values. The
molecules in the training set are randomly shuffled and then
evenly divided into small groups of molecules called “mini-
batches”. Each mini-batch is used to update the values of ⌀
once using the BP algorithm. When all the mini-batches from
the training set are used, it is said that the training procedure
finishes one “epoch”. The training procedure of a DNN usually
requires many epochs. That is, the training set is reused many
times during the training. The number of epochs is an
adjustable parameter.
The number of elements in ⌀ for a QSAR task can be very

large. For example, the training data set can have 8000
descriptors, and the DNN can have three hidden layers, each

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

D

http://dx.doi.org/10.1021/ci500747n

layer having 2000 neurons. Under this condition, the DNN will
have over 24 million tunable values in ⌀. Therefore, the DNN
trained using the BP algorithm is prone to overfitting.
Advancements in avoiding overfitting made over the past
eight years played a critical role in the revival of neural
networks. Among the several methods to avoid overfitting, the
two most popular ones are (1) the generative unsupervised

pretraining proposed by Hinton et al.16 and (2) the procedure
of “drop-out” proposed by Srivastava et al.17 The first approach
can mitigate overfitting because it acts as a data-dependent
regularizer of ⌀, i.e. constraining the values of ⌀. Instead of
using random values to initialize ⌀ in a DNN, it generates
values of ⌀ by using an unsupervised learning procedure
conducted on the input descriptors only, without considering
the activities of the compounds they represent. The subsequent
supervised BP training algorithm just fine-tunes ⌀ starting from
the values produced from the unsupervised learning. The
second approach introduces instability to the architecture of the
DNN by randomly “dropping” some neurons in each mini-
batch of training. It has been shown that the drop-out
procedure is equivalent to adding a regularization process to the
conventional neural network to minimize overfitting.18 These
two approaches can be used separately or jointly in a DNN
training process.
As with a conventional neural network, a DNN can have

multiple neurons in the output layer with each output neuron
correspond to a different QSAR model. We will call this type of
DNN joint DNNs, which was called multitask DNNs in the work
of Dahl et al.10 Joint DNNs can simultaneously model multiple
QSAR tasks, and all QSAR models embedded in a joint DNN
share the same weights and bias in the hidden layers but have
their own unique weights and bias in the output layer.
Generally speaking, the hidden layers function as a complex
feature/descriptor optimization process, while the output layer
acts as a classifier. That is, all involved QSAR activities share the
same feature-extraction process but have their own prediction
based on the weights and bias associated with the
corresponding output neuron. As we will see, joint DNNs are
especially useful for those QSAR tasks with a smaller training
set. The training set of a joint DNN is formed by merging
training sets of all involved QSAR tasks. DNNs generally
benefit from a large training set and can potentially borrow
learned molecule structure knowledge across QSAR tasks by
extracting better QSAR features via the shared hidden layers.
Therefore, a DNN user can choose either to train a DNN from
a single training set or to train a joint DNN from multiple
training sets simultaneously. Many models presented in this
paper were trained as joint DNNs with all 15 data sets. Since
jointly training multiple QSAR data sets in a single model is not
a standard approach for most non-neural-net QSAR methods,
we need to show the difference in performance between joint
DNNs and individual DNNs trained with a single data set.
In order to improve the numeric stability, the input data in a

QSAR data set is sometimes preprocessed. For example, the
activities in the training set are usually normalized to zero mean
and unit variance. Also, the descriptors, x, can also undergo
some transformations, such as logarithmic transformation (i.e., y
= log(x + 1)) or binary transformation (i.e., y = 1 if x > 0,
otherwise y = 0). Both transformations were specially designed
for substructure descriptors, which are used in this study, where
the possible values are integers 0, 1, 2, 3, ... For other descriptor
types, one would have to adjust the mathematic form of both
transformations to achieve the same goal.
For a typical QSAR task, training a DNN is quite

computationally intensive due to the large number of molecules
in the training set, and the large number of neurons needed for
the task. Fortunately, the computation involved in training a
DNN is primarily large matrix operations. An increasingly
popular computing technique, called GPU (graphical process-
ing unit) computing, can be very efficient for such large matrix

Figure 2. Activation functions used in the hidden layers.

Figure 3. Activation function in the output layer.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/ci500747n

operations and can dramatically reduce the time needed to train
a DNN.
To summarize, the adjustable algorithmic parameters (also

called metaparameters or hyperparameters in the machine
learning literature) of a DNN are as follows:

• Related to the data
− Options for descriptor transformation: (1) no trans-

formation, (2) logarithmic transformation, i.e. y = log(x
+ 1), or (3) binary transformation, i.e. y = 1 if x > 0,
otherwise y = 0.

