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Abstract

Deep neural network (DNN)-based approaches have been shown to be effective in many automatic speech

recognition systems. However, few works have focused on DNNs for distant-talking speaker recognition. In this study,

a bottleneck feature derived from a DNN and a cepstral domain denoising autoencoder (DAE)-based dereverberation

are presented for distant-talking speaker identification, and a combination of these two approaches is proposed. For

the DNN-based bottleneck feature, we noted that DNNs can transform the reverberant speech feature to a new

feature space with greater discriminative classification ability for distant-talking speaker recognition. Conversely,

cepstral domain DAE-based dereverberation tries to suppress the reverberation by mapping the cepstrum of

reverberant speech to that of clean speech with the expectation of improving the performance of distant-talking

speaker recognition. Since the DNN-based discriminant bottleneck feature and DAE-based dereverberation have a

strong complementary nature, the combination of these two methods is expected to be very effective for

distant-talking speaker identification. A speaker identification experiment was performed on a distant-talking speech

set, with reverberant environments differing from the training environments. In suppressing late reverberation, our

method outperformed some state-of-the-art dereverberation approaches such as the multichannel least mean

squares (MCLMS). Compared with the MCLMS, we obtained a reduction in relative error rates of 21.4% for the

bottleneck feature and 47.0% for the autoencoder feature. Moreover, the combination of likelihoods of the

DNN-based bottleneck feature and DAE-based dereverberation further improved the performance.

Keywords: Speaker recognition; Bottleneck features; Denoising autoencoder; Deep neural network;

Reverberant speech

1 Introduction
Although speaker recognition has been researched for

many years, most applications still require a microphone

located near the speaker. However, many applications

would benefit from speaker recognition through distant-

talking speech capture, where the speaker is able to speak

at some distance from the microphones. While in this

task, even in quiet conditions, the microphone records

not only the direct sound of the specific speaker but also
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reverberation signals. A reverberation signal is created

when a sound or signal is reflected, causing a large num-

ber of reflections to build up and then decay as the sound

is absorbed by the surfaces of objects in the space, which

could include walls, furniture, people, and air.

Owing to the effects of reverberation, the accuracy

of distant-talking speaker identification is significantly

reduced. According to [1], approaches for dealing with

reverberation can be classified as front-end- or back-end-

based approaches. Approaches of the former type attempt

to reduce the effect of reverberation from the observed

speech signal [2-5], while the latter methods attempt

to modify the acoustic model and/or decoder to suit a

reverberant environment [6,7]. In this paper, we focus
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on front-end-based approaches for distant-talking speaker

identification.

Many front-end-based techniques have been pro-

posed for robust automatic speech recognition (ASR)

and speaker recognition in distant-talking environments

[2,4,5,8-18].

Cepstral mean normalization (CMN) [19-22] is con-

sidered the most general approach for dereverberation.

However, the length of an impulse response in a distant-

talking environment is usually much longer than the size

of the analysis window in short-term spectral analysis.

Therefore, CMN cannot compensate for late reverber-

ation. Several studies have focused on mitigating this

problem [4,5,13,17,23].

Beamforming [8,24], which is a simple and robustmeans

of spatial filtering, can be used to suppress any signal

from noise or the direction of reflection; therefore, it is

effective for dereverberation [13,25]. Recently, a two-stage

beamforming approach [26] was presented for derever-

beration and noise reduction. The first stage comprises

a delay-and-sum beamformer that generates a reference

signal containing a spatially filtered version of the desired

speech and the interference. The second stage uses the fil-

tered microphone signals and the noisy reference signal to

estimate the desired speech. However, good performance

cannot be achieved, particularly when the reverberation is

very strong.

In [27,28], a method based on mean subtraction using

a long-term spectral analysis window was proposed. The

results showed that while subtracting the mean of the

log magnitude spectrum improved ASR performance, the

improvement was not sufficient, especially in the presence

of significant late reverberation. A reverberation com-

pensation method for speaker recognition using spectral

subtraction [29], in which late reverberation is treated

as additive noise, was proposed in [4], while a method

based on multistep linear prediction (MSLP) was pro-

posed in [5,17] for both single and multiple microphones.

This method first estimates late reverberation using long-

term MSLP and then suppresses this with the subsequent

spectral subtraction. Wang et al. proposed a distant-

talking speech recognition method based on generalized

spectral subtraction (SS) [30] employing the multichan-

nel least mean squares (MCLMS) algorithm [13,31,32].

The authors further extended their method to distant-

talking speaker recognition and proposed an efficient

computational method for combining the likelihoods

of dereverberant speech using multiple compensa-

tion parameter sets [23]. The drawback of the above

approaches is that the estimation of late reverberation

is not very accurate, and thus, adequate improvement

cannot be achieved.

To construct a more robust representation of each cep-

stral feature distribution, a feature warping method was

proposed [4,33]. Such methods warp the distribution of a

cepstral feature stream to a standardized distribution over

a specified time interval. In addition, a feature transfor-

mation approach was presented for robust distant-talking

speaker recognition [34]. The transformation is applied

to distorted features before mapping them to a normal

distribution and aims to decorrelate the feature vectors

making them more amendable to the diagonal covariance

Gaussian mixture model (GMM).

