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Abstract

In this paper, we propose a general framework for combining
deep neural networks (DNNs) with dynamic programming
to solve combinatorial optimization problems. For problems
that can be broken into smaller subproblems and solved by
dynamic programming, we train a set of neural networks to
replace value or policy functions at each decision step. Two
variants of the neural network approximated dynamic pro-
gramming (NDP) methods are proposed; in the value-based
NDP method, the networks learn to estimate the value of
each choice at the corresponding step, while in the policy-
based NDP method the DNNs only estimate the best deci-
sion at each step. The training procedure of the NDP starts
from the smallest problem size and a new DNN for the next
size is trained to cooperate with previous DNNs. After all the
DNNs are trained, the networks are fine-tuned together to fur-
ther improve overall performance. We test NDP on the linear
sum assignment problem, the traveling salesman problem and
the talent scheduling problem. Experimental results show that
NDP can achieve considerable computation time reduction on
hard problems with reasonable performance loss. In general,
NDP can be applied to reducible combinatorial optimization
problems for the purpose of computation time reduction.

Introduction

Dynamic programming (DP) is a widely used method for
solving various optimization problems (Bellman 1966). For
a problem that can be reduced to sub-problems with sim-
ilar structures, each corresponding to a stage of decision
making, DP finds the optimal solution for each sub-problem
and achieves global optimal solution. Since the problem is
broken into sub-problems, DP can efficiently reduce search
space as compared with naive exhaustive search over all the
possible combinations.

However, for many of the combinatorial optimization
problems, the size of the search space grows exponentially
or by factorial order of the problem size. Even if problems
are broken into sub-problems to reduce search space, the
complexity of algorithms using DP can still be high for
NP-hard problems. For example, for the traveling salesman
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problem (TSP), simple exhaustive search has time complex-
ity of O(n!). The Bellman-Held-Karp algorithm (Bellman
1962; Held and Karp 1962) based on DP can achieve time
complexity of O(2nn2) and space complexity of O(2nn).
The exponential growing complexity can still be relatively
high for large problem sizes, making it unsuitable for time
or memory critical applications.

Methods based on neural networks (NNs) have been pro-
posed as solutions to combinatorial problems since decades
ago (Looi 1992; Smith 1999). Recent advancements in deep
neural networks (DNNs) have lead to more efficient schemes
using novel network architectures and new training pro-
cedures of NNs (Bello et al. 2016; Khalil et al. 2017;
Yang et al. 2018). However, many of the previously pro-
posed methods focus on specific classes of problems such
as graph based problems (Khalil et al. 2017) and routing
problems (Kool, van Hoof, and Welling 2018). Alternatively,
they rely on specific network architectures and specific rein-
forcement learning training procedures (Bello et al. 2016).
Though in (Yang et al. 2018) a NN based dynamic program-
ming method was proposed, it requires training on each test-
ing instance of the problem, which is impractical for time
critical tasks.

In this paper, we propose a deep neural network approx-
imated dynamic programming approach to solve general
combinatorial optimization problems. The main contribu-
tions of this paper are as follows:

• We propose a general framework of replacing policy or
value function calculation process with NNs called neu-
ral network approximated dynamic programming (NDP).
The framework is simple and robust and can be combined
with different NN architectures.

• An unsupervised training procedure is proposed for NDP.
It consists of a pre-training step and a fine-tuning step. Ro-
bust performance improvement is achieved in the training
procedure.

• Experimental results on the linear sum assignment prob-
lem (LSAP) and the TSP show that compared with pre-
vious methods, NDP can be an alternative to achieve a
balance between computation time and solution quality.
When applied to the talent scheduling problem, NDP is
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able to achieve considerable reduction of computation
time, with a reasonable gap from the optimal solution.

Related Work
Recent developments of deep neural networks has enabled
machine learning based methods to achieve state-of-the-art
results in various tasks(LeCun, Bengio, and Hinton 2015;
He et al. 2016). By adopting various techniques and NN
architectures, several methods have also been developed
for combinatorial optimization problems and achieved close
to optimal results (Bello et al. 2016; Khalil et al. 2017;
Yang et al. 2018; Kool, van Hoof, and Welling 2018).