• Related to the network architecture
− Number of hidden layers
− Number of neurons in each hidden layer
− Choices of activation functions of the hidden layers: (1)

sigmoid function and (2) rectified linear unit (ReLU)
• Related to the DNN training strategy
− Training a DNN from a single training set or a joint

DNN from multiple training sets
− Percentage of neurons to drop-out in each layer
− Using the unsupervised pretraining to initialize the

parameter or not
• Related to the mini-batched stochastic gradient descent

procedure in the BP algorithm
− Number of molecules in each mini-batch, i.e. the mini-

batch size
− Number of epochs, i.e. how many times the training set is

used
− Parameters to control the gradient descent optimization

procedure, including (1) learning rate, (2) momentum
strength, and (3) weight cost strength.10

One of the goals of this paper is to acquire insights into how
adjusting these parameters can alter the predictive capability of
DNNs for QSAR tasks. Also, we would like to find out whether
it is possible for DNNs to produce consistently good results for
a diverse set of QSAR tasks using one set of values for the
adjustable parameters, which is subsequently called an
algorithmic parameter setting.
Metrics. In this paper, the metric to evaluate prediction

performance is R2, which is the squared Pearson correlation
coefficient between predicted and observed activities in the test

set. The same metric was used in the Kaggle competition. R2

measures the degree of concordance between the predictions
and corresponding observations. This value is especially
relevant when the whole range of activities is included in the
test set. R2 is an attractive measurement for model comparison
across many data sets, because it is unitless, and range from 0 to
1 for all data sets. We found in our examples that other popular
metrics, such as normalized root mean squared error (RMSE),
i.e. RMSE divided by the standard deviation of observed
activity, is inversely related to R2, so the conclusions would not
change if we used the other metrics.

Workflow. One key question that this paper tries to answer
is whether we can find a set of values for the algorithmic
parameters of DNNs so that DNNs can consistently make
more accurate predictions than RF does for a diverse set of
QSAR data sets.
Due to the large number of adjustable parameters, it is

prohibitively time-consuming to evaluate all combinations of
possible values. The approach we took was to carefully select a
reasonable number of parameter settings by adjusting the values
of one or two parameters at a time, and then calculate the R2s
of DNNs trained with the selected parameter settings. For each
data set, we ultimately trained and evaluated at least 71 DNNs
with different parameter settings. These results provided us
with insights into sensitivities of many adjustable parameters,
allowed us to focus on a smaller number of parameters, and to
finally generate a set of recommended values for all algorithmic
parameters, which can lead to consistently good DNNs across
the 15 diverse QSAR data sets.
The DNN algorithms were implemented in Python and were

derived from the code that George Dahl’s team developed to
win the Merck Kaggle competition. The python modules,
gnumpy19 and cudamat,20 are used to implement GPU
computing. The hardware platform used in this study is a
Windows 7 workstation, equipped with dual 6-core Xeon
CPUs, 16 GB RAM, and two NVIDIA Tesla C2070 GPU cards.

■ RESULTS

DNNs Trained with Arbitrarily Selected Parameters.
First, we want to find out how well DNNs can perform relative

Figure 4. Overall DNN vs RF using arbitrarily selected parameter values. Each column represents a QSAR data set, and each circle represents the
improvement, measured in R2, of a DNN over RF. The horizontal dashed red line indicates 0, where DNNs have the same performance of RF. A
positive value means that the corresponding DNN outperforms RF. The horizontal dotted green line indicates the overall improvement of DNNs
over RF measured in mean R2. The data sets, in which DNNs dominates RF for all arbitrarily parameter settings, are colored blue; the data set, in
which RF dominates DNNs for all parameter settings, is colored black; the other data sets are colored gray.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/ci500747n

to RF. Therefore, over 50 DNNs were trained using different
parameter settings. These parameter settings were arbitrarily
selected, but they attempted to cover a sufficient range of values
of each adjustable parameter. (A full list of the parameter
settings is available as Supporting Information.) More
specifically, our choices for each parameter are listed as follows:

• Each of three options of data preprocess (i.e., (1) no
transformation, (2) logarithmic transformation, and (3)
binary transformation) was selected.

• The number of hidden layers ranged from 1 to 4.
• The number of neurons in each hidden layer ranged

from 100 to 4500.
• Each of the two activation functions (i.e., (1) sigmoid

and (2) ReLU) was selected.
• DNNs were trained both (1) separately from an

individual QSAR data set and (2) jointly from a data
set combining all 15 data sets.