Neural network-based approaches have been pro-

posed for feature mapping and dereverberation for

speech/speaker recognition [35,36] because of their flex-

ible representations. Bottleneck features extracted by a

multilayer perceptron (MLP) can be used for nonlin-

ear feature transformation and dimensionality reduction

[35]. The MLP is trained by a backpropagation algo-

rithm from random initial parameters. Then, the bottle-

neck features are extracted by dimensionality reduction of

several frames of cepstral coefficients. The combination

of bottleneck features and cepstral coefficients is better

than the conventional mel-frequency cepstral coefficients

(MFCCs). However, deep networks of MLPs with many

hidden layers have a high computational cost and cannot

learn in layers further away from the top layer. Nugraha

et al. proposed a neural network-based method to map

a reverberant feature in a log-melspectral domain to its

corresponding anechoic feature [36]. The results show

that cascading neural network-based dereverberation sig-

nificantly improves speaker recognition compared with

other dereverberation approaches. Many studies have

shown that cepstral features such as MFCCs are very

efficient for speaker recognition; however, extending this

method directly to cepstral domain dereverberation is

very difficult.

Recently, deep neural network (DNN)-based app-

roaches have been successful in many speech and image

processing fields [37-40]. Deep belief networks, which

employ an unsupervised pre-training method using a

restricted Boltzmann machine (RBM) [39,41], have also

been proposed to train better initial values of deep

networks [37]. DNNs with pre-training achieve bet-

ter performance than, for example, conventional MLPs

without pre-training on ASR [39,40] and large vocabu-

lary business search tasks [38]. Denoising autoencoders

(DAEs) have been shown to be effective in many noise

reduction applications because higher level representa-

tions and increased flexibility of the feature mapping

function can be learned [42,43]. Ishii et al. applied

a DAE to spectral domain dereverberation [44] and

found that the word accuracy of large vocabulary con-

tinuous speech recognition improved from 61.4% to

65.2% for the JNAS (speech corpus for large vocabu-

lary continuous speech recognition research) database

[45]. However, the suppressed spectral domain feature
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needs to be converted to a cepstral domain feature,

and the subsequent performance improvement is not

sufficient.

Few studies have focused on a DNN-based approach for

distant-talking speaker recognition. By removing rever-

beration, we can expect to improve the speech/speaker

recognition performance. However, very little research

has focused on the differences between speech and

speaker recognition in a distant-talking environment. For

speech recognition, it is necessary to maximize the inter-

phoneme variation while minimizing the intra-phoneme

variation in the feature space. For speaker recognition,

on the other hand, the focus is on speaker variation

instead of phoneme variation. These characteristics mean

some methods that are effective in speech recognition

may not be as effective for speaker recognition, especially

in a hands-free environment [46]. Therefore, the effect

of DNN-based feature mapping and dereverberation on

distant-talking speaker recognition is still unknown.

In our preliminary experiment, we found that DNN-

based cepstral domain feature mapping is efficient for

distant-talking speaker recognition [47]. In this paper, we

present DNN-based bottleneck feature mapping, DAE-

based cepstral domain dereverberation, and a combina-

tion of the two for distant-talking speaker recognition. For

the DNN-based bottleneck feature (BF-DNN), we noted

that DNNs can transform the reverberant speech feature

to a new feature space with greater discriminative clas-

sification ability for distant-talking speaker recognition.

In addition, by using multiple contexts (frames) for input

data, the bottleneck features can reduce the influence of

reverberation over several frames.

For neural network-based dereverberation, previous

studies have shown that the spectral domain feature is

efficient for the ASR task [44]. Noting that many speaker

recognition systems adopt a cepstral domain feature as

the direct input, it is meaningful to discover the perfor-

mance of the cepstral domain DAE-based dereverberation

method. Cepstral domain DAE-based dereverberation

transforms the cepstrum of reverberant speech to that

of clean speech. Moreover, the dimensions of the spec-

tral domain-based features are greater than those of the

cepstral domain-based ones. This introduces greater dif-

ficulties in learning a DAE with a deep architecture. Thus,

it is expected that DAE-based cepstral domain derever-

beration would bemore efficient than DAE-based spectral

domain dereverberation for speaker identification under

distant-talking environments.

The DNN-based bottleneck feature is a method for

extracting discriminant features while DAE-based dere-

verberation is a method for suppressing reverberation.

Thus, they have a strong complementary nature, and a

combination of the two methods should be very efficient

in distant-talking speaker identification. Therefore, the

likelihood of the bottleneck features extracted from the

DNN and that of cepstral domain DAE-based derever-

beration are combined linearly. A block diagram of the

complete system is shown in Figure 1. In the training

stage, DAE and BF-DNN models for feature transforma-

tion and speaker models with transformed features are

trained. In the test stage, first, MFCCs extracted from the

reverberant speech are input to the DAE and BF-DNN

models for feature transformation. Then, the transformed

features and speaker models are used to calculate the

likelihood of each speaker. Finally, the likelihoods of DAE-

based and BF-DNN-based features are combined and the

target speaker is determined.

We also analyzed the optimal neural network architec-

ture and parameters of the DNN-based bottleneck fea-

ture and DAE-based dereverberation for distant-talking

speaker identification.

