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ABSTRACT

The i-vector and Joint Factor Analysis (JFA) systems for text-

dependent speaker verification use sufficient statistics computed

from a speech utterance to estimate speaker models. These statis-

tics average the acoustic information over the utterance thereby

losing all the sequence information. In this paper, we study ex-

plicit content matching using Dynamic Time Warping (DTW) and

present the best achievable error rates for speaker-dependent and

speaker-independent content matching. For this purpose, a Deep

Neural Network/Hidden Markov Model Automatic Speech Recog-

nition (DNN/HMM ASR) system is used to extract content-related

posterior probabilities. This approach outperforms systems using

Gaussian mixture model posteriors by at least 50% Equal Error Rate

(EER) on the RSR2015 in content mismatch trials. DNN posteriors

are also used in i-vector and JFA systems, obtaining EERs as low as

0.02%.

Index Terms— Text-dependent speaker verification, DNN pos-

terior, Dynamic Time Warping

1. INTRODUCTION

Text-dependent speaker verification aims at recognizing a person by

matching voice characteristics and the message being spoken. As

opposed to text-independent speaker recognition, where the message

is unconstrained, both the speaker and the message must match to

verify the speaker identity for text-dependent verification. Impostors

can be divided into three categories, (i) the content does not match

(ii) the speaker does not match (iii) neither the speaker or the content

match.

Several approaches have been considered for text-dependent

speaker recognition in the literature. A Hierarchical Multi-Layer

Acoustic Model (HiLAM), using speaker-adapted Hidden Markov

Model (HMM), was explored in [1, 2]. The state-of-the-art text-

independent i-vector [3] approach has also been used, with the

session variability term in Probabilistic Linear Discriminant Anal-

ysis (PLDA) jointly modeling speaker-content variability. In the

same line, Joint Factor Analysis (JFA) [4] using speaker-content and

session terms has been shown to perform well. I-vector and JFA

approaches model content variability by pooling sufficient statistics,

but do not consider any sequence information related to content. Al-

ternatively, template matching techniques matching the speaker and

the content have been used [5, 6]. The advantage of these methods

is that factors such as speaking rate are normalized while scoring.

The model-based approaches mentioned earlier involve the com-

putation of posterior probabilities from the components of a Gaus-

sian Mixture Model (GMM), which is trained in an unsupervised

manner. Recent research suggests that such posteriors can be re-

placed by posterior probabilities estimated using a DNN [7]. The

DNN is trained discriminatively using frame labels obtained after

forced alignment of a HMM/GMM acoustic model. Since transcripts

are needed for forced alignment, the parameters of the DNN leading

to state posterior estimates are trained in a supervised fashion, in-

volving information unused in GMM training.

In this paper, we approach text-dependent speaker recognition

using DNN posteriors in i-vectors and JFA frameworks. We hypoth-

esize that using DNNs trained for Automatic Speech Recognition

(ASR) systems result in linguistically meaningful posterior proba-

bilities that allow to compare speaker characteristics in controlled

contexts. We also explore DNN posteriors in DTW based systems

showing that its efficiency for conditions detecting content mismatch

is relevant.

The paper is organized as follows: Sections 2 and 3 describes the

baseline system and the proposed DNN posterior approach respec-

tively. Section 4 describes the experimental setup for evaluating the

system and section 5 the results of the various system are discussed.

Finally, we conclude in section 6.

2. BASELINE SYSTEM

A standard i-vector PLDA system is used as the baseline in our ex-

periments [3, 8]. The i-vector system models a speech utterance as a

low dimensional vector whose subspace is spanned by the columns

of the total variability matrix, as

s = µ+Tw , (1)

where s is the mean supervector, µ is the mean supervector

of a Universal Background Model (UBM). The matrix T is a low

rank matrix projecting mean supervectors to obtain i-vectors w, a

low-dimensional representation of the audio recording. Undesirable

channel effects can be removed from the i-vector using Linear Dis-

criminant Analysis (LDA), whitening and length normalization, and

PLDA.