• The input layer had either no dropouts or 10% dropouts.
The hidden layers had 25% dropouts.

• The network parameters were initialized as random
values, and no unsupervised pretraining was used.

• The size of mini-batch was chosen as either 128 or 300.
• The number of epochs ranged from 25 to 350.
• The parameters for the optimization procedure were

fixed as their default values. That is, learning rate is 0.05,
momentum strength is 0.9, and weight cost strength is
0.0001.

Figure 4 shows the difference in R2 between DNNs and RF for
each data set. Each column represents a QSAR data set, and
each circle represents the improvement, measured in R2, of a
DNN over RF. A positive value means that the corresponding
DNN outperforms RF. A boxplot with whiskers is also shown
for each data set. Figure 4 demonstrates that, with rather
arbitrarily selected parameter settings, DNNs on average
outperform RF in 11 out of the 15 Kaggle data sets. Moreover,
in five data sets, DNNs do better than RF for all parameter
settings. Only in one data set (TDI), the RF is better than all
the tested DNNs. The mean R2 averaged over all DNNs and all
15 data sets is 0.043 higher than that of RF, or a 10%
improvement.
Additional information can be found in Table 2. It shows

that, even when the worst DNN parameter setting was used for
each QSAR task, the average R2 would be degraded only from
0.423 to 0.412, merely a 2.6% reduction. These results suggest
that DNNs can generally outperform RF.
Understanding the Impacts of Some DNN Parame-

ters. In order to gain insights into the impacts of some
adjustable parameters, we studied how R2s of DNNs changed
when a DNN parameter of interest was adjusted while the
other parameters were kept unchanged. We realize that that the
prediction performance of DNNs likely depends on the
interaction between different algorithmic parameters. There-
fore, our conclusions should be interpreted with caution.
However, investigating effects of parameters one at a time is a
frequently used efficient way of narrowing down the list of
important parameters.
First, we would like to understand the impact of the network

architecture (i.e., number of layers, and number of neurons in
each layer). In order to limit the number of different parameter
combinations, we assume that each hidden layer of the DNNs
has the same number of neurons, although DNN methods
allow each layer to have different number of neurons. Thus, the

network architecture has two parameters: (1) number of
hidden layers and (2) number of neurons in each layer. Thirty
two (32) DNNs were trained for each data set by varying both
parameters. Meanwhile, the other key adjustable parameters
were kept unchanged. That is, no data preprocessing was done,
the activation function used was ReLU, and all DNNs were
trained jointly from a data set combining all 15 data sets. The
difference in R2 between DNN and RF averaged over 15 data
sets is presented in Figure 5.
The most obvious observation from Figure 5 is that, when

the number of hidden layer is two, having a small number of
neurons in the layers degrades the predictive capability of
DNNs. This makes sense. When the data are fed into the input
layer, the next layer of neurons can see only the information
passed up from the previous layer. A layer with a smaller
number of neurons has less capacity to represent the data. If the
number of neurons in a layer is too small to accurately capture
important factors of variation in the data, then the next layer
will also not be able to capture this information and adding
more layers will just make the optimization harder.
Also, it can be seen that, given any number of hidden layers,

once the number of neurons per layer is sufficiently large,
increasing the number of neurons further has only a marginal
benefit. For example, once the number of neurons per layer
reaches 128 for a two-hidden-layer DNN, its performance
begins to approach a plateau. Also, Figure 5 suggests that a
DNN tends to have a higher plateau in prediction performance
when further increasing the number of neurons per layer.
Three- and four-hidden layer networks behave much like a two-
hidden layer networks, i.e. these deeper DNNs requires a much
larger number of neurons per layer to research a plateau, which
is higher than that of a two-hidden-layer DNN. Results of a
four-hidden-layer DNN are presented subsequently.
A surprising observation from Figure 5 is that the neural

network achieved the same average predictive capability as RF
when the network has only one hidden layer with 12 neurons.
This size of neural network is indeed comparable with that of
the classical neural network used in QSAR. This clearly reveals
some key reasons behind the performance improvement gained