The remainder of this paper is organized as follows:

Section 2 presents some basic theory for constructing and

training DNNs, while an outline of the DNN-based bot-

tleneck feature and DAE-based dereverberation method

is given in Section 3. Section 4 discusses the develop-

ment and evaluation of an experiment for distant-talking

speaker recognition in reverberant environments. Finally,

Section 5 summarizes the paper.

2 Overview of restricted Boltzmannmachine
In speech recognition, DNN has been successfully used

for modeling the posterior probability of state. In this

work, for non-linear feature transformation, we used

DNN, which can suppress the reverberation and trans-

form the original feature to a discriminative feature for

reverberant speech. A basic training strategy involved

multiple phases. First, pre-training of the DNN was

accomplished by training an unsupervised RBM and

stacking them in a deep belief network (DBN). Second,

optimization with back-propagating, referred to as fine-

tuning, discriminatively trains the DNN using supervised

signals. Meanwhile, in the pre-training phase of the DAE

task, the encoder network was also trained layer by layer

as a stack on RBM. In this section, we briefly introduced

the RBM [39,41].

2.1 Restricted Boltzmannmachine

The RBM is a bipartite graph as shown in Figure 2.

It has both visible and hidden layers in which visible

units representing observations are connected to hid-

den units that learn to represent features using weighted

connections. An RBM is restricted in that there are

no visible-visible or hidden-hidden connections. Differ-

ent types of RBMs are used for binary and real-valued

input. Bernoulli-Bernoulli RBMs are used to convert

binary stochastic variables to binary stochastic vari-

ables, while Gaussian-Bernoulli RBMs are used to convert
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Figure 1 Block diagram of the proposed speaker recognition system.

real-valued stochastic variables to binary stochastic

variables.

In a Bernoulli-Bernoulli RBM, the weights on the con-

nections and the biases of the individual units define a

probability distribution over the joint states of the visible

and hidden units via an energy function. The energy of the

joint configuration is given by

E(v,h|θ) = −

V∑

i=1

H∑

j=1

wijvihj −

V∑

i=1

aivi −

H∑

j=1

bjhj, (1)

where θ = (w, a,b) and wij represents the symmetric

interaction term between visible unit i and hidden unit j

with ai and bj their respective bias terms. V andH denote

the numbers of visible and hidden units, respectively.

The maximum likelihood estimation of an RBM is to

maximize the log likelihood logp(v|θ) of parameter θ .

Therefore, the weight update equation is given by

�wij = ǫ(〈vihj〉data − 〈vihj〉model), (2)

where ǫ is the learning rate, 〈·〉data is the expectation that vi
and hj are on together in the training set, while 〈·〉model is

the same expectation calculated from the model. Because

computing 〈vihj〉 is expensive, we use a contrastive diver-

gence approximation to compute the gradient. It is possi-

ble to compute 〈vihj〉 by applying Gibbs sampling.

Figure 2 Graphical representation of an RBM.

2.2 DNN structure and training

DBNs are configured hierarchically by connecting pre-

trained RBMs. The top layer of a DBN is a softmax layer,

with the softmax operation given as

p(l|h) =
exp(bl +

∑
ihiwil)∑

m exp(bm +
∑

ihiwim)
, (3)

where bl is the bias of the label and wil is the weight of

hidden unit i in the top layer to label l.

After configuring the DBN using RBMs, it is discrimina-

tively trained using the backpropagation algorithm [48] to

maximize the log probability of the class labels. In general,

after discriminative training, a DBN is called a DNN.

In particular, we used the algorithm from [37] to train

a DNN. In the pre-training phase, we first initialized the

RBMs with random values. We then subdivided all train-

ing datasets into mini-batches, with 128 data vectors for

unsupervised pre-training. Each hidden layer was pre-

trained for 50 passes. The weight was updated after each

mini-batch. For the DNN training phase, also referred to

as the fine-tuning phase, we used the method of the con-

jugate gradient algorithm.We repeated the fine-tuning for

100 epochs updating the entire training set. The learning

rate for the weights was 0.03 and for biases was 0.1.

3 DNN-based bottleneck feature and DAE-based
dereverberation

3.1 Bottleneck features extracted from a DNN

Bottleneck features were generated from an MLP [35] in

which one of the internal layers has a small number of

hidden units relative to the size of the other layers. The

multilayer network to obtain the bottleneck features is

shown in Figure 3. In this example, the number of hid-

den layers (including the bottleneck layer) is set to 5. The

number of hidden units in the innermost layer is smaller

than that in the other layers. We call this the bottleneck

layer.
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Figure 3 Flowchart of bottleneck feature extraction. In the training

stage for a bottleneck DNN, the input of the DNNwas a frame, or multi

frames, of reverberant speech. The teacher signal was the true speaker

labels. For a trained DNN, giving a frame or multiframes of reverberant

speech, we took the bottleneck layer as the output feature.

In our work, bothMLPs without pre-training and DNNs

with pre-training were used as multilayer networks. In the

pre-training step, we trained each layer of the RBM to con-

struct a DBN using the common DBN training. With the

pre-training step, the DBN achieved better initial values of

the neural network. This structured bottleneck layer could

be treated as a nonlinear mapping of input features. In

addition, it was possible to enhance the identification abil-

ity of bottleneck features by discriminative training, which

was expected to mitigate the influence of reverberation on

speaker identification.

