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ABSTRACT Human-like behavior has emerged in the robotics area for improving the quality of Human-

Robot Interaction (HRI). For the human-like behavior imitation, the kinematic mapping between a human

arm and robotmanipulator is one of the popular solutions. To fulfill this requirement, a reconstructionmethod

called swivel motion was adopted to achieve human-like imitation. This approach aims at modeling the

regression relationship between robot pose and swivel motion angle. Then it reaches the human-like swivel

motion using its redundant degrees of the manipulator. This characteristic holds for most of the redundant

anthropomorphic robots. Although artificial neural network (ANN) based approaches show moderate

robustness, the predictive performance is limited. In this paper, we propose a novel deep convolutional

neural network (DCNN) structure for reconstruction enhancement and reducing online prediction time.

Finally, we utilized the trained DCNN model for managing redundancy control a 7 DoFs anthropomorphic

robot arm (LWR4+, KUKA, Germany) for validation. A demonstration is presented to show the human-like

behavior on the anthropomorphic manipulator. The proposed approach can also be applied to control other

anthropomorphic robot manipulators in industry area or biomedical engineering.

INDEX TERMS Human-like behavior, deep neural network, Swivel motion, redundancy optimization,

anthropomorphic manipulator.

I. INTRODUCTION

Hman-like has attracted increasing research interest in the

past decades in various areas, such as industrial application,

service robot, and medical sector, etc.. In particular for the

cases that robots and humans share the workspace [1], [2], for

example, close collaboration between human operators and

industrial robots manufacturing, assistance system for elderly

users, etc., Human-Robot Interaction(HRI) plays a vital role

in these practical applications [3], [4]. It has been proven

that both humanoid appearances and human-like motion

behavior can facilitate task performance of HRI [5]. For

The associate editor coordinating the review of this manuscript and
approving it for publication was Luigi Biagiotti.

the anthropomorphic serial manipulators [5], for example,

LWR4+ (KUKA, Augsburg, Germany), Justin robot (Insti-

tute of Robotics and Mechatronics, Wessling, Germany) and

YuMi (ABB, Zurich, Switzerland), although with a similar

mechanical structure with human arm, a human-like behavior

of the robot arm pose can be an enhancement of this topic

because it provides a more social and reasonable movement

in HRI [6].

Several studies had been performed to introduce

human-like behavior for improving the performance of

human-robot collaborative tasks. Beretta et al. [7] achieved

an adaptive human-like hands-on control to reach and target

tasks in surgery with a redundant robot. A reaching task with

the human-like motion for robot-environment interactions
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FIGURE 1. Definition of the elbow elevation angle.

FIGURE 2. Achieving human-like behavior on the KUKA anthropomorphic
manipulator. S, E, and W are the coordination position of the shoulder,
the elbow, and the wrist, separately. The human-like defined elbow angle
ψ is implemented with the swivel motion of the robot arm between the
vertical reference plane (blue) and the arm plane (red).

had been studied in [8]. Huang et al. [9] transferred

human-like impedance to control a dual-arm Exoskeleton

Robot. De Momi et al. [10] used the feed-forward Artifi-

cial Neural Network (ANN) algorithm to obtain human-like

motion for trajectory planning. However, the above works

focused on the human-like motion only on the end-effector

of the robot without consideration of the arm pose, which is

the main obstacle to whole-body motion control.

Instead of human-like motion on the end-effector, the robot

arm pose can achieve human-like behavior by utilizing the

kinematic redundancy [11]. The definition of elbow elevation

angle for a human arm, shown in Figure 1, was adopted by

Kim et al. [12] for realizing human-like arm motion gener-

ation using captured data. Zanchettin et al. [13] proposed to

resemble a human-like behavior at a kinematic level, in order

to avoid any unease or discomfort (like fear or shock) to the

nearby humans. They redefined the elbow elevation angle,ψ ,

shown in Figure 2, for a human arm mapped on the robot

as a swivel motion. Compared to the biomimetic approach

using inverse kinematics to achieve human-like kinematic

behavior developed in [14], the introduced swivel motion

notion provides a more general strategy regardless of the

robot kinematic structure. Except for controlling the hand

pose of the redundant manipulator, resolving the human-like

swivel motion using its redundancy is applicable for most

typical industrial serial manipulators. [15]

