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Abstract: Multibody models built in commercial software packages, e.g., ADAMS, can be used for
accurate vehicle dynamics, but computational efficiency and numerical stability are very challenging
in complex driving environments. These issues can be addressed by using data-driven models, owing
to their robust generalization and computational speed. In this study, we develop a deep neural
network (DNN) based model to predict longitudinal-lateral dynamics of an autonomous vehicle.
Dynamic simulations of the autonomous vehicle are performed based on a semirecursive multibody
method for data acquisition. The data are used to train and test the DNN model. The DNN inputs
include the torque applied on wheels and the vehicle’s initial speed that imitates a double lane change
maneuver. The DNN outputs include the longitudinal driving distance, the lateral driving distance,
the final longitudinal velocities, the final lateral velocities, and the yaw angle. The predicted vehicle
states based on the DNN model are compared with the multibody model results. The accuracy of
the DNN model is investigated in detail in terms of error functions. The DNN model is verified
within the framework of a commercial software package CarSim. The results demonstrate that the
DNN model predicts accurate vehicle states in real time. It can be used for real-time simulation and
preview control in autonomous vehicles for enhanced transportation safety.

Keywords: deep neural networks; longitudinal-lateral dynamics; autonomous vehicle; real-time
simulation

1. Introduction

Recent advances on neural networks have led to dramatic progress in solving many
complex engineering problems, and demand for such solutions is increasing with time. A
wide range of topics starting from dynamics modelling, intelligent control to transportation
research is being handled by neural networks [1–3]. This technique has naturally found
substantial applications in autonomous vehicles, with vehicle lateral and longitudinal dy-
namics modelling and control being typical applications [4–6]. The advent of autonomous
vehicles has the potential to drastically change society and the way we understand, plan
and design cities and regions [7–9]. It will make transportation smoother, but the question
is whether it will make it safer [10,11]. For preview control of autonomous vehicles in
terms of accuracy and safety, it is critical to investigate the coupling between lateral and
longitudinal dynamics for accurate data acquisition, which is necessary for deep learning
modelling [12–14]. This process requires highly detailed vehicle models or large sets of raw
data to properly take into account.

In recent years, a number of contributions have been reported in the field of vehicle
coupling dynamics modelling and control by using neural networks. Kumarawadu et al.
proposed a neural network adaptive control approach for longitudinal-lateral dynamics
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of vehicles for highway applications. The results in the face of parameter uncertainties
indicated the stability and robustness of the control algorithm [15]. Melzi et al. presented a
layered neural network method that uses dynamic parameters acquired from sensors to
estimate the sideslip angle. The results showed good consistency between the measured
and estimated sideslip angles [16]. Ji et al. developed a lateral motion control strategy
by using an adaptive neural network approximator and a robust steering controller. The
results suggested that the strategy can track the path and maintain yaw stability at the
physical limits of tire friction [17]. Devineau et al. analyzed the capability of deep neural
networks (DNNs) to capture vehicle characteristics and the ability to perform longitudinal-
lateral control [18]. Acosta et al. integrated feedforward neural networks into a model
predictive controller to achieve vehicle autonomous drifting along a wide range of road
radii [19]. Taghavifar et al. developed a probabilistic estimation method by hybridization
of least-square backpropagation neural networks and optimal robust control. The approach
improved vehicle handling and stability [20]. Kim et al. introduced a sideslip angle estima-
tion scheme by combining DNNs and nonlinear Kalman filters. The scheme was verified
by both simulation and experimental results [21]. Tork et al. performed longitudinal-lateral
dynamics control in an autonomous vehicle system. An adaptive neural network that
is capable of producing nonlinear and complex mappings was designed [22]. Šabanovič
developed a road type classification solution to improve vehicle dynamics control via
the anti-lock braking system by estimating friction coefficient using video data and DNN
algorithms [23].

The literature survey indicates that DNNs can be efficiently applied in vehicle dynam-
ics modelling and control [24]. In most cases, longitudinal-lateral modelling problems were
investigated in a decoupled way. The precise modelling of longitudinal-lateral coupling
involves complex and nonlinear relations between vehicle state variables, and using the
resulting vehicle model is too costly for real-time applications. For this reason, most studies
in the field of preview control mainly focus on simplified or few-degree-of-freedom models,
which are constrained to avoid highly coupled dynamics [25,26]. However, the simultane-
ous inclusion of longitudinal and lateral control becomes unavoidable to improve vehicle
performance in a wide range of operations especially for autonomous vehicles [27,28]. The
major difficulty of DNN-based methods for longitudinal-lateral dynamics is the number
of driving situations required for building a representative training dataset. The direct
estimation of vehicle characteristics is sometimes unavailable since numerous road tests of
vehicles are needed. Vehicle dynamic simulations within the framework of commercial soft-
ware packages are also time-consuming because real-time simulations are very challenging
in low-cost hardware [29,30].