Table 2. Comparing Test R2s of Different Models

DNNs trained with
arbitrarily selected, but
reasonable, parameters

data set
random
forest

DNN with
recommended
parameter values

median
R2

worst
case

best
case

3A4 0.469 0.521 0.515 0.476 0.550

CB1 0.283 0.345 0.331 0.294 0.377

DPP4 0.232 0.194 0.224 0.186 0.259

HIVINT 0.353 0.403 0.316 0.263 0.393

HIVPROT 0.530 0.543 0.524 0.467 0.581

LOGD 0.685 0.822 0.808 0.769 0.836

METAB 0.631 0.687 0.661 0.603 0.690

NK1 0.403 0.448 0.414 0.373 0.449

OX1 0.501 0.657 0.584 0.484 0.628

OX2 0.580 0.707 0.621 0.540 0.695

PGP 0.550 0.616 0.592 0.521 0.622

PPB 0.420 0.598 0.561 0.508 0.615

RAT_F 0.098 0.168 0.138 0.065 0.187

TDI 0.381 0.350 0.339 0.319 0.377

THROMBIN 0.222 0.375 0.351 0.315 0.380

mean 0.423 0.496 0.465 0.412 0.509

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

G

http://dx.doi.org/10.1021/ci500747n

by our way of using DNN: (1) a large input layer that accepts
the thousands of descriptors without the need for feature
reduction and (2) the dropout method that successfully avoids
overfitting during training.
Next, we would like to decide which activation function,

Sigmoid or ReLU, is a better choice for QSAR. For each data
set, at least 15 pairs of DNNs were trained. Each pair of DNNs
shared the same adjustable parameter settings, except that one
DNN used ReLU as the activation function, while the other
used Sigmoid function. The difference in R2 between the pair of
DNNs is presented in Figure 6 as a circle. Any circle above the
horizontal line of 0 indicates that the DNN using ReLU has
better predictive capability. For each data set, an one-sample
Wilcoxon test is conducted to find out if the difference in R2 is
significantly larger or smaller than 0. The data sets where ReLU

is significantly better than Sigmoid are colored in blue, and
marked at the bottom with “+”s. In contrast, the data set where
Sigmoid is significantly better than ReLU is colored in black,
and marked at the bottom with “−”s. Figure 6 shows that, in 8
out of 15 data sets, ReLU is statistically significantly better than
Sigmoid, while only in 1 data set, Sigmoid is significantly better.
Overall ReLU improves the average R2 over Sigmoid by 0.016.
Thus, our results suggest that ReLU is more preferable for
QSAR tasks than Sigmoid.
One issue with using ReLU is that it sometimes may cause

numerical instability because it has no upper bound (see Figure
2b). A solution to this issue for QSAR tasks is to preprocess the
input data with either a logarithmic transformation or a binary
transformation, as previously presented in the Methods section.

Figure 5. Impacts of Network Architecture. Each marker in the plot represents a choice of DNN network architecture. The markers share the same
number of hidden layers are connected with a line. The measurement (i.e., y-axis) is the difference of the mean R2 between DNNs and RF. The mean
R2 of DNNs is obtained by averaging over all DNNs sharing the same network architecture and over 15 data sets. The horizontal dotted green line
indicates 0, where the mean R2 of DNNs is the same as that of RF.

Figure 6. Choice of activation functions. Each column represents a QSAR data set, and each circle represents the difference, measured in R2, of a pair
of DNNs trained with ReLU and Sigmoid, respectively. The horizontal dashed red line indicates 0. A positive value indicates the case where ReLU
outperforms Sigmoid. The horizontal dotted green line indicates the overall difference between ReLU and Sigmoid, measured in mean R2. The data
sets where ReLU is significantly better than Sigmoid are marked with “+”s at the bottom of the plot and colored blue. “+” indicates p-value < 0.05,
and “++” indicates p-value < 0.01, while “+++” indicates p-value < 0.001. In contract, the data set where Sigmoid is significantly better than ReLU is
marked with “−”s at the bottom of the plot and is colored black. “−” indicates p-value < 0.05. The remaining data sets are not marked and are
colored gray.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/ci500747n

Joint DNNs Trained from Multiple Data Sets vs
Individual DNNs Trained from a Single Data Set. Next,
we would like to decide whether training a joint DNN using
multiple training sets is preferable over training an individual
DNN using a single data set. Given a DNN parameter setting,
each of the 15 QSAR data sets was first used to train 15
individual DNNs. Then, using the same DNN parameter
settings, a joint DNN was trained from the data combined from
the 15 data sets. This joint DNN was capable of producing
predictions for each of the 15 QSAR tasks. Thus, the prediction
obtained from the corresponding individual DNN and that
from the joint DNN form a comparison pair. For each data set,
17 comparison pairs were produced using 17 different DNN
parameter settings. One analysis of the result is shown in Figure
7. The difference in R2 between the comparison pair is

presented in Figure 7 as a circle. Any circle above the horizontal
line of 0 indicates that modeling the QSAR task as a joint DNN
is preferred. When averaged over all data sets, there seems to be
a difference favoring the joint DNN. However, the size of the
training sets plays a critical role on whether a joint DNN is
beneficial. For the two very largest data sets (i.e., 3A4 and
LOGD), the individual DNNs seem better, as shown in Figure
7. An in-depth explanation of this detectable boost for the joint
DNN warrants a future investigation, because out of the
129 295 unique molecules in all the data sets, 85% occur only in
a single data set, 97% occur in two or fewer data sets, and >99%
occur in three or fewer data sets. Also most of the overlap of
molecules is accounted for by 3A4 and LOGD, and for these
data sets, the joint DNN is worse. These facts do not support