To estimate the i-vector given a speech recording, we first es-

timate the zeroth and normalized first order statistics with respect

to the UBM [9]. The zeroth order statistics are obtained by accu-

mulating Gaussian component posteriors over all speech frames in

an utterance. Similarly, the first order statistics accumulate the fea-

ture vectors per GMM component by weighting them with the cor-

responding posteriors.

Although i-vectors average out the time-varying content of an

utterance, some studies suggest that the framework can still be rele-

vant to text-dependent speaker recognition [1]. For short utterances,



as used in text-dependent speaker recognition, i-vector systems still

provide speaker-discriminative scores.

Joint Factor Analysis (JFA) is used for text-dependent speaker

recognition by explicitly modeling the content variability as a sep-

arate factor [10, 11]. Although, sequence information is still not

modeled in this approach, recent developments suggest that state-of-

the-art performance can be achieved. The JFA model,

s = µ+Dz+Ux , (2)

includes a diagonal term Dz, with D being a diagonal matrix cap-

turing the speaker variabilities, z, the corresponding latent vector

representing a speaker, U, the eigenchannel matrix and x, the corre-

sponding latent vector representing the channel effects for a speech

recording. Since Dz is trained using speaker-phrase sufficient statis-

tics, z is said to capture the joint speaker-content information effec-

tively thereby rendering the model more suitable for text-dependent

speaker verification. As channel effects are modelled by Ux, there

is no need for a back-end model like PLDA in this case. In this pa-

per, we use maximum-likelihood (ML) estimation algorithm [12] to

obtain D and U. We use the Gauss-Seidel approach [13, 14], maxi-

mizing the likelihood to obtain estimates of z and x.

3. POSTERIORS FOR SPEAKER VERIFICATION

The posterior probabilities computed while estimating an i-vector

or JFA factors assume feature vectors to be generated by a GMM.

In the past, several studies have suggested that integrating linguis-

tic information into speaker recognition systems can be useful [7,

15, 16, 17, 18]. In HMM/DNN automatic speech recognition [7],

state posterior probabilities are obtained after ASR decoding. These

are used to compute zeroth and first order statistics using the actual

feature vectors of an utterance. This approach obtained significant

improvements over a baseline i-vector-PLDA system. This suggests

that i-vectors benefit from the acoustic space being partitioned by

well-defined linguistic units. Clearly, this is difficult to achieve us-

ing unsupervised training, as used for GMM-UBM estimation.

After the successful integration of DNN posteriors into an i-

vector PLDA text-independent system, we explored its application

to text-dependent systems. Indeed, the very same approach can be

readily applied to JFA systems as well.

3.1. HMM/DNN ASR system

In Automatic Speech Recognition (ASR), the acoustic models are

context-dependent tied states [19], obtained using a decision tree

based on contextual and data-driven criteria. A HMM/GMM system

typically obtains the optimal state alignment for the training data,

used to extract state labels for DNN training. The DNN using a final

softmax layer aims at estimating the posterior probabilities of such

tied states from a splice of input features. Given the large number of

DNN outputs, in the thousands, the estimated posterior vectors tend

to be sparse. A major drawback of training such a DNN is the need

for a large amount of transcribed data. On the other side, posteriors

for linguistic units are obtained.

For text-dependent speaker recognition, we believe state poste-

riors are particularly useful to capture the content variability. These

are estimated using a supervised and discriminative procedure, ren-

dering them more reliable than GMM posteriors, obtained fully in

an unsupervised way.

In this paper, we use the state posterior probabilities from a DNN

to estimate the zeroth and first order statistics for i-vector and JFA

systems. In particular, the Baum-Welch statistics required to itera-

tively compute z and x use DNN posteriors. We also test the ef-

fectiveness of using these posteriors in a template matching system

that uses Dynamic Time Warping (DTW), thereby modeling the se-

quence information. The details of the system architectures are pro-

vided next.