We used the speaker labels as the teacher signal. DNN’s

can be trained by backpropagating derivatives of a cost

function that measures the cross entropy between the

target outputs and the actual outputs produced for each

training case.

The initial value of the MLP was generated randomly

in the range −0.5 to 0.5, while the initial value of

the DBN was determined by unsupervised pre-training.

After initialization, supervised discriminative training was

performed for both the MLP without pre-training and

DBN with pre-training. Finally, the bottleneck features

extracted from the bottleneck layer of the DNNwere used

to train the speaker model.

3.2 Denoising autoencoder for cepstral domain

dereverberation

An autoencoder is a type of artificial neural network

whose output is a reconstruction of the input and which is

often used for dimensionality reduction.

The autoencoder training phase aims to find a value for

the parameter vector, which minimizes the value between

the input and teacher signals. This minimization is usu-

ally carried out by minimizing the cross entropy using

conjugate gradients. Because it was difficult to directly

optimize weights in a deep autoencoder with many layers,

an initialization step called pre-training was conducted.

Teacher signal (MFCC of clean speech)

Layer 1

Layer 2

Input (MFCC of reverberant speech)

Output

Layer 3

Layer 4

Layer 5

1W

2W

3W

T
W3

T
W2

T
W1

Figure 4 Topology of denoising autoencoder for cepstral domain

dereverberation. In the training phase of the DAE, the cepstrum of

reverberant speech was set as the input, and the cepstrum of the

corresponding clean speech was set as the teacher signal. After

training, the DAE network was able to generate the output of

reverberation suppressed features.

DAEs share the same structure as autoencoders, but the

input data are a noisy version of the output data. Autoen-

coders use feature mapping to convert noisy input data

into clean output and, thus, have been used for noise

removal in the field of image processing [42,49]. Ishii

et al. applied a DAE to spectral domain dereverberation

[44]. However, the suppressed spectral domain feature

needs to be converted to a cepstral domain feature, and

this improvement in performance was inadequate. In this

Table 1 Dataset descriptions

Data type Usage Data set

Training data To train the DNN
and GMM

100 (speakers) × 5 (utterances)
× 3 (environments)

Development
data

To determine the
settings of the DNN
(layers, batches, etc.)
in the experimental
step

Same as above

Test data To test the speakers
in this dataset in the
evaluation step

100 (speakers)× 20 (utterances)
× 5 (environments)
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Table 2 Details of recording conditions for impulse

responsemeasurement

Array number Room Array type RT60 (s)

(a) CENSREC-4 database for training

1 Japanese style room Linear 0.40

2 Japanese style bath Linear 0.60

3 Elevator hall Linear 0.75

(b) RWCP database for testing

4 Echo room (cylinder) Circle 0.38

5 Tatami-floored room (S) Circle 0.47

6 Tatami-floored room (L) Circle 0.60

7 Conference room Circle 0.78

8 Echo room (panel) Linear 1.30

RT60 (second), reverberation time in room. S, small. L, large.

paper, we applied a DAE for cepstral domain dereverber-

ation because there were many speaker recognition sys-

tems that adopted cepstral domain features as their direct

input. It is meaningful to evaluate the performance with

cepstral domain-based DAE features of speaker recog-

nition. Given a pair of speech samples, that is, clean

speech and the corresponding reverberant speech, the

DAE learns the nonlinear conversion function that con-

verts reverberant speech features into clean speech. In

general, reverberation is dependent on both the current

and several previous observation frames. In addition to

the vector of the current frame, vectors of past frames

were concatenated to form input.

For cepstral feature Xi of the observed reverberant

speech of the i−th frame, cepstral features ofN−1 frames

before the current frame are concatenated with those of

the current frame to form a cepstral vector of N frames.

OutputOi of the nonlinear transformer based on the DAE

is given by

Oi = fL(. . . fl(. . . f2(f1(Xi,Xi−1, . . . ,Xi−N ))), (4)

where fl is the nonlinear transformation function in layer l,

andN is the number of frames to be used as input features.

The topology of the cepstral domain DAE for derever-

beration is shown in Figure 4. In this example, the number

of hidden layers was set to five. In Figure 4,Wi(i = 1, 2, 3)

denotes the weighting of the different layers and WT
i

shows the transposition of Wi
a. That is, W1, W2, and W3

were the encoder matrices and WT
1 , WT

2 , and WT
3 were

the decoder matrices, respectively. To train a DAE, we

used DBNs [50] for pre-training because they can obtain

accurate initial values of the deep-layer neural networks.

To obtain a pre-trained RBM, we trained the second hid-

den layer using a Bernoulli-Bernoulli RBM and the third

hidden layer using a Gaussian-Bernoulli RBM. DBNs are

hierarchically configured by connecting these pre-trained

RBMs. Here W1, W2, and W3 are learned automatically,

whileWT
1 ,WT

2 , andWT
3 are generated fromW1,W2, and

W3, respectively.

After pre-training, a backpropagation algorithm was

applied to adjust the parameters of autoencoder. Back-

propagation algorithm modified the weights of autoen-

coder to reduce the cross entropy error between the

teacher signal and the output value when a pair of sig-

nals is given (an input signal and an ideal teacher signal

pairs.). In this paper, the input signal is the cepstral fea-

ture of reverberant speech and the ideal teacher signal is

the cepstral feature of clean speech. The conjugate gradi-

ent algorithm was used to adjust the relative weightings

of the units to minimize the cross entropy error for each

training case [37].