In (Bello et al. 2016), a pointer network (Vinyals, For-
tunato, and Jaitly 2015) based method was proposed to
solve the traveling salesman problem (TSP) and the knap-
sack problem. To overcome the difficulty of generating high-
quality labeled data for NP-hard problems, the pointer net-
work was trained with reinforcement learning, with an actor-
critic based procedure. Combined with an active search pro-
cess at testing stage, the pointer network based method was
able to achieve near optimal solutions with less computation
time compared with previous methods.

An algorithm called S2V-DQN using graph embedding
networks was proposed in (Khalil et al. 2017). The algo-
rithm focuses on solving combinatorial optimization prob-
lems with graph structures, especially TSP. S2V-DQN uses
a strcture2vec network(Dai, Dai, and Song 2016) to repre-
sent information in a policy. Then a DQN (Mnih et al. 2015)
is trained to provide a greedy policy on the representation.
This method is able to achieve close to optimal solutions,
with the ability to generalize to problems with sizes over
1000.

To solve routing related problems, an attention model
(AM) based method was proposed in (Kool, van Hoof, and
Welling 2018). The attention model contains an encoder that
produces embedding of the context of the problem, and a de-
coder that produces the solution sequentially. For TSP, the
attention based method is able to achieve solutions that are
closer to optimum compared with S2V-QDN and the method
in (Bello et al. 2016).

In (Yang et al. 2018), the authors proposed a method
called neural network dynamic programming (NNDP) to
boost the performance of DP with NNs. For each instance
of TSP, their method trains a new set of parameters with a
solution reconstruction process that samples solutions. The
neural network is trained to estimate quality of each solu-
tion. The main difference between our approach and NNDP
is that our approach does not require training on test sam-
ples, and instead of training one NN, we train a series of
NNs for each problem size. Note that NNDP still needs to
run the NN multiple times for a multi-step DP problem. With
the training time on each instance, NNDP may be unsuitable
for time-critical tasks.

A classifier based approach was proposed in (Lee et al.
2018) to solve LSAP. The LSAP requires a solution to assign
n jobs to n people that maximize reward or minimizes cost.
In their approach for each person a single classifier is trained
to get a suitable job assignment for that person. Inevitably
there may be jobs that are assigned to more the one person.

A greedy heuristic based approach was proposed to resolve
assignment collisions.

To overcome the curse of dimensionality, neuro-dynamic
programming was proposed for space and computation
time reduction for the original DP (Bertsekas and Tsitsik-
lis 1996). However, the previous works on neuro-dynamic
programming mainly focus on using simple approximation
functions such as linear functions or polynomial regres-
sion to approximate value functions (Powell 2007). Most
of the works on neuro-dynamic programming also focus on
stochastic control problems (Bertsekas and Tsitsiklis 1996;
Van Roy et al. 1997; Lam, Lee, and Tang 2007).

Different from above mentioned previous works, our
method is proposed for general combinatorial optimization
problems that can be solved by traditional DP. Unlike the
method in (Bello et al. 2016), NDP does not require sophis-
ticated network structures like the pointer network or the at-
tention model in (Kool, van Hoof, and Welling 2018). NDP
does not require a graph structure in the problem like S2V-
DQN(Khalil et al. 2017), which may not exist in many prob-
lems that can be solved by DP. Unlike the method proposed
in (Yang et al. 2018), which requires training on each of the
testing samples for at least 1 second, in this paper we assume
that only the distribution of the problem instances is known.
The training set and testing set are generated according to
the known distribution with different random seeds. NDP is
trained on a training set and does not require training (Yang
et al. 2018) or searching (Bello et al. 2016) for optimization
on new instances of the problem. The method proposed in
(Lee et al. 2018) requires training of n problem-size specific
classifiers for a size n problem. While in NDP each DNN
is responsible for solving a sub-problem with different size,
DNNs for smaller problem sizes are used for training and
testing on problems with larger sizes. In addition, certain
amount of the optimal solutions are needed for the training
of the classifier based approach, this may be time consum-
ing or even infeasible for hard problems. Unlike previously
proposed neuro-dynamic programming methods (Bertsekas
and Tsitsiklis 1996), in this paper we focus on using DNNs
for value or policy function approximation. We apply NDP
on general combinatorial optimization problems instead of
stochastic control problems.