Ajoudani [16] achieved natural redundancy resolution on

a dual-arm manipulator. A wrist-elbow-in-line method was

introduced by Liu et al. [17] to map the elbow angle from

human demonstrations on the real robot to obtain a human-

like kinematics solution. Yang et al. [18] utilized teaching by

demonstration scheme integrated the tutor’s motor function-

alities into the robot’s control architecture, transferring the

motion behavior from the human to robot.

Furthermore, the relation between swivel angle [19]

and hand pose had been analyzed in [20]. A human-

like behavior was achieved with the nonlinear regression

relationship [21], [22] between the swivel angle and the

hand pose [23]. The above research proved the human-like

behavior was achievable if an accurate nonlinear regression

model [24], [25] with multi-inputs could be obtained. The

polynomial regression method [26] had been used to describe

nonlinear phenomena such as the progression of disease

epidemics and distribution of carbon isotopes in lake sedi-

ments [27]. However, this method needed prior knowledge

of the inputs for selecting the best parameters. Therefore,

semi-parametric [28] and non-parametric [29], [30] regres-

sion approaches were presented for predicting the vectors

semi-with or without related a predetermined form but was

constructed according to information derived from the input

sequences. However, they required larger sample sizes to

increase regression accuracy. Recently, ANN approaches

had been applied to nonlinear regression analysis for geo-

physical explorations [31], biomedical applications [32], and

motion tracking [33]. These studies proved that ANN-based

regression algorithms ensured high accuracy by comparing

to traditional nonlinear methods [34], [35]. In our previous

work [10], we utilized a single layer feed-forward neural

network (FFNN) algorithm to build the nonlinear regression

model for achieving human-like behavior to do the tasks

in real-time. It was validated in the teleoperated surgery

scenario, and the studies show that people want a robot

with human-like behavior in the shared room. However, with

the growing inputs dimensions and interference components,

the previous shallow layer ANN regression methods can-

not fit these new situations. While the Deep Neural Net-

works (DNN) is capable of meeting the requirements such

as better accuracy, noise robustness, and decreased computa-

tional time.

This paper presents a novel nonlinear regression algorithm

to map the relation between swivel angle and the hand pose

using deep (convolution) neural network (DNN) approach

to improve the ability of nonlinear regression analysis of

human-like motion model. The DNN model aims to map
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the time-varying multi-inputs (the 6-D task pose), including

Cartesian positions x, y, z and Euler angles θx , θy, θz and the

output elbow swivel angle ψ . At the same time, accuracy,

noise robustness, and computation efficiency of the regres-

sion model should be respected for real-time motion control.

The input of the model is the target pose, and the output is

the swivel motion angle. The vision with skeleton tracking is

used to collect human motion data. This work aims to map

the human swivel angle on the robot arm during the tracking

tasks. Finally, the effectiveness of DNN is validated using

the human motion data, and we translated the DNN model

to manage redundancy control a 7 DoFs anthropomorphic

robot arm (LWR4+, KUKA, Germany). As a demonstration,

the anthropomorphic manipulator control using the DNN

model is presented with human-like behavior.

The paper is organized as follows: the corresponding

methodologies and the system architecture are presented in

section II and III, separately. Section IV compares the regres-

sion performance between DNN and other ANN methods

on the sample dataset. Moreover, it demonstrates the exper-

imental validation and results of the proposed methodology

evaluated with the KUKA LWR4+ robot. Finally, section V

draws a conclusion and delineates avenues for further work.

II. METHODOLOGY

In order to implement the human-like behavior on the

humanoid robot, the kinematic model of the human arm is

presented and the swivel motion during the manipulation

task is analyzed. After that, a data acquisition system with

skeleton tracking and DNN-based model training algorithm

are introduced. Finally, the built DNN model is transferred to

the analytical kinematic solution of the robot.