Figure 5 Graphic illustration of microphone array. (a) CENSREC-4 (b) RWCP.
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Table 3 Channel numbers corresponding to Figure 5 used

for dereverberation

Linear array Circular array

CENSREC-4 1, 3, 5, 7 —

RWCP 17, 21, 25, 29 1, 5, 9, 13

3.3 Combination of DNN-based bottleneck feature and

DAE-based dereverberation

We used a GMM as our speaker model owing to its

convenience and effectiveness in conventional speaker

recognition. In this paper, our methods were combined by

GMM likelihood. The likelihood of a DNN-based bottle-

neck feature-based GMM likelihood was linearly coupled

with that of the DAE-based one to produce a new score

Lncomb given by

Lncomb = (1 − α)LnBF + αLnDAE, n = 1, 2, . . . ,N , (5)

where LnBF and L
n
DAE are the likelihoods produced by the n-

th bottleneck feature-basedmodel and DAE-basedmodel,

respectively. N was the number of speakers registered

and α denoted the weighting coefficients. The speaker

with the maximum likelihood was selected as the target

speaker.

4 Experiments
Our proposed method was evaluated on both simu-

lated and actual data. Settings for the simulated data

and speaker identification experiment are discussed in

Section 4.1, while experimental results are presented in

Sections 4.2.1 to 4.2.3. Section 4.2.1 describes the devel-

opment experiment, while Section 4.2.2 evaluates our

Table 4 Reverberationmethods

Reverberation methods

Conventional methods

1 CMN MFCC with CMN

2 MCLMS-SS Multichannel least mean squares

with spectral subtraction

3 MSLP-SS Multistep linear prediction

with spectral subtraction

4 BF-MLP Bottleneck feature extracted

from multilayer perceptron

DNN-based feature transformation methods

5 BF-DNN Bottleneck feature extracted

from deep neural network

6 DAE Denoising autoencoder-based

cepstral-domain dereverberation

7 DAE + BF-DNN Combination of DAE

and BF-DNN

Table 5 Conditions for speaker recognition

Values

Sampling frequency 16 kHz

Frame length 25 ms

Frame shift 10 ms

Feature space 25 dimensions with CMN

(12 MFCCs + � + �power)

Acoustic model GMMs with 128 diagonal

covariance matrices

proposed method on simulated data. Section 4.2.3 inves-

tigates the effect of different training data. Regarding the

experiment on actual data, details of the training data

(comprising artificially created reverberant speech), the

actual evaluation data, and evaluation experiment are

described in Section 4.2.4.

4.1 Experimental setup

We used clean speech convoluted with various impulse

responses to generate simulated data for the dereverbera-

tion experiment. For the simulated data, eight multichan-

nel impulse responses were selected from the Real World

Computing Partnership (RWCP) sound scene database

[51] and the CENSREC-4 database [52]. These were con-

voluted with clean speech to create artificial reverberant

speech. A large-scale database, the Japanese Newspaper

Article Sentence (JNAS) [45] corpus, was used as the

source for clean speech. Table 1 describes the develop-

ment, training, and test datasets. Since the training and

development datasets are the same, we refer to both as

the training dataset. Utterances from 100 speakers (50

male and 50 female) were used for development and to

train parameters for the DAE, BF-DNN, and GMMs. For

each speaker, we used three types of artificial impulses

(CENSREC-4) convoluted into five different sentences

unless there was a special expression. Thus, in total,

1,500 sentences (15 sentences per speaker× 100 speakers)

were used to train the DAE, BF-DNN, and GMMs. Each

speaker provided 20 utterances for the test data. The aver-

age duration of training and test utterances was about 3.9

and 5.6 s, respectively.

Table 2 lists the impulse responses for the training

and test sets. The impulse responses were collected

by microphone arrays, as illustrated in Figure 5. The

channel numbers corresponding to Figure 5 used for

Table 6 Initial parameters of DNN

Values

Number of layers 5

Number of units in each layer 1,024

Context size 9
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Table 7 Learning parameters of DNN

Value

Batch size 128

Learning rate of Bernoulli-Bernoulli RBM 0.02

Learning rate of Gaussian-Bernoulli RBM 0.002

Weight decay 0.0002

Number of iterations in pre-training 50

number of iterations in fine-tuning 100

dereverberation are shown in Table 3. For the RWCP

database, a four-channel circular or linear microphone

array was taken from a circular + linear microphone

array (30 channels). The circular array had a diameter

of 30 cm. The microphones in the linear microphone

array were located at 2.83-cm intervals. Impulse responses

were measured at several positions 2 m from the micro-

phone array. For the CENSREC-4 database, four-channel

microphones were taken from a linear microphone array

(seven channels in total), with the microphones located

at 2.125-cm intervals. Impulse responses were mea-

sured at several positions 0.5 m from the microphone

array.

In this study, we compared seven dereverberationmeth-

ods, briefly described in Table 4.

