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Deep neural network‑based 
automatic metasurface design 
with a wide frequency range
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Hossein Soleimani & Mohammad Soleimani 

Beyond the scope of conventional metasurface, which necessitates plenty of computational resources 
and time, an inverse design approach using machine learning algorithms promises an effective way 
for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse design 
procedure of a metasurface in an ultra‑wide working frequency band is presented in which the output 
unit cell structure can be directly computed by a specified design target. To reach the highest working 
frequency for training the DNN, we consider 8 ring‑shaped patterns to generate resonant notches 
at a wide range of working frequencies from 4 to 45 GHz. We propose two network architectures. 
In one architecture, we restrict the output of the DNN, so the network can only generate the 
metasurface structure from the input of 8 ring‑shaped patterns. This approach drastically reduces the 
computational time, while keeping the network’s accuracy above 91%. We show that our model based 
on DNN can satisfactorily generate the output metasurface structure with an average accuracy of over 
90% in both network architectures. Determination of the metasurface structure directly without time‑
consuming optimization procedures, an ultra‑wide working frequency, and high average accuracy 
equip an inspiring platform for engineering projects without the need for complex electromagnetic 
theory.

Metamaterials, de�ned as arti�cial media composed of engineered subwavelength periodic or nonperiodic 
geometric arrays, have witnessed signi�cant attention due to their exotic properties capable of modifying the 
permittivity and permeability of  materials1–3. Today, just two decades a�er the �rst implementation of metama-
terials by Smith et al.4 who unearthed Veselago’s original  paper5, metamaterials and their 2D counterpart, meta-
surfaces, have been widely used in practical applications such as, but not limited to, polarization  conversion6,7, 
recon�gurable wave  manipulation8,9, vortex  generation10,11, and perfect  absorption12,13. Programmable digital 
metamaterials remarkably provide a wider range of wave-matter applications which present them especially 
appealing in the usages of  imaging14, smart  metasurfaces15,16, information  metamaterials17–19, and machine learn-
ing  applications20,21.

However, all of the abovementioned works are based on traditional design approaches, consisting of model 
designs, trial-and-error method, parameter sweep, and optimization algorithms. Conducting numerical full-wave 
numerical simulations assisted by optimization algorithm is a time-consuming process that consumes plenty 
of computing resources. In addition, if the design requirements change, simulations must be repeated afresh, 
which impedes users from paying attention to their actual needs. �erefore, to �ll the existing gaps to �nd a fast, 
e�cient, and automated design approach, we have taken machine learning into our consideration.

Machine learning and its speci�c branch, deep learning, are approaches to automatically learn the connec-
tion between input data and target data from the examples of past experiences. Machine learning is an e�ort to 
employ algorithms to devise a machine to learn and operate without explicitly planning and dictating individual 
actions. To be more speci�c, machine learning equips an inspiring platform to deduce the fundamental principles 
based on previously given data; thus, for another given input, machines can make logical decisions automatically. 
With the ever-increasing evolution of machine learning and its potential capacity to handle crucial challenges, 
such as signal  processing22 and physical  science23, we are now witnessing their applications to electromagnetic 
problems. Due to its remarkable potential to provide less computational resources, more accuracy, less design 
time, and more �exibility, machine learning has been entered in various wave-interaction phenomena, such as 
Electromagnetic Compatibility (EMC)24,25, Antenna Optimization and  Design26,27, All-Dielectric  Metasurface28, 
Optical and photonic  structures29, and Plasmonic  nanostructure30.
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Recently, T. Cui et al. have proposed a deep learning-based metasurface design method named REACTIVE, 
which is capable of detecting the inner rules between a unit-cell building and its EM properties with an average 
accuracy of 76.5%31. A machine-learning method to realize anisotropic digital coding metasurfaces has been 
investigated, whereby 70000 training coding patterns have been applied to train the  network32. In  Ref33, a deep 
convolutional neural network has been studied to encode the programmable metasurface for steered multiple 
beam generation with an average accuracy of more than 94 %. A metasurface inverse design method using a 
machine learning approach has been introduced  in34 to design an output unit cell for speci�ed electromagnetic 
properties with 81% accuracy in a low-frequency bandwidth of 16-20 GHz. Recently, a double deep Q-learning 
network (DDQN) to identify the right material type and optimize the design of metasurface holograms has 
been  developed35.