Figure 7. Difference between joint DNNs trained with multiple data sets and the individual DNNs trained with single data sets. Each column
represents a scenario for comparing joint DNNs with single-task DNNs. Each circle represents the difference, measured in R2, of a pair of DNNs
trained from multiple data sets and a single data set, respectively. The horizontal dashed red line indicates 0. A positive value indicates the case where
a joint DNN outperforms an individual DNN. The p-value of a two-side paired-sample t test conducted for each scenario is also provided at the
bottom of each column.

Figure 8. Impacts of unsupervised pretraining. Each column represents a QSAR data set, and each circle represents the difference, measured in R2, of
a pair of DNNs trained without and with pretraining, respectively. The horizontal dashed red line indicates 0. A positive value indicates that a DNN
without a pretraining outperforms the corresponding DNN with a pretraining. The horizontal dotted green line indicates the overall difference
between DNNs without and with pretraining, measured in mean R2.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

I

http://dx.doi.org/10.1021/ci500747n

the simple explanation that benefit of the joint DNN is because
it makes use of molecules shared across different data sets.
The Impact of DNN Pretraining. Finally, we would like to

find out whether unsupervised pretraining a DNN can help
improve its predictive capability. The invention of unsupervised
pretraining16 played an important role in the revival of neural
network and the wide acceptance of DNNs. On problems
where the distribution of inputs, P(x), is informative about the
conditional distribution, P(y|x), of outputs given inputs,
unsupervised pretraining could dramatically improve the
predictive capability of DNNs.
The first issue that we ran into when we tried to pretrain a

DNN is that our software for unsupervised pretraining only
accepts the sigmoid function as the activation function. Since
we have shown that ReLU is more preferable than sigmoid for
QSAR tasks, this is a disadvantage of using pretraining in our
setup. Please note that Nair and Hinton21 describe a method
for performing unsupervised pretraining with ReLU even
though ReLUs are not in the exponential family that makes the
algorithm used in pretraining (i.e., contrastive divergence
algorithm) valid. Unfortunately, that method was not
implemented in our DNN software when we conducted this
study.
For each data set, we trained five different DNN

configurations with and without pretraining. Each pair of
DNNs with and without pretraining is compared, and their
difference in R2 is presented as a data point (i.e., a circle) in
Figure 8. Although the results are fairly variable among data
sets, it is still evident that DNNs without pretraining on average
are better than DNNs with pretraining. Figure 8 shows that,
averaging over all DNN pairs and over 15 data sets, pretraining
operation degrades R2 by 0.019. Since pretraining on average
degrades the predictive capability of a DNN on our data, and
existing software does not support pretraining with our
preferred activation function, ReLU, the unsupervised pretrain-
ing seems an undesirable procedure for QSAR tasks.
DNNs Trained with Refined Parameter Settings. After

studying the results of DNNs with different parameter settings,
more insights were gained regarding the impacts of some
adjustable parameters on DNNs’ predictive capability.

• Binary transformation generally hurts the performance,

while the logarithmic transformation is helpful for

achieving a better numeric stability.
• The number of hidden layers should be at least 2.

• The number of neurons in each hidden layer should be at

least 250.
• The activation function of ReLU is generally better than

Sigmoid.

If we refine our selections of adjustable parameters using these
gained insights, an improved group of results can be obtained,
which is shown in Figure 9. Comparing these results with those
in Figure 4, indicates that there are now 9 out of 15 data sets,
where DNNs outperforms RF even with the “worst” parameter
setting, improving from 5 data sets in Figure 4. Also, the R2

averaged over all DNNs and all 15 data sets is 0.051 higher than
that of RF.