A. KINEMATIC MODELING

To achieve human-like behavior on the KUKA anthropomor-

phic manipulator (Figure 2), the elbow swivel angle ψ is

already defined in our previous work [10], shown in Figure 3.

Also, the human arm is simplified as a rigid kinematic chain

connected by three basic joints (shoulder, elbow and wrist)

including 7 DoFs, shown in Figure 4. By establishing the

table of Denavit-Hartenberg (D-H) parameters [36], defined

in Table 1, it is feasible to calculate the hand pose 0T7 using

forward kinematics function [37] through the joints coordi-

nates (θj, j = 1, 2, · · · 7) as follows:

0T7 = 0T1
1T2 · · · j−1T j · · ·

6T7 (1)

where the transformation matrix j−1T j from joint j−1 to joint

j is

j−1T j =









cos θj − cosαj sin θj sinαj sin θj 0

sin θj cosαj cos θj − sinαj cos θj 0

0 sinαj cosαj dj
0 0 0 1









.

The joint angles (θi, i = 1, 2, · · · , 7) can be obtained based

on the geometry relation. Then, the swivel angle ψ will

FIGURE 3. Definition of the swivel angle of the human arm using
skeleton data. SR ,SL, T ,E,W ,H represent the coordination positions of
the human joints.

FIGURE 4. The kinematic structure of the human arm model. It is
simplified to 7 DoFs, where qi , i = 1, · · · ,7 and dj , j = 1,3,5,7
represent the corresponding joint placements and the lengths of each
limb link, respectively.

TABLE 1. D-H parameters of the human arm model.

be calculated according to the vector relation between the

reference plane and arm plane [10].

B. HUMAN MOTION DATASET ACQUISITION

AND PREPROCESSING

After the kinematic modeling, the data acquisition system

using KINECT V2 (Microsoft, USA) for skeleton tracking
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FIGURE 5. Skeleton tracking and human arm model interface using
KINECT.

and swivel motion calculation is developed [38]. The acqui-

sition software of the human arm motion is implemented on

MATLAB 2018b. As it is shown in Figure 5, the subject is

working in the workspace within the range of vision system

which is overlaid by the skeleton viewer. When the ‘‘Start’’

button is pressed, the real-time vision system could acquire

the joint position coordinates and calculate the joints angles

through the geometry relation explained in the human arm

model which is capable of representing the same human

motion in the video. Meanwhile, it can compute the hand

target pose based on Eq. 1. Finally, the saved dataset with 6-D

inputs (hand pose) and output (swivel angle) are adopted to

train the DNNmodel for further regression analysis. It should

be noticed that the motion-capture experiments of the human

arm were performed without considering the robot kinematic

parameters. The motion data was collected only considering

the right arm of the subject.

C. MODELING USING DEEP CONVERLUTIONAL

NEURAL NETWORKS

As it discussed in section I, ANN-based algorithms are

the common methods for mapping the nonlinear relation-

ship between the swivel angle and the target pose of the

end-effector introduced and solved in nonlinear descrip-

tion [13], [23]. They show a solid performance regardless

of the selection of the architecture and activation functions.

However, there are some limitations when they are imple-

mented on the real-time application, such as underfitting and

time-consuming, due to the simple function structure.

To resolve these issues, we proposed a deep convolu-

tional neural networks (DCNN) structure for reconstruction

accuracy enhancement, fast computation and noise robust-

ness. The convolutional network and ReLU function are

widely known to be less computationally expensive and

robust compared to the rest ANN-based algorithms [39].