In this paper, bene�ting from Deep Neural Network (DNN), an inverse design procedure of a metasurface 
with an average accuracy of up to 92 % has been presented. Unlike previous works, to reach the highest working 
frequency, we consider 8 ring-shaped digital distributions (see top le� of Fig. 1) to generate resonant notches 
in a wide range of working frequencies from 4 to 45 GHz. �erefore, a�er training the deep learning model by 
a set of samples, our proposed model can automatically generate the desired metasurface pattern, with four 
predetermined re�ection information (as number of resonances, resonance frequencies, resonance depth, and 
resonance bandwidths) for ultra-wide working frequency bands. Comparison of the output of numerical simu-
lations with the design target illustrates that our proposed approach is successful in generating corresponding 
metasurface structures with any desired S-parameter con�gurations. Determination of the metasurface struc-
tures directly without ill-posed optimization procedures, consuming of less computational resources, ultra-wide 
working frequency bands, and high average accuracy paves the way for our approach to become bene�cial for 
those engineers who are not specialists in the �eld of electromagnetics; thus, they can focus on their practical 
necessitates, boosting the speed of the engineering projects.

Methodologies
Metasurface design. Figure 1 shows the schematic representation of the proposed metasurface structure 
consisting of three layers, from top to bottom, as a copper ring-shaped pattern layer, a dielectric layer, and a 
ground layer to impede the backward transmission of EM energy. FR4 is chosen as the substrate with permittiv-
ity of 4.2+0.025i, and thickness of h = 1.5mm . �e top metallic layer comprises 8 ring-shaped patterns distrib-
uted side by side, each of which can be divided into 8 × 8 lattices labeled as “1” and “0” which denote the areas 
with and without the copper. Each metasurface is composed of an in�nite array of unit-cells. Each unit-cell con-
sists of 4 × 4 randomly distributed 8 × 8 ring-shaped patterns. �erefore, each unit cell comprises 32 × 32 lat-
tices. �e length of the lattices, periodicity of unit cells, and thickness of the copper metallic patterns are l = 0.2 
mm, p = 6.4 mm, and t = 0.018 mm, respectively. Unlike previous  works31,34, de�ning 8 ring-shaped patterns 
to train the DNN is the novelty employed here to generate the desired resonance notches in a wide frequency 
band. We designed 8-ring shaped patterns in such a way that the unit-cells generated in the dataset for training 
the network can generate single or multiple resonances at di�erent frequencies from 4 to 45 GHz, thus, we can 
import the data set of S-parameters to train the network for our speci�ed targets. It is almost impossible to obtain 

Figure 1.  Sketch representation of the design process of DNN-based approach for metasurface inverse design. 
�e process consists of three steps of generating data and pre-processing, training of machine learning, and 
evaluation of a model.
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the relationship between the metasurface matrices and S-parameters. Due to the close connection between the 
metasurface pattern matrix and its corresponding re�ection characteristics, the deep learning algorithm is used 
to reduce the computational burden for obtaining the optimal solution.

Deep learning. Arti�cial neural networks have emerged in the last two decades with many applications, 
especially in optimization and arti�cial intelligence. Figure 2 shows an overview of an arti�cial neuron, with X1 , 
X2 , ... as its inputs (input neurons). In neural networks, each X has a weight, denoted by W. Observe that each 
input is connected to a weight; thus, each input must be multiplied by its weight. �en, in the neural network, the 
sum function (sigma) adds the products of Xi ’s by Wi’s. Finally, an activation function determines the output of 
these operations. �en, the output of neurons by the activation function φ(u) , with b as a bias value is:

�e neural network is made up of neurons in di�erent layers. In general, a neural network consists of three 
layers: input, hidden, and output. A greater the number of layers and neurons in each hidden layer increases the 
complexity of the model. When the number of hidden layers and the number of neurons increase, our neural 
network becomes a deep neural network. In this work, we use a DNN to design the desired metasurface.

A. Non-restricted output. �e inverse design of the metasurface is anticipated to determine the intrinsic rela-
tionships between the �nal metasurface structure and its geometrical dimensions by DNN. We have generated 
2000 sets of random matrices that represent the metasurface structures using the “RAND” function in MATLAB 
so�ware. In the next step, we have linked the MATLAB with CST MWS to calculate the S-parameters of the 
metasurface. To calculate the re�ection characteristics of the in�nite arrays of the unit cells, we have conducted 
simulations in which the unit-cell boundary conditions are employed in x and y directions and open boundary 
conditions in the z-direction. Finally, when it comes to the design procedure, we only need to enter the prede-
termined EM re�ection properties, and our model can generate the output metasurface based on the learned 
data during the training step. �e dataset is established to generate 16 random numbers between 1 and 8 to 
form 4 × 4 matrices where each number represents one of the 8 ring-shaped patterns. In the step of “Training of 
machine learning”, to form our datasets, we have generated two thousand pairs of S-parameter and metasurface 
pattern matrices (70% as a training set and 30% as a testing set), and the output of the training model is a matrix 
of 32 × 32 . Each unit-cell can generate 8 notches in the frequency band of 4 to 45 GHz. By de�ning three features 
for each resonance (namely, notch frequency, notch depth, and notch bandwidth), the input of our proposed 
DNN is a vector with dimension 24, and the output is a vector of dimension 1024, which represents a unit cell of 
32 × 32 pixels. �e details of the designed network are summarized in Table 1.