For each method, we performed delay-and-sum beam-

forming. Formethod 1, only CMN with beamforming was

used to reduce the reverberation (denoted as ‘CMN’). For

comparison, MCLMS-SS- [32] and MSLP-SS [17]-based

dereverberation was performed in method 2 and method

3, respectively. The MCLMS-SS and MSLP-SS methods

both treated late reverberation as additional noise and

used the spectral subtraction method to suppress it. We

also performed bottleneck feature extraction without pre-

training, denoted as ‘BF-MLP’ (method 4) [35]. Method

5 (denoted as ‘BF-DNN’),method 6 (denoted as ‘DAE’),

and method 7 (denoted as ‘DAE + BF-DNN’) repre-

sent methods introduced in this paper. For all methods,

dereverberant speaker models were trained using artifi-

cial reverberant speech with three types of CENSREC-

4 impulse responses (see Table 2a) and suppressed by

the corresponding dereverberant method. The features of

Table 8 Recognition rates of DNNwith varying numbers of

units in each layer for training data (%)

Method Number of units CENSREC-4 database Ave.

in each layer 0.40 0.60 0.75

BF-DNN 512 84.90 78.95 83.15 82.33

BF-DNN 1,024 88.40 83.90 88.10 86.80

BF-DNN 2048 87.45 83.25 87.05 85.92

Table 9 Recognition rates of BF-DNNwith and without

pre-training for training data (%)

Method Pre-training CENSREC-4 database Ave.

0.40 0.60 0.75

BF-DNN With 88.40 83.90 88.10 86.80

BF-MLP Without 84.85 78.15 83.50 82.17

dereverberant speech were used to train the dereverber-

ant speaker models.

Table 5 lists the conditions for speaker identification.

We used 25-dimensional MFCCs and GMMs [53,54] with

128 mixtures. The MFCC features were normalized with

the mean of the entire training data. GMMs were trained

using three kinds of reverberant speech corresponding

to three kinds of impulse responses. The conditions for

the MCLMS and MSLP-based methods were the same as

those in [55] and [5], respectively. In the MCLMS and

MSLP methods, the spectral floor parameter was set to

0.15, while the noise overestimation factor and exponent

parameter were set to 0.5.

Bottleneck and DAE features for distant-talking speaker

identification were extracted from the MFCC features.

Since the details of the parameters of a DNN are deter-

mined by the training data, this is discussed in the next

section.

4.2 Experimental results

4.2.1 Results of simulated development experiment

Since the number of DNN layers and units in each layer

need to be set before DNN learning, we used development

experiments to determine the optimal parameter settings

for this approach. The initial numbers of DNN structures

were set according to Table 6, while the parameters were

set according to Table 7, based on the settings in [39].

Five utterances taken from each of 50 male and 50 female

speakers were used as training data (Table 1).

The structure of a DNN is determined by: 1) the units in

each layer; 2) presence or absence of pre-training; and 3)

the number of layers. These parameters for the bottleneck

feature DNN and DAE were determined empirically.

Table 10 Recognition rates of BF-DNNwith a varying

number of layers for training data (%)

Method Number of layers CENSREC-4 database Ave.

0.40 0.60 0.75

BF-DNN 3 56.60 48.65 55.45 53.57

BF-DNN 5 88.40 83.90 88.10 86.80

BF-DNN 7 90.40 86.40 89.20 88.67

BF-DNN 9 91.80 88.35 91.15 90.43
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Table 11 Recognition rates of DAE with different sized

contexts for the training data (%)

Method Context size CENSREC-4 database Ave.

0.40 0.60 0.75

DAE 9 (c1+p8) 94.30 90.85 93.80 92.98

DAE 9 (c1+p4+l4) 93.40 89.60 93.15 92.05

DAE 9 (c1+l8) 93.50 89.65 92.75 91.07

Determining the DNN for bottleneck features (BF-DNN)

First, we determined the units in each layer. Table 8

shows the speaker recognition rates for the bottleneck

feature DNN (denoted as BF-DNN in the table) with

different unit settings in each layer. Initially, we set the

number of layers to five. In theory, more units in each

layer achieve better performance in recognition tasks.

Conversely, too large a number of units may lead to over-

learning, which causes diminished performance. More-

over, in the bottleneck layer, we need to compress the

units to 25 dimensions. Thus, we chose 1,024 as the opti-

mal number of units for a BF-DNN in the evaluation

experiment.

Next, we investigated whether unsupervised pre-

training is necessary for a BF-DNN. With pre-training,

the BF-DNN achieves better performance (Table 9). The

reason for this is that the multiple layers of the neural

network present a much better starting point for a dis-

criminative phase and converge faster [37]. We refer to

this phase as ‘fine turning’. Thus, pre-training was applied

in the evaluation step.

Third, we considered how many layers would be appro-

priate for the BF-DNN. Table 10 shows the effect of the

number of layers in the BF-DNN. We can see that more

layers achieve better performance. Because the value of

the teacher signal is significantly different from that of

the input signal, the system needs more layers to trans-

form the MFCC of reverberant speech to a teacher signal

(true speaker label). Moreover, it has been shown that

with fewer layers, the recognition performance of a system

is extremely poor. We used nine layers for the BF-DNN

Table 12 Recognition rates of DAE with varying numbers

of layers for training data (%)

Method Number of layers CENSREC-4 database Ave.