Recommended DNN Parameter Setting. Until now, the
number of neurons and the percentage of dropouts in each
hidden layer were always set the same for all layers. After
studying the DNNs trained using different sizes and dropouts at
different hidden layers, more insights regarding these
parameters were gained. The sizes of initial stages of hidden
layers should be larger than those of at the latter stage of
hidden layers to ensure that the initial stages of the network
have enough capacity to explore the data, and do not become
an information bottleneck. Also, no dropout at the input layer is
needed, and fewer dropouts at the latter stages of hidden layers
are helpful. Two-, three-, and four-hidden-layer DNNs were
studied, the best performance was achieved by four-hidden-
layer DNNs. DNNs with more than four hidden layers were
not investigated. That was because our results suggested that
the negligible incremental performance gain could not justify
the dramatic increase in computation required by DNNs with
much wider and deeper hidden layers. It should be noted that
the increase in performance of four-layer over two-layer DNNs
is larger in multi-task problems than in single-task problems.
Combining the insights we gained regarding the adjustable

parameters of DNNs, a parameter setting of DNNs is
recommended, which is listed as follows:

Figure 9. DNN vs RF with refined parameter settings. Each column represents a QSAR data set, and each circle represents the improvement,
measured in R2, of a DNN over RF. The horizontal dashed red line indicates 0. A positive value means that the corresponding DNN outperforms RF.
The horizontal dotted green line indicates the overall improvement of DNNs over RF measured in mean R2. The data sets, in which DNNs
dominates RF for all arbitrarily parameter settings, are colored in blue; the data set, in which RF dominates DNNs for all parameter settings, is
colored black; the other data sets are colored gray.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

J

http://dx.doi.org/10.1021/ci500747n

• Data preprocessing: logarithmic transformation (i.e., y =
log(x + 1)).

• The DNN should have four hidden layers. The numbers
of neurons in these four hidden layers are recommended
to be 4000, 2000, 1000, and 1000, respectively.

• The dropout rates of the DNN are recommended to be 0
in the input layer, 25% in the first 3 hidden layer, and
10% in the last hidden layer.

• The activation function of ReLU should be used.
• No unsupervised pretraining is needed. The network

parameters should be initialized as random values.
• The number of epochs should be set to as large as the

computation capability is allowed, since dropout can
prevent overfitting.

• The parameters for the optimization procedure were
fixed as their default values. That is, learning rate is 0.05,
momentum strength is 0.9, and weight cost strength is
0.0001.

As for choosing between joint DNNs trained from multiple
data sets and individual DNNs trained from single data set
separately, we do not have enough evidence to have a clear
strategy. On one hand, joint DNNs on average outperform
individual DNNs across all 15 Kaggle data sets. On the other
hand, individual DNNs outperform joint DNNs on two larger
data sets. We do not have enough data to recommend how
many and which QSAR data sets should be merged to train a
better joint DNN. Therefore, either joint DNNs or individual
DNNs are acceptable at this moment.
Table 2 lists the Test R2s of the DNNs jointly trained from

15 Kaggle data sets under this recommended set of parameters,
along with those of RF, and those of DNNs in Figure 4, where
the DNNs were trained using arbitrarily selected parameter
settings. Please note that the recommended parameter setting is
not one of the parameter settings that were used to train DNNs
in Figure 4. Table 2 shows that the DNN with recommended
parameters outperforms RF in 13 out of the 15 data sets.
Testing the Recommended Parameter Settings on

New Data Sets. So far, all the results, along with our
recommended DNN parameter setting, were obtained using
the 15 Kaggle data sets. One concern is that we have somehow
tuned the adjustable parameters to favor those specific data sets.
Thus, is it important to show that the recommended
parameters will also apply to other QSAR data sets that have
not been part of the calibration. Thus, 15 additional QSAR data
sets were arbitrarily selected from in-house data. Each
additional data set was time-split into training and test sets in
the same way as the Kaggle data sets. Individual DNNs were
trained from the training set using the recommended
parameters, and the test R2s of the DNN and RF were
calculated from the test sets. The results for the additional data
sets are listed in Table 3. Table 3 shows that the DNN with
recommended parameters outperforms RF in 13 out of the 15
additional data sets. The mean R2 of DNNs is 0.411, while that
of RFs is 0.361, which is an improvement of 13.9%. This is, the
improvement of DNN over RF on the 15 additional data sets is
similar to what we observed for the Kaggle data sets.