There may be concern that with multiple NNs, NDP may
be more time consuming than other methods. However, ex-
cept for the classifier based approach mentioned in (Lee et
al. 2018), the other methods all work in a step by step way.
For problems with n steps the NNs are used n times. So the
main extra cost introduced by NDP is the space for storage
of NNs in memory, which is usually abundant in modern
computers.

We emphasize that in this paper, the main contribution
is not to gain performance improvement on previously well
studied problems. We focus on developing a simple and gen-
eral framework to speedup DP for combinatorial optimiza-
tion problems. In addition, the flexibility of this framework
allows it to be combined with more powerful network ar-
chitectures or training procedures for better performance, or
simpler network structures for less complexity. For general
problems, especially problems without existing high quality
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solver or heuristic based methods such as talent scheduling,
NDP is a simple and efficient approach for obtaining a close
to optimal solution with computation time reduction.

Dynamic Programming and Approximation

Methods
Dynamic programming was developed for a class optimiza-
tion problems that can be converted into a process of making
a decision in several steps. The optimal solution of the over-
all problem should be obtainable by making optimal choices
at each step; this is called the principle of optimality (Bell-
man and others 1954). By dividing the problem into smaller
subproblems, DP can effectively reduce the search space of
combinatorial optimization problems. For a given state s,
which corresponds to a subproblem, and an action from the
feasible set of actions a ∈ A(s), the Bellman equation for a
reward maximization problem can be written as:

V (s) = max
x∈A(s)

(R(s, a) + V (s′)), (1)

where s′ is the next state followed after choosing action
a, and R(s, a) is the obtained reward by choosing action
x, V (s) is the value function for state s. The Bellman
equation can be solved by backward induction, by com-
puting the value functions for smaller problems and ob-
taining the final value function step by step. However, for
problems with a large state space, backward induction may
be time consuming or even infeasible. Several techniques
have been proposed to address the curse of dimensionality
(Bertsekas and Tsitsiklis 1995; 1996; Powell 2007; Buşoniu,
De Schutter, and Babuška 2010; Mes and Rivera 2017;
Yang et al. 2018). Many approaches have been proposed to
approximate the value function, including using basis func-
tions (Buşoniu, De Schutter, and Babuška 2010), linear mod-
els, polynomial regression (Powell 2007) and DNNs as pro-
posed in (Yang et al. 2018; van Heeswijk and La Poutré
2019). As far as we know, apart from (Yang et al. 2018;
van Heeswijk and La Poutré 2019), this is the only other
work that uses DNNs for function approximation in DP. As
previously stated, different from (Yang et al. 2018), our ap-
proach requires no training on testing samples, and uses dif-
ferent DNNs for different decision steps instead of one DNN
for all the steps. (van Heeswijk and La Poutré 2019) focuses
more on value function approximation. They only studied
the nomadic trucker problem, under a Markov decision pro-
cess setting, with smaller problem sizes, which is more like
a reinforcement learning approach. They used a single NN
for a fixed problem size, which is different from this paper.

Dynamic programming can be used to solve optimization
problems in two ways. For the value function based varia-
tion, the value function is solved for the states, then policy
is chosen based on maximization of the value function. The
other approach is to derive optimal policy for each state, and
perform optimal actions at each state.

Training Procedure
We propose a two phase training procedure for NDP. In the
first phase, the DNNs are pre-trained for only a few iter-
ations with data generated from given distributions. In the

second phase, all the DNNs are fine-tuned together. DNNs
for smaller problem sizes use data generated by the poli-
cies of DNNs from earlier steps. The pre-training procedure
helps the networks to converge faster to suitable policies.
The fine-tuning procedure helps to further improve perfor-
mance of the trained policy.

Training for Value Approximation

For value function approximation, training starts from the
DNN for the smallest problem size, or the states in the last
decision step. In the case of value based NDP, for the small-
est subproblem P1 with size N1 and A1 possible actions,
a DNN denoted by G1 is trained to minimize the mean
squared error (MSE) of estimation results of the value func-
tion:

MSE =
1

T

∑

s1∈S1

∑

a∈A(s1)