In the proposed model, dense and dropout layers are used one a�er the other (see second step in Fig. 1). In 
the fully connected (dense) layer, each neuron in the input layer is connected to all the neurons in the previous 
layers. In the dropout layer, some neurons are accidentally ignored in the training process in order to avoid 
the misleading of the learning process, as well as increasing the learning speed and reducing the risk of over-
�tting. By selecting relevant features from the input data, the performance of the machine learning algorithms 
is e�ciently enhanced. In the proposed model, the values of batch size and learning rate are set to 30 and 0.001, 
respectively. In addition, the Adam optimization algorithm is used for tuning the weighting values ( Wi ). During 
the training process, the di�erence between original and generated data is calculated repeatedly by tuning and 
optimizing the weight values for each layer. When the di�erence reaches the satisfying predetermined criterion 
which is de�ned as loss function, then the training process stops. �e Mean Square Error (MSE) is used as a 
loss function de�ned as:

(1)Y = φ

(

n
∑

i=1

WiXi + bi

)

(2)MSE =

1

N

N∑

i=1

(fi − yi)
2

Figure 2.  An overview of an arti�cial neuron.
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where fi and yi denote the anticipated value and the actual value, respectively. Since our desired output in the 
neural network is 0 or 1, we used the sigmoid function in the last layer, while using other activation functions 
reduced the accuracy. Formulation of the activation of relu and sigmoid functions are given in Eqs. (3) and (4), 
respectively:

In the step of “Evaluation of the model”, for validation, several design goals of S-parameters are suggested, antici-
pating that our proposed DNN is capable of producing equivalent unit-cell structures. �e DNN algorithm is 
realized by Python version 3.8, and the Tensor�ow and Keras  framework36 are used to establish the model (see 
the last step in Fig. 1). As an example, a metasurface structure is designed with three notches using the DNN 
method. �e speci�ed re�ection information is as follows: [number of resonances; resonance frequencies; reso-
nance depth; and the bandwidth of each resonance] = [ 3; 17.5, 23.5, 25.3 GHz; −30,−20,−20 dB; 0.5, 0.5, 0.4 
GHz]. Observe in Fig. 3a, that the output full-wave results achieve the design goals.

For the next example, a uni-cell is designed with one resonance frequency (-15 dB) at 15 GHz. �e simulation 
results show good conformity with our design target (see Fig. 3b). Furthermore, the curves of the mean square 
error and the accuracy of the presented non-restricted output DNN method are proposed in Fig. 4, where we 
see that the accuracy rate is higher than 92%.

B. Restricted output. In order to increase the learning speed, reduce the number of calculations, and improve 
the e�ciency of a design process, the network architecture output is restricted in such a way that the DNN 
should generate the metasurface structure by using the proposed 8 ring-shaped patterns. Unlike the previous 
approach, in which the output generates a 1024 size vector to form the 32 × 32 metasurface pixels, in this case 
the output will generate a 48 size vector. More speci�cally, each unit-cell consists of 4 × 4 matrices of these 
8 ring-shaped patterns, where each ring-shaped pattern consists of 8 × 8 pixels. To form the output vector, 
ring-shaped patterns are denoted by eight digital codes (3-bit) of “000” to “111”. �erefore, the output of the 
DNN generates a 16 × 3 = 48 size vector. By restricting the output to produce a 48 size vector, the amount of 
calculations will be reduced. It will be shown that the accuracy of the network reaches up to 91%. �e details 

(3)φ(x) =

{

0 x ≤ 0

x x > 0

(4)φ(x) =
1

1 + e−x

Table 1.  Detailed information of the non-restricted output network architecture.

Layer number Layer Output shape Number of parameter Activation function

1 dense_1 (Dense) (None, 24) 600 Relu

2 dropout_1 (Dropout) (None, 24) 0 –

3 dense_2 (Dense) (None, 300) 90300 Relu

4 dropout_2 (Dropout) (None, 300) 0 –

5 dense_3 (Dense) (None, 300) 90300 Relu

6 dropout_3 (Dropout) (None, 300) 0 –

7 dense_4 (Dense) (None, 300) 90300 Relu

8 dropout_4 (Dropout) (None, 300) 0 –

9 dense_5 (Dense) (None, 300) 90300 Relu

10 dropout_5 (Dropout) (None, 300) 0 –

11 dense_6 (Dense) (None, 1024) 308224 Sigmoid

Figure 3.  �e simulated re�ection coe�cient of non-restricted output network architecture (a) metasurface 
with three notches under −10 dB. (b) metasurface with a single notch under −10 dB.
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of the designed DNN are summarized in Table 2. �e other parameters are similar to the non-restricted output 
network. Figure 5 shows the curves of the loss function and accuracy.