To address these issues, a data-driven modelling method based on real-time data
acquisition and DNNs provides an efficient solution. In this study, a DNN model for
predicting longitudinal-lateral dynamics of a vehicle is presented. An efficient semirecur-
sive multibody method that performs real-time simulations is used to capture vehicle key
characteristics. The highlights of this study lies in two aspects. The first aspect consists
of the use of an efficient semirecursive multibody formulation to acquire training and
testing data. The multibody model can deal with the nonlinearities of vehicle systems
more accurately than the simplified or decoupled models. The second aspect consists of a
DNN modelling approach to predict longitudinal-lateral dynamics of a vehicle. Different
applied torques and initial speeds over a wide range are used to imitate various kinds
of on-road driving situations. The DNN model is verified by using the results obtained
from a commercial software package CarSim. Further, the DNN models with different
hidden layers and sample size are investigated in terms of accuracy and efficiency. The
widely used backpropagation neural network and radical basis function neural network
are employed as references to tell the advantages of the DNN model used to predict the
vehicle states.

The rest of the study is organized as follows. In Section 2, an efficient semirecursive
multibody method is introduced to develop a vehicle model and collect the vehicle data
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for DNN modelling. A DNN model with multiple inputs and outputs for predicting the
lateral-longitudinal dynamics of an autonomous vehicle is developed. In Section 3, the
results of the DNN model are comprehensively investigated in accuracy and efficiency,
and the effectiveness of the DNN model is verified within the framework of a commercial
software CarSim. Finally, in Section 4, we conclude our work.

2. DNN-Based Modelling Methodology for Vehicle Dynamics
2.1. Vehicle Multibody Method for Data Acquisition

In this section, we used an efficient semirecursive multibody method to develop a
vehicle dynamics model. The equations of motion of the closed-loop vehicle systems can
be formulated in terms of independent relative (joint) coordinates. They can be expressed
as [31,32]:

RT
z RT

dMΣRdRzz̈i = RT
z RT

d

[
QΣ − TTM̄

d(TRdRz)

dt
żi
]

(1)

where, Rd and Rz denote the first and second velocity transformation matrices, which
describe the Cartesian velocities and accelerations by means of independent relative ve-
locities and accelerations. The superscript T denotes the transpose operation. M̄ denotes
the composite mass matrix of the multibody system. MΣ and QΣ contain the accumulated
generalized mass matrix and external forces, respectively. T denotes the path matrix, repre-
senting the system recursive connectivity. żi and z̈i contain the independent relative (joint)
velocities and accelerations, respectively.

This formulation is called the double-step semirecursive multibody formulation, which
was proposed by Javier García de Jalón and his coworkers [33,34]. Although Equation (1)
is more complicated than other multibody formulations, it uses a small set of independent
relative accelerations z̈i, which leads to higher computational efficiency. The ordinary
differential form of the equations of motion enables the stable simulation of vehicle systems
via various numerical integrators [35,36]. Low-order integrators are very suitable for
efficient vehicle simulations. However, the solution accuracy is unable to satisfy the
requirement as the numerical error accumulates over time. The Adams–Bashforth–Moulton
integrator and the 4th-order Runge–Kutta integrator are typical high-order integrators that
are often used in real-time simulations with longer simulation times.

The training and testing sets of vehicle dynamics data can be obtained in real time
based on the semirecursive multibody formulation. Thus, we aim to collect historical data
that include the torque applied on wheels, the vehicle’s initial speed, the longitudinal
driving distance, the lateral driving distance, the final longitudinal velocities, the final
lateral velocities, and the yaw angle to build a lateral-longitudinal dynamics model by
using a DNN approach. The capacity of the DNN modelling approach to capture the key
vehicle states is explored, and verified based on the results obtained from a commercial
software package CarSim. The data-driven vehicle model is developed offline via DNN
approach and used online for preview control in autonomous vehicles. The computational
burden of the data-driven model is much smaller than that of the vehicle multibody models,
e.g., ADAMS model, CarSim model, and semirecursive multibody model. Furthermore, the
data-driven model avoids the numerical integration process of vehicle multibody models,
and it leads to robust generation of the vehicle states.