(G1(s1, θ1, a)−R(s1, a))
2, (2)

where T is the total number of the combination of states
and actions, S1 is the set of all the possible states for the
subproblem P1, θ1 is the coefficient for G1, R(s1, a) is the
instantaneous reward obtained by choosing action a at state
s1. Since P1 is the final decision step, there is no state tran-
sition so value can be directly calculated from the action in a
given state. Then for a following DNN corresponding to the
subproblem with size Nn and An feasible actions, DNN Gn

is trained to minimize

MSE =
1

T

∑

sn∈Sn

∑

a∈A(sn)

(Gn(sn, θn, a)−R(sn, a)−

(3)

V G
n−1(sn−1))

2, (4)

where Sn is the set of possible states, V G
n−1(sn−1) is the

value function obtained by following policy generated by
previous trained DNNs

V G
n (sn) =

n∑

i=1

R(si, a
G
i ), (5)

where
aGi = argmax

a

Gi(si, θi, a). (6)

si is the state for subproblem i caused by following the pol-
icy generated by the DNNs. Since the number of possible
states can be infinite, it is infeasible to calculate MSE on all
the states. We follow the common procedure of performing
gradient descent on mini-batches of data to train the NNs.
The pre-training procedure is shown in algorithm 1, where
M is the number of steps in the problem, E is the number of
epochs to train a DNN.

In the second phase, the DNNs are fine-tuned together.
The intuition behind this phase is that the distribution of the
states lead by a given policy may be different from the states
used in the pre-training phase, and it is hard to estimate the
distribution since it also changes with the updates of policy.
To help the DNNs better approximate the value functions,
in the fine-tuning phase the states for subproblem k are ob-
tained by following policies generated by Gk+1,...GM , for
solving the overall problem of M steps. The fine-tuning pro-
cedure is shown in algorithm 2.
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Algorithm 1 Pre-training Process of NDP

1: for i = 1; i < M ; i++ do
2: for j = 1; j < E; j ++ do
3: Generate B batches of states for problem i from a

given distribution.
4: Calculate V G

i−1(sn−1).
5: for k = 1; k < B; k ++ do
6: Update θi with data batch k in si.
7: end for
8: end for
9: end for

Algorithm 2 Fine Tuning Process of NDP

1: for i = 1; i < E; i++ do
2: Generate B batches of states for problem M .
3: for j = 1; j < M ; j ++ do
4: Obtain B batches of data for sj for problem j, fol-

lowing policy given by previous DNNs.
5: Calculate V G

j−1(sn−1).
6: for k = 1; k < B; k ++ do
7: Update θj with data batch k in sj .
8: end for
9: end for

10: end for

Training for Policy Approximation

Similar to traditional DP, DNNs in NDP can also be trained
to directly provide policies at each decision step. Instead of
training the DNNs to estimate value functions for each ac-
tions at given state, the DNNs are trained to directly estimate
the best action to be taken at a given state. In this case, the
DNNs are used for classification of the best action. Since
this can be seen as a classification task, cross entropy loss is
used for training of the DNNs.

The Two Phase Training Procedure

The two phase training procedure is adopted mainly for three
reasons. To stabilize training performance, pre-training is
used to help the DNNs to get close to a good local opti-
mum. On the other hand, if there is need to solve problems
of various sizes, pre-training the DNNs for different prob-
lems sizes and saving the models for fine-tuning can help
save overall training time. Finally, the fine-tuning phase is
adopted to train the DNNs with more accurate distribution
of data. Ideally, if the DNNs can achieve optimal solutions at
each step, the pre-training procedure should be sufficient for
obtaining the optimal policy. However, the DNNs’ limited
capacity and sensitivity to data distribution requires further
training with data closer to the real distribution.

The two phase training procedure is partially motivated
by (Hinton and Salakhutdinov 2006), however in their case
the term pre-training and fine-tuning are used for layers of a
NN, in this paper we are using the terms for a series of DNNs
that are trained and used sequentially. In experiments, we
find that the pre-training process helps the DNNs converge
to efficient solutions in less training steps. On the other hand,

the training process of NDP is also similar to multi-agent re-
inforcement learning (Buşoniu, Babuška, and De Schutter
2010). But with clearly defined problem structure, at each
training step, the agents are able to obtain feedback for all
possible actions, instead of performing a single action in the
reinforcement learning context. Similar to fixing the policy
by using a target network in the training process of DQN
(Mnih et al. 2015), the coefficients for each agent are also
updated consecutively in several batches, with the coeffi-
cients of other DNNs fixed, which helps stabilize training
results with gradient descent. This is also confirmed by our
experiments, updating each DNN for several batches, while
keeping other DNNs the same, achieves more robust testing
performance compared with updating the DNNs simultane-
ously.