To further validate the e�ectiveness of the proposed DNN method for restricted output, four di�erent exam-
ples are presented. �e speci�ed S-parameters are provided in our network, and the matrix of unit cells are 
generated through the input S-parameters. We re-enter these matrices into CST MWS to simulate the re�ection 
coe�cient of the metasurface. �e simulated results are in good accordance with our desired design target (See 
Table 3 and Fig. 6).

To illustrate the advantages of our DNN approach, as detailed in Table 4, we show the information of train-
ing time, time to generate a unit-cell, and the model size for both restricted and non-restricted structures. �e 
results of Table 4 are obtained using Google Colab and with a �xed GPU whose model is Tesla k80 with 13MB 

Figure 4.  Curves of (a) accuracy and, (b) loss function relative to 10,000 Epochs for non-restricted network 
architecture.

Table 2.  Detailed information of the restricted output network architecture.

Layer number Layer Output shape Number of parameter Activation function

1 dense_1 (Dense) (None, 24) 600 Relu

2 dropout_1 (Dropout) (None, 24) 0 –

3 dense_2 (Dense) (None, 500) 12,500 Relu

4 dropout_2 (Dropout) (None, 500) 0 –

5 dense_3 (Dense) (None, 500) 250,500 Relu

6 dropout_3 (Dropout) (None, 500) 0 –

7 dense_4 (Dense) (None, 500) 250,500 Relu

8 dropout_4 (Dropout) (None, 500) 0 –

9 dense_5 (Dense) (None, 500) 250,500 Relu

10 dense_6 (Dense) (None, 48) 24,048 Sigmoid

Figure 5.  Curves of (a) accuracy and, (b) loss function relative to 10,000 Epochs for restricted network 
architecture.
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of RAM. �e design time of our method is about 0.05 sec which is much faster than conventional methods that 
take about 700 to 800 minutes and even compared to other inverse design methods that used deep learning. Also, 
our DNN-based approach takes less volume than the conventional method which certi�es that our method is 
more e�cient and e�ective.

Consequently, it has been amply demonstrated that the proposed DNN method is superior to other inverse 
design algorithms of metasurface structure, from the perspective of computational repetitions, teaching time con-
sumption, and network accuracy. �e conformity between the simulated results and design targets promises that 
the proposed DNN approach is an e�ective method of metasurface design for a variety of practical applications.

Discussion
Herein, we have proposed an inverse metasurface design method based on a deep neural network, whereby 
metasurface structures may be computed directly by merely specifying the design targets. A�er training the deep 
learning model by a set of samples, our proposed model can automatically generate the metasurface pattern as 
the output by four speci�ed re�ection criteria (namely, number of resonances, resonance frequencies, resonance 
depths, and resonance bandwidths) as the input in an ultra-wide operating frequency. Comparing the numeri-
cal simulations with the desired design target illustrates that our proposed approach successfully generates the 
required metasurface structures with an accuracy of more than 90%. By using 8 ring-shaped patterns during 
the training process and restricting the output of the network to generate a 48 size vector, our presented method 
serves as a fast and e�ective approach in terms of computational iterations, design time consumption, and 

Table 3.  Desired input targets for four S-parameters, which are presented in Fig. 6.

Examples Number of notches Notches frequency (GHz) Notches depth (dB) Notches bandwidth (GHz)

Fig. 6a 1 42 −35 0.7

Fig. 6b 1 5.8 −25 0.2

Fig. 6c 2 5.5, 10.5 −12.5, −24.5 0.1, 1.8

Fig. 6d 3 28, 33.5, 41.5 −14, −25, −13.5 0.3, 0.5, 0.7

Figure 6.  Metasurface design examples through restricted output network architecture.

Table 4.  Information of training time, time to generate a unit-cell, and the model size for both restricted and 
non-restricted structures.

Training time

Restricted Non-restricted

81 min 84 min

Time to generate a unit-cell with pre-trained model 0.052 s 0.055 s

Model size 9 MB 7 MB
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network accuracy. �e presented DNN-based method can pave the way for new research avenues in automatic 
metasurface realization and highly complicated wave manipulations.
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