2.2. DNN Structure of the Vehicle Dynamics

DNNs can learn and store relationships between the input and output neurons. Math-
ematical theory has proved that DNNs can approach any nonlinear continuous functions
with high precision. A general DNN framework is described in Figure 1.
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Figure 1. Deep neural network structure.

The DNN training process is composed of forward propagation of inputs and back-
propagation of errors. The input matrix, the weight matrices, and the bias matrices in
forward propagation are described as:

Z1 = (i1, i2, i3, · · · im) (2)

Wn = (wn1 , wn2 , wn3 , · · · wnm) (3)

Bn = (bn1 , bn2 , bn3 , · · · bnm) (4)

where, Z1 denotes the input matrix, Wn and Bn denote the weight matrix and bias matrix
of the n-th layer, respectively. m denotes the sample size in the training set, and n denotes
the number of hidden layers and input layer,

The forward propagation steps are expressed as:

Z1 = A1 (5)

Zi+1 = WT
i Ai + Bi, i = 1 . . . n (6)

Ai+1 = fi+1(Zi+1), i = 1 . . . n (7)

where, Zi and Ai denote the input and output of the i-th layer, respectively, and fi de-
notes the i-th activation function. Note that An+1 contains the results of the DNN model.
There are various types of activation functions to help the DNN model fit the linear and
nonlinear functions.

The mean square error (MSE) was selected as the loss function to measure the differ-
ences between the DNN results and sample results before backpropagation. By implement-
ing backpropagation, the weight matrices and bias matrices were updated to minimize
the loss function. In this study, L2 regularization was used to calculate the loss function
to avoid overfitting. The MSE, the L2 regularization, and the loss function are expressed
as [37]:

MSE =
‖Y−An+1‖2

2
2m

(8)

L2 =
λΣ‖Wn‖2

2
2m

(9)

e = MSE + L2 =
‖Y−An+1‖2

2 + λΣ‖Wn‖2
2

2m
(10)
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where, e denotes the network’s cost, Y denotes the value of samples, and λ denotes the
regularization coefficient.

The adaptive moment estimation optimization (Adam) algorithm was used in the
backpropagation process. It can be regarded as a combination of the root mean square
prop (RMSProp) algorithm and adaptive gradient (AdaGrad) algorithm [38]. The main
parameters of AdaGrad and RMSProp are expressed as:

vdwn = β1vdwn + (1− β1)dWn (11)

vdbn = β1vdbn + (1− β1)dBn (12)

sdwn = β2sdwn + (1− β2)dWn
2 (13)

sdbn = β2vdbn + (1− β2)dBn
2 (14)

where, dWn and dBn, respectively, denote the partial differential of the weight matrices
and the bias matrices with respect to the loss function. vdwn, vdbn, sdwn, and sdbn denote the
AdaGrad and RMSProp parameters in each training iteration for weight matrices and bias
matrices, respectively.

Because the moving exponential weighted average causes relatively large errors to the
initial value at the beginning of the iteration, the AdaGrad and RMSProp parameters were
updated by using the following expressions:

vc
dwn =

vdwn

1− βt
1

(15)

vc
dbn =

vbdn

1− βt
1

(16)

sc
dwn =

sdwn

1− βt
2

(17)

sc
dbn =

sdbn

1− βt
2

(18)

These parameters were corrected in each training iteration. The weight matrices and
bias matrices, in turn, were updated based on the Adam algorithm:

Wn = Wn − α
vc

dwn√
sc

dwn + ε
(19)

Bn = Bn − α
vc

dbn√
sc

dbn + ε
(20)

where, ε denotes a smoothing parameter. It equals 10−8 in this vehicle example. α denotes
the learning rate. It needs to be minutely updated in the DNN training process.

2.3. DNN Vehicle Model

In this section, we used the semirecursive multibody formulation described by Equation (1)
to obtain longitudinal-lateral dynamics datasets. The vehicle system consists of McPher-
son suspensions in the front axles, multilink suspensions in the rear axles, and Pacejka
tire models [36,39]. In dynamic simulations, vehicles move with different initial speeds
and front-wheel driving torques to imitate acceleration and deceleration situations. The
simulations last for 5 s. The steering angle is controlled to ensure the double-lane change
maneuver, as described in Figure 2.
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Figure 2. The driving track of the vehicle.