Solving Optimization Problems with Neural

Network Approximated Dynamic

Programming

In this section, we describe how NDP is applied to the LSAP,
TSP and the talent scheduling problem.

The Linear Sum Assignment Problem

We first start with the LSAP, this problem is can be solved
optimally with the Hungarian algorithm with complexity of
O(n3) (Kuhn 1955). Meanwhile, it is also reducible to sub-
problems and thus can be solved by DP. In LSAP, n jobs
have to be assigned to n people in an optimal way. The re-
ward of assigning job i to person j is cij . The objective is
to maximize the sum of the rewards, with the constraint that
each job should be assigned to one and only one person.

We formulate the DP solution to this problem as a multi-
stage decision process. For a subproblem with size n, a de-
cision of assigning the first job to a person has to be made.
After assigning the job to person k, by removing rewards
c1,1...n and c1...n,k, the problem is transitioned into a sub-
problem with size n− 1.

The value function for subproblem with size 2 can be di-
rectly written in matrix multiplication form, so training of
DNNs start from subproblems with size 3.

The Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the well
investigated NP-hard problems. Various heuristic methods
have also been proposed to solve TSP (Applegate et al.
2006). In TSP an agent has to find a route to visit all given
cities exactly once and return to the starting city. The objec-
tive is to minimize the total distance traveled in the route.

We formulate the subproblems as finding the shortest
route from a given starting city to a given ending city which
visits all the cities exactly once. dij denotes the distance
from city i to city j. The state of each subproblem can be
represented by a matrix, and for convenience we assume the
starting city is the city with index 1, while the ending city has
index n. State transitions involve removing d1,1...n, d1,...n,1
and assigning the chosen city with index one. By assigning
the same city to index one and index n, the returning require-
ment can be enforced at the first decision step.
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The Talent Scheduling Problem

The talent scheduling problem is also an NP-hard problem
that can be solved by DP (Garcia de la Banda, Stuckey, and
Chu 2011; Qin et al. 2016). In the problem a suitable sched-
ule of shooting a number of movie scenes has to be found.
Each scene may involve a number of actors and last for a
number of days. Each actor incurs a certain amount of cost
per day. The actor has to be paid for the duration from the
first involved scene to the last involved scene, including the
time that scenes without the actor is scheduled.

The subproblems are formulated as follows; given a num-
ber of scenes, actors that are currently on hold, and costs for
each actor, find the next best scene to be scheduled. State
transitions involves removing the scheduled scene and up-
dating the list of actors that are on hold. At the first decision
stage there is no actor on hold.

Experimental Setup

LSAP. For LSAP we test the performance of NDP with
problem size up to 20. The performance of NDP is compared
with the Hungarian method implementation in SciPy (Jones
et al. 2016). A simple greedy heuristic, in which at each step
the assignment with highest reward among all jobs and peo-
ple is chosen is used as a baseline method for comparison.
For uniformly generated rewards with 20 jobs, compared
with the Hungarian method, the greedy method achieves a
performance gap of 5.02% and NDP-policy achieves a per-
formance gap of 3.14%. So instead of using uniformly gen-
erated rewards, for which the greedy baseline can easily
achieve close to the optimal solution, we focus on a sce-
nario where there is no obvious simple heuristic. The re-
wards are generated from a Beta distribution, with α = 0.07
and β = 0.17 for evaluation purposes.

TSP. For TSP we follow the same practice as mentioned
in (Kool, van Hoof, and Welling 2018). The cities are gen-
erated uniformly from the unit square. Euclidean distance is
used as cost. The same test dataset and baseline methods as
in (Kool, van Hoof, and Welling 2018) are used for evalua-
tion.