Figure 6 shows the details of the DCNN architecture. The

inputs are the 6-D task pose of human arm model, namely

X = [x, y, z, θx , θy, θz]. Where x, y, and z are the Cartesian

positions and θx , θy, and θz are Euler angles. To improve the

performance of the DCNN model, the inputs are transformed

as a 6 × 3 matrix by

X∗ = [X;X − X̄;
X − X̄

σ (X)
]; (2)

where X̄ denotes the average of X and σ (X) is the standard

deviation of X . The structure of DCNN model includes five

convolutional modules. The Conv2D.Module #1 to #3 have

2-D CNN layer with 2×2 filters using three types of window

sizes, namely 8, 16, and 32. The Conv1D.Module #4 to #5 are

1-D CNN model with 1 × 2 filters using the same size (32)

of window. Each module has a batch normalization layer

and a ReLU function. A dropout layer is adopted to resolve

the overfitting [40] and time-consuming [41] problems with

0.5 percentage of dropout parameter. Finally, the output layer

consists of a full connection layer and a regression layer with

576 parameters. The mini-batch size is 100 samples and we

select adaptive moment estimation(adam) optimizer as the

replacement optimization algorithm. The initial learning rate

is 0.01, with 0.05 drop factor and 100 drop period.

The regression analysis can be regarded as a supervised

machine learning process with the built DCNN model shown

in Eq. 3. The aim is to validate the performance of the DCNN

model in an online way.

ψt = ft (X t ,2) (3)

Parameter vector set 2 accounts for all the parameters of

DCNNmodel, including all of the weights ω and bias vectors

b in each layer. A nonlinear regression problem aims to find

the optimal parameters set 2 by computing the minimum

least squares between the predicted value ψ̂t and the real

value φt as follows:

2 = argmin
2

n
∑

t=1

(

ψ̂t − ψt

)2

= argmin
2

‖ψ̂ − ψ‖22 (4)

After acquiring the DCNNmodel with optimal parameters,

it needs to validate its performance in the testing procedure

with a batch learning mechanism by comparing the common

regression indexes. The Mean Absolute Error (MAE), Mean

Square Error (MSE), and Pearson correlation coefficient (ρ)

are widely used for evaluating the results of regression analy-

sis [42] and judging the similarity between predicted and real

curves [43] defined as follows:

MAE =

N
∑

t=1

|ψ̂ − ψ |

t (1)

MSE =





N
∑

t=1

(

ψ̂ − ψ

t

)2




(2)

ρ =
1

N − 1

N
∑

t=1





ψ̂t −
¯̂
ψ

σ
ψ̂





(

ψt − ψ̄

σψ

)

(3)

(5)

124210 VOLUME 7, 2019



H. Su et al.: DNN Approach in Human-Like Redundancy Optimization for Anthropomorphic Manipulators

FIGURE 6. The schematic diagram of DCNN model.

where t is the number of observations,
¯̂
ψ and ψ̄ are the

average of the predicted values ψ̂ and ψ , while σ
ψ̂

and ψ̂

are the standard deviation of ψ̂ and ψ . The best score for

correlation coefficient ρ is 1 and for other measures is 0.

D. ROBOTIC HUMAN-LIKE REDUNDANCY RESOLUTION

To transfer the DCNNmodel to the robot, a kinematic redun-

dancy optimization solution with the consideration of joint

limitations has been proposed in our previous work [10]. Its

feasibility has been validated on the real KUKA robot with

telemanipulation tasks. The swivel angle ψ is defined by the

angle between the reference plane and the actual arm plane.

To control the end-effector for tracking task, an interpolation

method is introduced so to move towards the final pose Xf ∈

R
6 smoothly as [44]:

Xd = −k(X − X f ) + Ẋ f (6)

where k > 0 is a positive coefficient. Xd ∈ R
6 is the desired

target pose. The target pose of the robot tool and the human-

like swivel angle are set as the input and output of the DCNN

model. Then, it generates an interpolation strategy based

swivel motion trajectory [10]. To reach the desired target pose

Xd and the desired swivel motion angle ψd , the velocity-

based control can be introduced. The main task projection

relation between the end-effector’s velocity Ẋ and the joint

velocity q̇ can be expressed by:

Ẋ = Jq̇T (7)

where J(q) ∈ R
6×7 is the Jacobian matrix from the end-

effector to the robot base, which represents a mapping

relation between task-space and robot joint velocities q̇.