We obtained critical vehicle states by introducing 500 different initial speeds and
driving torques at defined steering angles. Those vehicle data, including the longitudi-
nal distance and speed, the lateral distance and speed, and the yaw angle, denote the
longitudinal-lateral dynamics of the autonomous vehicle. The range of the initial speed is
15 m/s to 45 m/s. The range of applied torque is −500 Nm to 500 Nm.

We randomly selected 500 samples and divided them into a training set with 450 sam-
ples and a testing set with 50 samples. The training and testing sets were used to train and
test the DNN model. Furthermore, the training data were processed to eliminate the incon-
venience caused by the magnitude of values. It can avoid small weight matrices, which
may cause numerical instability during the integration. We used Z–score standardization
to process the data, and the equation is described as:

x∗ =
x− µ

σ
(21)

where, x∗ represents the standardization value, x represents the value of the samples, µ
represents the mean of the samples, and σ represents the standard deviation of the samples.
The mean value and standard deviation of the processed data are 0 and 1, respectively.

There are two widely used methods to update the optimization parameters in DNNs.
The first is batch gradient descent method that calculates all samples [40]. Its computational
efficiency is low. The second is stochastic gradient descent method that computes the loss
function of each sample and finds the updated parameters [41]. Its computational efficiency
is high, but the convergence performance needs improvement. To overcome the drawbacks
of these two methods, the minibatch gradient descent method was used in this work. This
method divides the data into batches and updates the parameters in each batch. The data
in a batch determines the direction of this gradient. It will not vanish easily when falling
and will reduce the randomness. The batch size is set to 32 in this vehicle example.

By training the datasets, we built a DNN model to predict longitudinal-lateral dynam-
ics of the autonomous vehicle. The DNN model for vehicle longitudinal-lateral dynamics
is described in Figure 3.
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Figure 3. DNN model for vehicle dynamics.

The inputs of the DNN model include the initial speed and applied torque of the
vehicle, as described by v and M in Figure 3. The outputs include the longitudinal distance
and speed, the lateral distance and speed, and the yaw angle. They are described by sx,
vx, sy, vy, and z in Figure 3, respectively. The DNN model involves 4 hidden layers, and
each layer has 28, 24, 20, and 15 neurons. The activation functions are rectified linear unit
(ReLU) functions, which are expressed as:

f (x) = max(0, x) (22)

When the DNN training is completed, the testing set is used for model test and
verification. The MSE (loss function) of the dataset needs to be calculated. The DNN model
can be used for the prediction and preview control if the MSE is very small. The procedure
of DNN modelling for vehicle’s lateral-longitudinal dynamics is described in Figure 4.

Figure 4. The procedure of DNN modelling.
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3. DNN Model Results and Discussion
3.1. DNN Model Results

In this section, the DNN model of the vehicle was developed. The DNN results were
described and compared with the results of the multibody model. Figure 5 describes the
result differences between the DNN model and the multibody model. Note that only part
of the DNN results is shown in the figures for better visualization.
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Figure 5. The comparative results. (a) Final longitudinal distance; (b) Final lateral distance; (c) Final
longitudinal velocities; (d) Final lateral velocities; (e) Yaw angle.

We used box plots, described in Figures 6–10, to show the absolute percentage error
between the results of the multibody model and the DNN model. The elements in the
box plots generally include median, mean, upper quartile, lower quartile, upper limit, and
lower limit. They can be used to clearly depict the data dispersion and bias of the dataset.
They are not affected by outliers and can describe the discrete distribution of data in a
relatively stable way. Different initial speeds and driving torques in a wide range were
used to imitate various driving situations.



Sensors 2022, 22, 2013 9 of 16

- 5 0 0 - 3 0 0 - 1 0 0 1 0 0 3 0 0 5 0 0
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0

D r i v i n g  t o r q u e  ( N m )

Ab
sol

ute
 pe

rce
nta

ge 
err

or 
(%

)  2 5 % ~ 7 5 %
 M i n ~ M a x
 M e d i a n
 M e a n

1 5 2 0 2 5 3 0 3 5 4 0 4 5
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

I n i t i a l  s p e e d  ( m / s )

Ab
sol

ute
 pe

rce
nta

ge 
err

or 
(%

)

 2 5 % ~ 7 5 %
 M i n ~ M a x
 M e d i a n
 M e a n

(a) (b)

Figure 6. Box plots of absolute percentage error: final longitudinal distance. (a) Driving torque;
(b) Initial speed.
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Figure 7. Box plots of percentage absolute error: final lateral distance. (a) Driving torque; (b) Ini-
tial speed.
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Figure 8. Box plots of absolute percentage error: final longitudinal velocities. (a) Driving torque;
(b) Initial speed.
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Figure 9. Box plots of absolute percentage error: final lateral velocities. (a) Driving torque; (b) Ini-
tial speed.
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Figure 10. Box plots of absolute percentage error: yaw angle. (a) Driving torque; (b) Initial speed.