The talent scheduling problem. As mentioned in
(Cheng, Diamond, and Lin 1993), the talent scheduling
problem with each actor required for two scenes and a
universal daily wage of one is already NP-hard. However
we still assume the actors can have random uniformly dis-
tributed daily wages. Since the duration of most of the test
cases are all ones in (Garcia de la Banda, Stuckey, and Chu
2011), we focus on the scenario where all scenes have the
same duration. Instead of integer wages used in previous
works (Qin et al. 2016; Garcia de la Banda, Stuckey, and
Chu 2011), we use floating point wage value generated from
a uniform distribution to train the DNNs, which is beneficial
for training. For testing we still use integer wages, so that
the previous methods can be applied directly to get the opti-
mal solution. When generating scenes, for each actor we ran-
domly choose the number of scenes from 2 to the maximum
number the actor is in, and randomly allocate the scenes.
Currently there is no well-known heuristic baseline for the
talent scheduling method. We propose a heuristic similar to

fc4

fc1, relu, bn

fc2, relu, bn

fc3, relu, bn

Figure 1: Network Architecture for TSP

the principle of selecting equivalent scenes first mentioned
in (Garcia de la Banda, Stuckey, and Chu 2011); we define
waiting cost as the cost of actors waiting on the site, at each
step, the scenes with the least amount of waiting cost are se-
lected. We denote this method as least waiting cost (LWC).
For problem size, we select 20 actors and 20, 25 and 30
scenes. The cost for actors are random integers from 1 to
100 for evaluation, and floating numbers from 1 to 100 for
training.

Comparison of computation time. Since our method
can be run in parallel for batches of instances, we evalu-
ate the computation time of the methods in the same way as
in (Kool, van Hoof, and Welling 2018). For all the experi-
ments we include the computation time of 10,000 problems
for TSP and LSAP, and 1,000 problems for talent schedul-
ing. Experiments are conducted on a server with one P100
GPU and two Xeon Silver 4114 CPUs. For baseline methods
with only CPU implementation, we test on the same server
using all the cores of the CPU in parallel. We use a batch
size of 10,000 for both the attention model (AM) in (Kool,
van Hoof, and Welling 2018) and NDP.

Network architectures. For all the problems, simple
fully connected DNNs are used in NDP. Figure 1 shows
the network architecture used for TSP. Each fully connected
layer is followed by a relu activation function and a batch
normalization (BN) function (Ioffe and Szegedy 2015). Us-
ing more advanced network architectures such as Resnet (He
et al. 2016) can further improve performance, however in
this paper we do not focus on finding the best parameters for
the NNs. Relu is used as the activation function for all the
DNNs.

For LSAP with subproblem of n jobs, DNNs with one
hidden layer of size 8n are used. Batch normalization is used
for the policy-NDP. Using a larger hidden layer size 16n
brings less than 0.5 percent performance gap reduction but
introduces longer computation time.

For TSP with 20 cities, DNNs with three hidden layers
of size 2n2, 4n2 and 16n is used for each subproblem. For
TSP with 50 cities, smaller DNNs with hidden layers 8n,
4n and 2n are used for each subproblem to reduce training
and testing time. Batch normalization is used for both value
based NDP and policy based NDP.

For talent scheduling problem with 20 actors and n
scenes, DNNs with two hidden layers with size 1200 and
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n ∗ 4 are used. The cost for each actor can be represented as
a vector c, with ci for cost of actor i. Instead of represent-
ing the scenes in a binary matrix O with oij = 1 indicating
actor i is in scene j, and zero otherwise, we set oij = ci if
actor i is in scene j and concatenate the matrix with c and
a binary vector indicating the actors waiting on site. Batch
normalization is only used for policy based NDP.

For DNNs used in NDP, in general it is beneficial to select
a relatively large first hidden layer. However to achieve a
balance between computation time and the performance gap,
for large problems such as TSP with 50 cities we are using
smaller DNNs. While performance varies with the choice of
parameters, in our experiment the performance of the DNNs
always improves with training time until they converge.

Training settings. All the models of NDP are imple-
mented with Pytorch (Paszke et al. 2017) and the DNNs are
trained with the Adam optimizer (Kingma and Ba 2014). A
learning rate of 0.001 and batch size of 100 is used for both
pre-training and fine-tuning.

For pre-training, all the DNNs for LSAP and TSP are
trained with 3000,000 samples of data generated on the fly,
each sample is used only once. For talent scheduling, since
making sure the scenes in each problem are all different is
time consuming, 2000,0000 samples are generated and each
sample is used for three times for pre-training.