Null-space projection is a general solution to resolve the

redundancy of a redundant robot, which can be found as

follows:

q̇ = J+Ẋ +
(

I − J+J
)

JE
+ψ̇uψ (8)

where JE ∈ R
3×4 is the Jacobian matrix from the elbow

of the robot to the robot base, which represents a mapping

relation between swivel motion angle and joint velocities.

And uψ ∈ R
3×1 is the velocity director of swivel motion,

defined as:

uψ =

−→

SE× E
−→
W

‖
−→

SE× E
−→
W ‖

(9)

where
−→

SE is the vector from the shoulder to the elbow of the

robot and
−→

EW is the vector from the elbow to the wrist of

the robot, as it is shown in Figure 2. In this paper, we assume

that the robot is always far away from the singularity, and its

pseudo-inverse matrix J+ exists. The corresponding redun-

dancy resolution kinematic controller is shown in Figure 8.

III. SYSTEM DEVELOPMENT AND ARCHITECTURE

Figure 7 is the developed system architecture including two

parts as follows:

(1) human motion analysis. After filtering the acquired

data from the KINECT V2 equipment and calculating

the joints angle, the human arm kinematic model could

derive the target pose. Finally, the collected hand pose

and its corresponding swivel angle (with 30Hz sample

frequency) are utilized to build the DCNN model.

(2) human-like redundancy resolution control. The estab-

lished DCNN model could achieve the smooth joints

configuration for real-time tracking tasks according to

the developed theory of inverse kinematic solution in

our previous works [10].

IV. EXPERIMENT AND DEMONSTRATION

To evaluate the effectiveness of DCNNmodel for human-like

redundancy optimization, comparisons are performed with

ANN-based and recurrent neural network (RNN) models,

such as long-short-term-memory (LSTM). The optimization

parameters of LSTM structure are set as follows. The initial

learning rate is 0.05 with 0.05 drop factor and 100 drop

period. The minimum batch size is 50. We select adaptive

moment estimation(adam) optimizer as the replacement opti-

mization algorithm. The acquisition software of the human

arm motion is implemented on MATLAB 2018b running on

Windows PCwith 16.0GBRAMand 2.80GHz Intel core. The

final demonstration experiment using KUKA robot is con-

ducted with the saved DCNNmodel to validate its feasibility.
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FIGURE 7. The system architecture consists of the human motion analysis module to collect data from KINECT and the human-like
redundancy resolution control module to achieve the skeleton tracking control of the robot.

FIGURE 8. A sketch of the redundancy kinematic controller.

A. PERFORMANCE COMPARISONS OF DCNN MODELING

Since the human limb length varies, the D-H parameters is

different between the subjects. Moreover, this paper aims to

validate the efficiency for training the human-like motion

model. Hence, we ignore the difference of limb length and

hire one subject for the data acquisition by performing

natural reaching motions in the specified cubic task space

(surgeons’ hand workspace). The data acquisition is with

written informed consent from the subject in accordance with

the Declaration of Helsinki. The subject is commanded to

stand in front of the table and to perform the hand motion in a

cube workspace (0.21× 0.297× 0.18 m3). The workspace is

in front of the subject with a distance around 0.2 m, and it is

0.69 m higher than the ground 0.69m. The detailed geometry

information of the motion data set and experimental protocol

of the data collection has been described in our previous

work [10]. The acquired dataset are divided into the training

set (24 trajectories) for building the DCNN model which

is comparable with the subject’s motion variability on the

swivel trajectory (7700 samples), and the two testing datasets

(2 arbitrary movements trajectories) for evaluating the regres-

sion performance of DCNNmodel (each have 1000 samples).

Figure 9 shows the comparative results of MAE, RMSE,

correlation coefficient and computational time among

DCNN, LSTM, and ANN-based models by evaluating the

strong reconstruction of DCNN model. To enhance the

FIGURE 9. The comparison performance among DCNN, ANN-based and
LSTM models for reconstructing the training dataset.

experimental effectiveness, two types of ANN-based mod-

els (FFNN and Cascade-forward NN (CFNN) network [45])

with single and double hidden layers and two kinds of

neurons, i.e., S-FFNN(50), S-CFNN(50), M-FFNN(30 10)

and M-CFNN(30 10), are chosen to compare with the DCNN

model. For avoiding the overfitting and underfitting, all of

the experiments have done 20 times. By comparing the

errors (MAE and MSE) and coefficient ρ, the proposed

DCNN structure is proved as the best model to reconstruct

the training dataset. The average of MAE and MSE are

0.0879 and 0.0154 rad, respectively. They are lower than

those obtained by other methods. Meanwhile, the proposed

DCNN structure is the most robust model with the lowest

standard deviation of errors and coefficient.