■ DISCUSSION

In this paper, we demonstrate that DNN can be used as a
practical QSAR method, and can easily outperform RF in most
cases. While the magnitude of the change in R2 relative to RF
may appear to be small in some datasets, in our experience it is

quite unusual to see a method that is on average better than RF.
In order to address the difficulty in using DNN due to its large
number of adjustable algorithmic parameters, we provide
insights into the effects of some key parameters on DNN’s
predictive capability. Finally, we recommend a set of values for
all DNN algorithmic parameters, which are appropriate for
large QSAR data sets in an industrial drug discovery
environment. It should be noted, however, that although the
recommended parameters result in good predictions for most
datasets in both joint and single-task modes, this does not
necessarily imply that the recommended parameters are the
most computationally efficient for any specific dataset. For
example, we found that most single-task problems could be run
with two hidden layers with fewer neurons (1000 and 500) and
fewer epochs (75). This resulted in a very small decrease in
predictive R2 relative to that from the recommended
parameters, but with a several-fold saving in computational
time.
Both RF and DNN can be efficiently speeded up using high-

performance computing technologies, but in a different way
due to the inherent difference in their algorithms. RF can be
accelerated using coarse parallelization on a cluster by giving
one tree per node. In contrast, DNN can efficiently make use of
the parallel computation capability of a modern GPU. With the
dramatic advance in GPU hardware and increasing availability
of GPU computing resources, DNN can become comparable, if
not more advantageous, to RF in various aspects, including easy
implementation, computation time, and hardware cost. For
example, the hardware (i.e., a computer with GPU capability)
used in this study costs about USD $4,000, and the supporting
software (i.e., the python modules of gnumpy19 and cudamat20)
is free. This setting is more economical than a conventional
computer cluster. With the help of the supporting python
modules, programming GPU computing in python is almost
exactly the same as conventional python programing.
Figure 7 shows that training a joint DNN from all 15 data

sets simultaneously on average can slightly improve the
predictive capability of some QSAR tasks with smaller training
sets. These 15 data sets are quite different from each other in
several aspects, such as the type of molecules involved and the
purpose of the QSAR tasks. Generally with other QSAR

Table 3. Comparing RF with DNN Trained Using
Recommended Parameter Settings on 15 Additional
Datasets

data set random forest (R2) individual DNN (R2)

2C8 0.158 0.255

2C9BIG 0.279 0.363

2D6 0.130 0.195

A-II 0.805 0.812

BACE 0.629 0.644

CAV 0.399 0.463

CLINT 0.393 0.554

ERK2 0.257 0.198

FACTORXIA 0.241 0.244

FASSIF 0.294 0.271

HERG 0.305 0.352

HERGfull 0.294 0.367

NAV 0.277 0.347

PAPP 0.621 0.678

PXR 0.333 0.416

mean 0.361 0.411

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

K

http://dx.doi.org/10.1021/ci500747n

methods, one processes only one data set at a time, and it is not
intuitively obvious for chemists to understand how a QSAR
model embedded in a joint DNN can borrow information from
other unrelated QSAR data sets. Therefore, further inves-
tigation is needed to gain better understanding regarding how a
joint DNN works. Fortunately, it is clear that even when data
sets are treated individually, DNN can still achieve better results
than RF.
Our results show that the unsupervised pretraining, which

played a critical role in the success of DNNs in many machine
learning applications, generally degrades a DNN’s predictive
capability in QSAR tasks. At this moment, we do not have a
complete account of why pretraining hurts performance,
although it likely has to do with the properties of substructure
descriptors. Also, the limitation of our software, which prevents
us from using the preferred activation function of ReLU, kept
us from doing a better test of pretraining. We plan to revisit this
issue by applying DNNs to data sets using different types of
molecule descriptors.
Another future effort is to develop an effective and efficient

strategy for refining the adjustable parameters of DNNs for
each particular QSAR task. Although the performance of DNNs
is generally better than RF using the standard DNN parameter
settings, their predictive capability is variable under different
parameter settings. Table 2 shows that, if the “best” parameter
setting among those arbitrarily selected settings is selected for
each data set, nearly 10% of improvement can be achieved over
the median result. Therefore, in order to maximize the
performance of a DNN, it may still be desirable to
automatically fine-tune the DNN parameters for each data
set. For many machine learning tasks, this can be done by using
different variants of the cross-validation method. However, as
previously mentioned, the QSAR tasks in an industrial drug
R&D environment are better mimicked by time-split training
and test sets. Our results (not shown) suggested that cross-
validation failed to be effective for fine-tuning the algorithmic
parameters for some data sets in this scenario. Automatic
methods for tuning DNN parameters used in the machine
learning community depend on validation performance being
an accurate predictor of test performance. Therefore, new
approaches that can better indicate a DNN’s predictive
capability in a time-split test set need to be developed before
we can maximize the benefit of DNNs.