For LSAP with 20 jobs, results from 1000 epochs of fine-
tuning are selected for comparison. For fine-tuning each
epoch consists of training of all the DNNs each with 100,000
samples of data. It takes approximately one hour to pre-
train the DNNs from problem size 3 to 20. While for the
fine-tuning phase, with NDP-policy, each epoch takes about
100s. Fine-tuning all the DNNs for 1000 epochs take about
28 hours on one GPU. For LSAP with 50 jobs, results af-
ter 65 epochs of fine-tuning are used for comparison. In this
case fine-tuning for 65 epochs takes around 30 hours on a
single GPU.

For TSP with 20 cities, we show results for NDP-policy
and NDP-value after 1500 epochs of fine-tuning, which
takes about 70 hours on one GPU. For TSP with 50 cities,
the smaller DNNs converge after 100 epochs of fine-tuning,
which takes about 75 hours for NDP-policy and 55 hours for
NDP-value on a single GPU.

For the talent scheduling problem, since the DNNs are
larger, fine-tuning takes longer time. For problems with 20
actors and 20 scenes, each epoch of fine-tuning takes around
400s. For problems with 20 actors and 25 scenes, each epoch
takes about 800s. For problems with 20 actors and 30 scenes,
each epoch takes about 1200s. We fine-tune the models with
different number of epochs. With fixed dataset for training,
the DNNs converge within less number of epochs but pos-
sibly to policies further from the optimal ones. For the 20
scene case, we show results of NDP-policy fine-tuned for
600 epochs, NDP-value fine-tuned for 400 epochs. For the
25 scene case we fine-tune the DNNs for 150 epochs. For
the 30 scene case the DNNs for both NDP-value and NDP-
policy are fine-tuned for 65 epochs.

Figure 2 shows the change of validation performance gap
during the fine-tuning phase of NDP. We select the results of
first 600 epochs of fine-tuning for all three problems for plot-
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Figure 2: Validation Accuracy in Fine-tuning Phase

ting. All curves are for results of NDP-policy. For LSAP and
TSP the problem size is 20, for talent scheduling the problem
setting is 20 actors with 20 scenes. It can be seen from the
figure that in the fine-tuning phase, the performance gaps are
consistently reduced during the training process. For TSP
the DNNs converge after about 1500 epochs of fine-tuning.
While for talent scheduling training for another 300 epochs
only reduces the performance gap by 0.2%. The relatively
high initial performance gap of the talent scheduling prob-
lem may be caused by the difference in the distribution of
data. For pre-training phase, the actors on site are generated
randomly, while in the fine-tuning phase, distribution of on
site actors may be different due to previous policy of the
DNNs.

Performance Evaluation

We evaluate the performance of NDP in terms of the solu-
tion’s performance gaps from the optimal or best ones, and
computation time.

For LSAP, the Hungarian method is used as the bench-
mark method. The comparison results are shown in table
1. The simple greedy heuristic, in which at each step the
assignment with highest reward among all jobs and people
is chosen as a baseline method for comparison. The NDP
based methods are able to achieve considerable computation
time reduction, due to the parallel operation on GPU. Both
NDP methods achieve about three percent performance gap
from the optimal solution in the 20 job case. For problems
with 50 jobs, due to diversity gain, making a sub-optimal
decision in one step has less impact on the overall perfor-
mance. So the non-optimal methods achieve closer to opti-
mal solutions. NDP methods still achieve better performance
than the greedy method.

For TSP we compare the performance on problem size
20 and 50. Results are shown in table 2. We include results
of Gurobi since according to (Kool, van Hoof, and Welling
2018), it achieves the best solution in the least amount of
time. We also include results of AM from (Kool, van Hoof,
and Welling 2018), as far as we know it is the NN based
method with closest to optimum solutions for TSP. Random
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Table 1: Performance Comparison on LSAP
20 Jobs