The proposed DCNN model could also obtain a faster

regression speed than LSTM and ANN-based model. Table 2

displays the comparative average and sum of testing time on

the two trajectory tasks. The results prove that the DCNN

model is the fastest approach for predicting an output than
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TABLE 2. The comparison of online testing time among DCNN, ANN-based, and LSTM models.

TABLE 3. The comparative results among DCNN, ANN-based, and LSTM models for evalusting noise robustness.

the other methods. It only needs 0.0038 seconds to output a

result and 3.83 seconds to predict all of the 1000 results.

Figure 10 shows the prediction values of DCNN model

on the training and two testing datasets. The top picture

describes the predicted and observed curves (7700 samples)

in the training process with a lower predictive error, while the

last two pictures display the same curves working on the two

testing datasets.

The DCNN model is proved as a noise robustness

approach. In a dynamic environment, various noises decrease

regression accuracy. For the experiment, we add 10dB and

40 dB into the two testing datasets. Table 3 shows the com-

parison errors (MAE and MSE) on both trajectory datasets.

The proposed DCNN structure obtains the lowest errors than

the other methods which are labeled by bold numbers.

B. DEMONSTRATION OF HUMAN-LIKE REDUNDANCY

OPTIMIZATION USING DCNN MODEL

After the validation of the performance of DCNN in the

human-like model training, we demonstrate the human-like

redundancy optimization using the built DNN model on the

FIGURE 10. The observed and predicted swivel angles on the training and
two trajectories computed by DCNN model.

KUKA robot. The robot pose is calculated based on an inter-

polation algorithm and it is used as the input of DCNNmodel.

Then the trained model predicts the human-like swivel angle.

The developed inverse kinematic mapping strategy in our

previous works [10] is introduced to get the joints solution.
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FIGURE 11. Human-like motion demonstration of KUKA LWR4+.

As it is shown in Figure 11, with the trainedmodel, the robotic

arm can replicate human kinematics strategies for performing

tracking task, achieving human-like arm posture during the

manipulation of a task.

V. CONCLUSION AND FUTURE WORK

This paper proposed a novel deep convolutional neural net-

work structure (DCNN) in human-like redundancy opti-

mization for anthropomorphic manipulators. It features with

reconstruction accuracy enhancement, fast computation and

noise robustness. Finally, we validated the human-like redun-

dancy optimization control of a 7 DoFs anthropomorphic

robot arm (LWR4+, KUKA, Germany) using the trained

DCNN model. As a demonstration, the anthropomorphic

manipulator control using the DCNN model is presented

with human-like behavior. The experiments prove that DCNN

model not only could acquire a higher reconstruction accu-

racy than ANN-based and LSTM models, but also cost less

time to predict the results. Meanwhile, the DCNN model has

powerful noise robustness than the other methods (shown in

table 3). Although it can get a better model by adjusting the

parameters of ANN-based and LSTM models, the proposed

DCNN model shows promising noise robustness against a

wide range of noise even. The joints position and speed

limitation have also been taken into account in the human-

like redundancy optimization. The experiments have been

conducted on LWR4+ simulator to verify the performance

of the proposed algorithm. Results show that the robot can

achieve human-like behavior and is feasible for control. The

online redundancy method is generalizable, can be applied in

a wide variety of anthropomorphic robot arms with similar

Kinematic structure.

However, further works will involve more subjects and

more trajectories with different geometries for the general

model validation. Also the improved human-robot impedance

control [49] will be utilized to enhance the safety of human-

robot interaction instead of rigid kinematic control.
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