Two conclusions can be drawn based on the absolute percentage error analysis and
results comparison.

- The DNN results of the longitudinal distance and speed fit the multibody model
results well. The median, mean, and maximum absolute percentage errors are less
than 1%.

- The lateral distance and speed, and yaw angle predicted by the DNN model fit the
reference results (multibody model results) well. The median, mean, and maximum
absolute percentage errors are less than 3%.

3.2. Model Accuracy and Efficiency

In this section, the accuracy of the DNN model was evaluated quantifiably by error
functions. We also investigated its computational efficiency. The accuracy evaluation met-
rics include the mean absolute error (MAE), the mean absolute percentage error (MAPE),
the maximum absolute error (ME), the root mean square error (RMSE), and R2. R2 repre-
sents the coefficient of determination. It is a statistical indicator that can be used to reflect
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the regression model to illustrate the reliability of the variable change. These error functions
are described as:

ME = max
1≤i≤n

{|yi − ŷi|} (23)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (24)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (25)

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2

(26)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳi)

2 (27)

where, yi denotes the i-th value of the reference results, ŷi denotes the i-th value of the DNN
results, ȳi denotes the i-th mean value of the DNN results, and n denotes the number of
groups, which equals 7701 in this study. The five evaluation metrics were used to quantify
model accuracy. The smaller the first four metrics are, the more accurate the DNN model is.
However, for R2, if its value is closer to 1, the DNN model fits well.

The results of accuracy analysis are described in Table 1. It can be see from Table 1
that the MAE, MAPE, ME, and RMSE of the vehicle states are relatively small, while R2

is very close to 1. This indicates that the DNN model has high accuracy in predicting
longitudinal-lateral dynamics of the vehicle. Furthermore, the prediction of longitudinal
dynamics is slightly more accurate than the prediction of lateral dynamics.

Table 1. The accuracy of the DNN model.

Vehicle Responses ME (m, m/s, rad) MAE (m, m/s, rad) MAPE (%) RMSE (m, m/s, rad) R2

Longitudinal distance 0.6927 0.0628 0.0498 0.0799 0.9999
Lateral distance 0.1348 0.0019 2.0064 0.0039 0.9995
Longitudinal speed 0.3463 0.0218 0.0682 0.0317 0.9999
Lateral speed 0.0489 0.0004 2.1642 0.0012 0.9984
Yaw angle 0.0012 0.0001 2.5313 0.0001 0.9989

To better visualize the high accuracy of the proposed DNN modelling method, the
widely used backpropagation (BP) neural network and radical basis function (RBF) neural
network were used as references for comparison. The solution accuracy was investigated
in term of evaluation metrics, e.g., ME, MAE, MAPE, RSME, and R2. The comparative
results, taking yaw angle as an example, are described in Table 2. As presented in Table 2,
the ME, MAE, MAPE, RSME of the DNN method are smaller than those of the BP and RBF
methods, and R2 of the DNN method is much closer to 1. It can be concluded that the DNN
model is more accurate than the widely used BP and RBF models.

Table 2. The accuracy of different neural network methods (yaw angle).

Neural Network Methods ME (rad) MAE (rad) MAPE (%) RMSE (rad) R2

RBF 0.0084 0.0115 188.50 0.0015 0.1660
BP 0.0019 0.0002 3.58 0.0001 0.9961
DNN 0.0012 0.0001 2.53 0.0001 0.9989
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To investigate the computational efficiency of the DNN model, the CPU time of DNNs
with different numbers of hidden layers were compared. The simulation times of the
multibody model with different time-steps were measured for references. The results are
shown in detail in Table 3. Note that the CPU time is the average time of ten random
driving situations.

Table 3. CPU time of DNN and multibody models with different structures for 5 s dynamic simulation.