0.40 0.60 0.75

DAE 1 95.35 90.65 95.20 93.73

DAE 3 95.40 91.50 94.70 93.87

DAE 5 94.30 90.85 93.80 92.98

DAE 7 89.65 84.40 87.60 87.22

DAE 9 87.85 82.75 87.50 86.03

Table 13 Optimal parameters for BF-DNN

Values

Number of layers 9

Number of units in each layer 1,024

Context size 9 (p4 + c1 + l4)

in the evaluation experiment because more layers would

have increased the time needed to train the BF-DNN,

while resulting in only a relatively modest improvement in

performance.

Determining the DNN for the denoising autoencoder

In DAE learning, because of the duration of the rever-

beration, we cannot fully represent reverberation in a

single frame. Thus, in the input layer, not only the current

frame but also its neighboring frames are needed. Here,

we need to determine another parameter that controls

the input vector size, namely, context-size. We compared

three kinds of contexts with a context size of nine: 1) left

context (the current frame (c1 for short) + the previous

eight frames (p8)); 2) left and right contexts (p4 + c1 + next

4 frames (l4)); and 3) right context (c1 + p8) (see Table 11).

The results show that the best performance was obtained

with a context size of nine (c1+ p8) in Table 11 because

in a reverberant environment, the current frame could be

affected by the previous frames. Thus, we used the setting

of c1+ p8 in the subsequent step.

Units in the DAE refer to a setting in a BF-DNN. Pre-

training is needed in the DAE for the same reason as in

the BF-DNN.

The number of layers in the DAE must also be pre-

determined. Table 12 shows the effect of the number of

layers on the DAE. Contrary to the BF-DNN, fewer lay-

ers result in better performance. This can be explained by

the complex structure of DNNs: too many layers cause an

increase in the transformation magnitude of fine-tuning

convergence, with the output being overlearned. Con-

trary to the BF-DNN, the values of the input MFCC of

reverberant speech and teacher signal MFCC of clean

speech are similar. An appropriate number of layers is suf-

ficient for this task. Based on the experimental results,

we used three layers for the DAE in the evaluation

experiment.

Table 14 Optimal parameters for denoising autoencoder

Values

Number of layers 3

Number of units in each layer 1,024

Context size 9 (c1+p8)
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Table 15 Distant-talking speaker identification rates for

evaluation data (%)

Method RT60 of test data (s) (RWCP data) Ave.

0.38 0.47 0.60 0.78 1.30

(a) Conventional methods

CMN 79.70 76.05 75.55 74.40 75.75 76.29

MCLMS-SS 82.25 79.70 78.75 78.05 81.30 80.01

MSLP-SS 82.85 78.60 78.50 78.00 75.70 78.73

BF-MLP 72.35 69.30 64.05 64.90 63.25 66.70

(b) DNN-based feature transformation methods

BF-DNN 87.90 84.95 82.45 84.00 82.15 84.29

DAE 92.10 89.70 87.60 89.45 88.10 89.39

DAE + BF-DNN 94.20 92.20 90.65 91.95 90.70 91.94

Determining the parameters for the combination of the two

systems

Because the BF-DNN system tries to find discriminative

features while the DAE system aims to create a transfor-

mation that can transform reverberant features into clean

features, these two systems are complementary in nature

and both perform well. Thus, we considered that a com-

bination of likelihoods of these two systems could achieve

better performance using Equation 5. To determine the

linear combination parameter α, we varied α from 0.1 to

0.9 in steps of 0.1 and computed the recognition rate in

each step. The maximum recognition rate was obtained

for α = 0.4. Thus, this value was used in the evaluation

experiment.

4.2.2 Experimental results of simulated evaluation data

The optional parameters determined in the devel-

opment step are summarized in Tables 13 and 14.

Table 15 compares the results of distant-talking speaker

identification using conventional and the proposed meth-

ods. The results show that both BF-DNN and DAE per-

formed better than the conventional methods in all five

different reverberant environments. The speaker recog-

nition rates based on CMN for distant-talking condi-

tions are very low because late reverberation cannot

be suppressed. Conventional late reverberation suppres-

sion methods such as MCLMS-SS and MSLP-SS do

not achieve sufficient improvement either. Both of the

DNN-based feature mapping methods outperform the

conventional dereverberation methods. Our nonlinear

transformation-based approaches have a more flexible

representation ability, which is more suited to distant-

talking speech with a complex distribution.

The reason for the improvement in BF-DNN learn-

ing is illustrated directly in Figure 6. For the BF-DNN,

we performed linear discriminant analysis to reduce the

dimensions of the utterances of 20 speakers from 25 to 2

and showed them in two directions of coordinating axes.

The distribution of speaker’s features is clearly distin-

guished here. The BF-DNN changes the features to a space

that is easily distinguished. We also applied the proposed

method with and without pre-training (bottleneck fea-

ture MLP in Table 15). The pre-trained method achieved

better performance. The unsupervised pre-training step

enhanced the distinguishing characteristics (in our exper-

iment, these are the dereverberation characteristics) to

obtain good initial parameters for the neural network. The

supervised training step then leads these distinguishing

characteristics in the right direction, hence the need for a

pre-training step.