■ ASSOCIATED CONTENT

*S Supporting Information

Table of adjustable parameter settings used to evaluate DNNs
in the Results section. Training and test data for Kaggle data
sets (with disguised molecule names and descriptors). This data
set is suitable for comparing the relative goodness of different
QSAR methods given the AP,DP descriptors. This material is
available free of charge via the Internet at http://pubs.acs.org

■ AUTHOR INFORMATION

Corresponding Author

*junshui_ma@merck.com.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank Joseph F. Heyse and Keith A. Soper for their
support on the initiative of this study. The authors thank

Johannes H. Voigt and Amit Kulkarni for their supervision over
the Kaggle competition at Merck. Joseph Shpungin parallelized
the random forest code from Breiman.

■ REFERENCES

(1) Breiman, L. Random forests. Machine Learning 2001, 45, 5−32.
(2) Cortes, C.; Vapnik, V. N. Support-vector networks. Machine
Learning 1995, 20, 273−297.
(3) Svetnik, V.; Wang, T.; Tong, C.; Liaw, A.; Sheridan, R. P.; Song,
Q. Boosting: an ensemble learning tool for compound classification
and QSAR modeling. J. Chem. Inf. Comput. Sci. 2005, 45, 786−799.
(4) Bruce, C. L.; Melville, J. L.; Picket, S. D.; Hirst, J. D.
Contemporary QSAR classifiers compared. J. Chem. Inf. Model.
2007, 47, 219−227.
(5) Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J. C.; Sheridan, R. P.;
Feuston, B. P. Random forest: a classification and regression tool for
compound classification and QSAR modeling. J. Chem. Inf. Comput.
Sci. 2003, 43, 1947−1958.
(6) Fernandez-Delgado, M.; Cernades, E.; Barro, S.; Amorim, D. A.
Do we need hundreds of classifiers to solve real world problems? J.
Machine. Learning. Res. 2014, 15, 3133−3181.
(7) Burden, F. R. Quantitative structure-activity relationship studies
using Gaussian Processes. J. Chem. Inf. Comput. Sci. 2001, 41, 830−
835.
(8) Hinton, G. E.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.; Jaitly,
N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N.; Kingsbury,
B. Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Signal Processing
Magazine 2012, 29, 82−97.
(9) Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet
classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems 2012, 25, 1097−1105.
(10) Dahl, G. E.; Jaitly, N.; Salakhutdinov, R. Multi-task neural
networks for QSAR predictions; 2014; http://arxiv.org/abs/1406.1231;
arXiv:1406.1231 [stat.ML].
(11) Chen, B.; Sheridan, R. P.; Hornak, V.; Voigt, J. H. Comparison
of random forest and Pipeline Pilot naiv̈e Bayes in prospective QSAR
predictions. J. Chem. Inf. Model. 2012, 52, 792−803.
(12) Sheridan, R. P. Time-split cross-validation as a method for
estimating the goodness of prospective prediction. J. Chem. Inf. Model.
2013, 53, 783−790.
(13) Carhart, R. E.; Smith, D. H.; Ventkataraghavan, R. Atom pairs as
molecular features in structure-activity studies: definition and
application. J. Chem. Inf. Comput. Sci. 1985, 25, 64−73.
(14) Kearsley, S. K.; Sallamack, S.; Fluder, E. M.; Andose, J. D.;
Mosley, R. T.; Sheridan, R. P. Chemical similarity using
physiochemical property descriptors. J. Chem. Inform. Comp. Sci.
1996, 36, 118−27.
(15) Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning
representations by back-propagating errors. Nature 1986, 323, 533−
536.
(16) Hinton, G. E.; Osindero, S.; Teh, Y. W. A fast learning algorithm
for deep belief nets. Neural Computation 2006, 18, 1527−1554.
(17) Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929−1958.
(18) Wager, S.; Wang, S.; Liang, P. Dropout training as adaptive
regularization. Advances in Neural Information Processing Systems 26
(NIPS 2013); MIT Press: Cambridge, MA, 2013; pp 351−359.
(19) Tieleman, T. Gnumpy: an easy way to use GPU boards in Python;
Department of Computer Science, University of Toronto, 2010;
Technical report UTML TR2010-002.
(20) Mnih, V. Cudamat: a CUDA-based matrix class for Python;
Department of Computer Science, University of Toronto, 2009;
Technical report UTML TR2009-004.
(21) Nair, V.; Hinton, G. E. Rectified linear units improve restricted
Boltzmann machines. Proceedings of the 27th International Conference on
Machine Learning, Haifa, Israel, June 21−24, 2010; pp 807−814.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/ci500747n
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

L

http://pubs.acs.org
mailto:junshui_ma@merck.com
http://arxiv.org/abs/1406.1231
http://dx.doi.org/10.1021/ci500747n