CPU Time (ms)
DNN Model with Different Hidden Layers Multibody Model with Different Time-Steps

4 3 2 1 ms 10 ms 100 ms

Longitudinal distance 1.006 0.998 1.006

3971 383 38.1
Lateral distance 1.003 1.003 0.996
Longitudinal speed 1.005 0.996 1.003
Lateral speed 1.009 0.992 1.000
Yaw angle 0.994 1.004 1.007

It is easy to observe in Table 3 that the CPU time for predicting longitudinal-lateral
dynamics is approximately 1 ms with 2, 3, and 4 hidden layers. The computational efficiency
is almost the same in these cases, which is very high and can be used for faster-than-real-
time simulation. The CPU times of the multibody model to run a 5 s dynamic simulation
are 3971 ms, 383 ms, and 38.1 ms, corresponding to the time-steps of 1 ms, 10 ms, and
100 ms, respectively. It can be seen that the DNN model is much faster than the multibody
model for predicting the vehicle states.

Furthermore, to investigate the effects of dataset size on the accuracy of DNN model,
different numbers of samples were used to train the DNN model. The MAPE was calcu-
lated to investigate how large the data size can predict the longitudinal-lateral dynamics
effectively. It can be seen from Table 4 that the MAPE is large when 300 or 400 samples
are used. It means that the DNN results are not very accurate. The maximum MAPE is
about 2.5% when 500 samples are used to train the DNN model. The DNN model accuracy
improves as the sample size increases. It can be concluded, for this vehicle example, that
the DNN model accuracy is satisfy once the sample size reaches 500.

Table 4. Comparison of different sample size (MAPE).

MAPE
The Number of Data Samples

300 400 500

Longitudinal distance 0.0640% 0.0399% 0.0498%
Lateral distance 14.9877% 6.8444% 2.0064%
Longitudinal speed 0.0829% 0.0514% 0.0682%
Lateral speed 4.8504% 4.3236% 2.1642%
Yaw angle 6.3860% 4.0779% 2.5313%

3.3. Model Verification and Discussion

In this section, the results obtained from the commercial software package CarSim
were used to verify the effectiveness of the DNN model. It is noteworthy that vehicle
simulations with the same parameters were performed in CarSim. Figures 11–13 describe
the comparative results when the −300 Nm and 300 Nm driving torques are imposed. The
detailed views in these figures show the maximum differences between the DNN results
and the CarSim results.
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Figure 11. Comparison of longitudinal distances. (a) 300 Nm driving torque; (b) −300 Nm driv-
ing torque.
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Figure 12. Comparison of lateral distances. (a) 300 Nm driving torque; (b) −300 Nm driving torque.
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Figure 13. Comparison of longitudinal velocities. (a) 300 Nm driving torque; (b) −300 Nm driv-
ing torque.

As presented in above figures, the predicted results via DNNs coincide with the
numerical results of the software package CarSim. The DNN results also are consistent
with the multibody model results. The driving situations imitate the vehicle’s decelerations
and accelerations during a double-lane change maneuver with a wide range of initial speeds.
As a result, the effectiveness of the DNN model to predict the vehicle’s longitudinal-lateral
dynamics was verified. The DNN model can be trained offline according to a large quantity
of vehicle data and used for the preview control in vehicles to improve the handling,
performance, and road safety. This DNN model is particularly very useful for the preview
control in autonomous vehicles for enhanced transportation safety. Note that the DNN
model was developed for a specific vehicle system. Useful DNN models of different vehicle
systems can be developed based on a similar modelling procedure.
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4. Conclusions

In this study, a DNN model to predict the longitudinal-lateral dynamics of an au-
tonomous vehicle was developed. A semirecursive multibody formulation was used to
capture the vehicle characteristics. An algorithm to obtain the data of longitudinal-lateral
dynamics and a DNN modelling approach were presented. It is significant that massive
parallel computations can be performed by using GPUs that are especially suitable for
the large volumes of data in autonomous vehicles. To verify the DNN model, the testing
data were randomly selected for accuracy evaluation. Error functions also were used
to quantifiably analyze the model accuracy. The computational efficiency and accuracy
were investigated for neural networks with different structures. Finally, the results from
a commercial software package CarSim were used to validate the proposed DNN model.
The results indicated that the DNN model can predict the vehicle’s lateral-longitudinal dy-
namics accurately and efficiently. The DNN model used for modelling lateral, longitudinal,
and vertical coupling dynamics will be investigated in the future. Overall, a DNN-based
methodology was presented to predict the vehicle’s lateral-longitudinal dynamics in real
time. It is suitable for the preview control of autonomous vehicles in complex environment
to enhance the transportation safety.
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