Method Reward Gap Time

Hungarian 19.77 0.00% 1.47s

Greedy 17.49 11.55% 0.28s

NDP-Policy 19.07 3.47% 0.01s

NDP-Value 19.16 3.07% 0.01s

50 Jobs

Hungarian 49.99 0.00% 7.19s

Greedy 47.25 5.49% 1.27s

NDP-Policy 49.12 1.77% 0.10s

NDP-Value 49.27 1.45% 0.10s

Table 2: Performance Comparison on TSP
20 Cities

Method Cost Gap Time

Gurobi 3.84 0.00% 5.42s

Random Insertion 4.00 4.36% 0.37s

Farthest Insertion 3.93 2.36% 0.58s

AM 3.84 0.08% 0.31s

NDP-Policy 3.93 2.54% 0.06s

NDP-Value 3.98 3.84% 0.06s

50 Cities

Gurobi 5.70 0.00% 74.84s

Random Insertion 6.13 7.65% 1.23s

Farthest Insertion 6.01 5.53% 1.82s

AM 5.80 1.76% 1.38s

NDP-Policy 6.38 12.02% 0.14s

NDP-Value 7.10 24.69% 0.14s

insertion (RI) and farthest insertion (FI) are also included
for comparison. Due to the simple architectures of DNNs in
NDP, both policy based NDP and value based NDP are able
to obtain solutions faster than AM. However the NDP based
methods perform worse in terms of performance gap from
the best solution. In terms of solution quality, policy based
NDP performs better than random insertion, but worse than
farthest insertion in the 20 city case. For the problem size
of 50, NDP methods suffer a larger performance gap but run
with less computation time.

For the talent scheduling problem, according to (Qin et
al. 2016) the enhanced branch and bound (EBB) method is
so far the fastest method that achieves optimal solution, we
include results generated by the C++ implementation pro-
vided by the authors. Even though EBB is run to solve the
problems in parallel on all cores of the CPU, the computa-
tion time is still high for problems with 30 scenes. Note that
when EBB is used to solve each problem sequentially, on
average it takes 72ms, 102ms and 172ms to solve one prob-
lem with 20, 25 and 30 scenes. For the talent scheduling
problem, the policy based NDP achieves much better per-
formance than the value based NDP. This may be because
due to the limited capacity of the DNNs, the DNNs were not
able to sufficiently approximate the value functions. Overall,

Table 3: Performance Comparison on Talent Scheduling
20 Scenes

Method Cost Gap Time

EBB 13660.32 0.00% 8.00s

LWC 16420.23 20.2% 0.08s

NDP-Policy 14231.52 4.18% 0.08s

NDP-Value 15818.16 15.80% 0.07s

25 Scenes

EBB 17278.15 0.00% 49.28s

LWC 21142.65 22.37% 0.08s

NDP-Policy 18599.89 7.65% 0.13s

NDP-Value 20675.90 19.67% 0.08s

30 Scenes

Method Cost Gap Time

EBB 20639.77 0.00% 1030.80s

LWC 25677.81 24.41% 0.10s

NDP-Policy 23659.64 14.63% 0.15s

NDP-Value 25132.72 21.77% 0.10s

the performance gap of NDP methods are higher for talent
scheduling problems. This may be because the dataset used
for training consists of fixed samples, while for other prob-
lems each update of the DNNs are performed with new ran-
domly generated data. The experiment results are shown in
table 3.

Conclusions and Future Work

In this paper, we proposed a deep neural network based dy-
namic programming approximation method to solve com-
binatorial problems. Experiment results show that the pro-
posed method is able to achieve considerable computation
time reduction, with less than 5% loss on TSP with 20 cities
and LSAP with 20 jobs. When applied to the talent schedul-
ing problem, tested with 1000 problems with 25 scenes and
20 actors, NDP-policy is able to achieve solutions within
10% gap from the optimal cost, within 200ms, while current
best solver takes almost 50s to obtain the solutions. NDP
can be a promising method to reduce computation time of
traditional DP for time critical applications. With NDP’s un-
supervised training procedures, it can also be an alternative
to solve relative large problems that DP can not solve in fea-
sible time.

Meanwhile, there are still several open research directions
for NDP. The training of a series of DNNs may be time con-
suming, especially in the fine-tuning stage. Simply increas-
ing the learning rate does not lead to faster performance and
may cause instability during training. Hopefully with the de-
velopment of hardware and faster DNN training techniques,
this problem can be mitigated. Alternatively a more effi-
cient fine-tuning procedure for NDP can be found. For pol-
icy based NDP, we found that using more advanced network
architectures such as Resnet (He et al. 2016) can further re-
duce the performance gap from the optimal value. However,
training such networks is more time consuming. One possi-
ble solution is to share some of the parameters such as the
convolution kernels in Resnet. We leave the work of finding
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more suitable network architectures and parameter sharing
methods for future research.
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