As for the DAE, the improvement in recognition rate

can be explained by the fact that the DAE always learns

Figure 6 Feature space before and after the BF-DNN. We used PCA to reduce the speaker features to two dimensions. The lift graph shows the

locations of the different speakers using different colors in a two-dimensional plane. The boundary of each speaker is not clear. The right graph

shows the features after the BF-DNN in two dimensions. Here, the boundaries are clearer than those on the left graph.
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Table 16 Three different training sets used to train the

DNN and GMM

Training DAE and BF-DNN GMM training

set training data data

number

1 5 (utterances) × 100 (speakers) 5 (utterances) ×100 (speakers)

× 3 (environments) × 3 (environments)

2 Same as training 10 (utterances) ×100 (speakers)

set 1 × 3 (environments)

3 10 (utterances) ×100 (speakers) Same as training

× 3 (environments) set 2

a vector field toward the higher probability regions and

minimizes the variational lower bound on a generative

model [42].

The DAE retains speaker characteristics and sup-

presses the reverberation by nonlinear feature map-

ping. The BF-DNN classifies speaker characteristics in

the right direction. Therefore, BF-DNN-based discrim-

inant features and DAE-based dereverberation have a

strong complementary nature. A linear combination of

the likelihoods of the DAE and BF-DNN was also eval-

uated. We used Equation 5 to obtain the combina-

tion. The weights of the DAE and BF-DNN likelihoods

were 0.6 and 0.4, respectively, corresponding to the set-

tings in the development experiment. The combination

method performed better than all the individual methods.

The average reduction in relative error rate was 66.0%,

59.7%, and 62.1% for CMN, MSLP-SS, and MCLMS-SS

methods.

4.2.3 Investigation of the effect of varying sizes of training

data

We also investigated how the result changes with a varying

amount of training data. In this experiment, we dou-

bled the training data for each speaker and compared

the recognition results with the different training sets.

Details of the training sets used in this section are given in

Table 16. For all training sets, the test set was the same (20

sentences per speaker × 5 environments).

Variations in the results are shown in Figure 7. Recog-

nition performance improves with more training data.

Using twice as much GMM training data and retaining the

same training data to train the DNN-based feature trans-

formation model (experiment 2), the relative error rates

of all methods were reduced by more than 40%. When

doubling the size of the training data for both GMMs

and DNNs, the recognition results of DNN-based fea-

ture transformation approaches are further improved. The

DNN-based method outperformed both MCLMS and

MSLP-based dereverberation under all conditions.

4.2.4 Experimental results of actual environmental data

We also used reverberant speech from an actual envi-

ronment in our experiment. The recording setting was

the same as in our previous work [55]. The speech was

collected in a meeting room with dimensions 7.7 m ×

3.3m× 2.5m (D×W ×H). The utterances were collected

from 20 male speakers. Each speaker uttered nine training

phrases, which were recorded by an adjacent microphone.

To train GMMs, the clean speech recorded by the adjacent

microphone in the actual reverberant environment was

convoluted with three types of impulse responses from

the CENSREC-4 database to create artificial reverberant

Figure 7 Average speaker identification rates using different training sets.
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Table 17 Speaker identification rates in actual

environment (%)

Method Recognition rate

CMN 72.5

MCLMS-SS 87.8

MSLP-SS 83.8

BF-DNN 88.0

DAE 91.0

DAE + BF-DNN 92.5

speech. For the detailed conditions, please refer to [55].

Thus, 540 sentences (9 sentences per speaker × 3 envi-

ronments × 20 speakers) were used to train the GMMs.

To avoid overlearning, the 540 sentences plus the train-

ing data (1,500 sentences) shown in Table 1 were used to

train BF-DNN andDAE.We retained the same neural net-

work settings used in the experiment with simulated data

(see Tables 13 and 14). For the test data, 400 utterances

(20 sentences per speaker × 20 speakers) recorded by a

distant four-channel microphone array were used.

The results are shown in Table 17. For the real data, a

similar tendency to that found in the simulated data was

observed. DAE and BF-DNN outperformed CMN, MSLP,

and MCLMS. By combining the likelihoods of the DAE

and BF-DNN-based features, a further improvement was

achieved.

5 Conclusions
In this paper, we presented two robust distant-talking

speaker identification methods based on DNNs and using

bottleneck and DAE features, respectively. Bottleneck and

DAE features extracted from the DNN were used to

train a GMM for speaker identification. These methods

achieved recognition rates of 84.29% (bottleneck DNN)

and 89.39% (DAE) compared with 78.73% for the conven-

tional MSLP and 80.01% forMCLMS in an artificial rever-

berant environment. Results comparing an MLP without

pre-training with a DNN with pre-training show that

pre-training is effective for distant-talking speaker iden-

tification. Moreover, speaker recognition performance is

further improved by combining the likelihoods of the

bottleneck and DAE features.

In an actual reverberant environment, BF-DNN- and

DAE-based approaches also worked better than MSLP-SS

and MCLMS-SS methods. The combination of DAE- and

BF-DNN-based methods outperformed other methods.

Recently, Weninger et al. proposed a method for

combining spectral subtraction with reverberation time

estimation-based dereverberation and DAE [56]. They

used reverberant and dereverberant speech to train the

deep recurrent denoising autoencoder. As the DAE was

trained with prior knowledge of dereverberant speech, it

could learn the relationship between clean, reverberant,

and dereverberant speech. This provides good motiva-

tion for our future work, that is, combining DAE with

MCLMS-based dereverberation.

Endnote
aWi andWiT1 correspond to fL in Equation 4.
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