3.2. I-vector system from DNN posteriors

Using DNN posteriors in the i-vector system involves discarding the

GMM-UBM entirely. However, the bias term (µ) in Equation 1 still

needs to be estimated. This can be easily achieved by combining

the posteriors and the corresponding feature vectors as follows: first,

the components of the GMM-UBM are replaced by the states of the

DNN. The mean (µ
c
) and the covariance matrix (Σc) of state c of

the acoustic model are obtained from a development dataset. These

parameters are obtained using the update equations for Expectation-

Maximization of GMM from the raw features. This set of means and

covariances serve as normalization factors in computing the zeroth

and the first order statistics for i-vector extraction. The rest of the

hyperparameter estimation process remains the same as in the con-

ventional method, except that the posteriors are always computed

using the DNN.

In this paper, we adapted this technique to the JFA (in Equation

2) as well. Once again, instead of using the traditional UBM, we use

the mean and covariance parameters estimated from the posteriors

from the DNN-ASR system. As the z-vector is shown to model

speaker-phrase information, we expect the model to fully exploit the

linguistic information supplied by the ASR system.

3.3. Template matching with posteriors

In the case of the DNN-based i-vector system, the sequence infor-

mation provided by the DNN is not modeled. As a result, the text

constraints imposed on the speaker are not fully exploited. In this

work, we use the Dynamic Time Warping (DTW) algorithm as a

scoring method, i.e. computing distances between target and test

speaker utterances.

The DTW algorithm takes two sequences as input and matches

their content by finding the path with the smallest alignment between

them. For DTW to be used for text-dependent speaker recognition,

it is sufficient that the algorithm is able to detect (i) different content

being uttered by the same speakers (ii) different speakers speaking

the same content. Most importantly, a template matching algorithm

provides good benchmarks to ideal performance of the system when

some information about the text-constraint can be assumed. For in-

stance, in the case of speaker verification where it can be assumed

that the speaker is the same but the content need not be, which is

essentially speaker-dependent content matching, DTW has to just

match the content. In such cases, sequence matching methods such

as the DTW can be expected to perform the best.

In this paper, we use the posterior sequences obtained from the

DNN for template matching. We hypothesize that such a system

performs best for tasks on which content mismatch is treated as an

impostor for speaker verification.

DTW-based template matching with DNN is performed as fol-

lows. Assume that an utterance contains M frames of speech. The

DNN outputs a posterior vector for a multi-frame around each time

instant. Each element in the posterior vector is the posterior prob-

ability of the state given the observations. The sequence of speech

frames are represented by O = {o1, · · · , oM}, where oi is the ith

speech frame. The corresponding sequence of posterior vectors is



P = {p1,p2, · · · ,pM}. In the literature, P represented as a matrix

with pm as columns is referred to as posteriograms. To compare

two such sequences of posteriors the DTW algorithm minimizes the

overall Kullback-Leibler (KL) divergence cost, taken as the distance

between two sequences. Such an approach using only DNN posteri-

ors can be expected to perform well when the content information is

the same from train to test.

4. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for the baseline

and the proposed systems, and the system configuration of the i-

vector-PLDA system, JFA system and the HMM-DNN ASR system.

4.1. Evaluation data

The experiments are conducted on the RSR2015 database, which

is designed specifically for text dependent speaker verification task.

The experiments are performed only on the female speaker set of the

Part1 of the database. The Part1 consists of 30 fixed pass phrases and

the duration of the utterances varies from 3s to 4s. The enrollment

condition consists of 49 female speakers and 3 samples for each of

the 30 phrases. The speaker verification systems are evaluated in

three conditions. In condition 1, each trial is associated in determin-

ing if the phrases are the same or different. In condition 2, the system

is required to differentiate speakers saying the same content. In con-

dition 3, both the speaker and the phrase can be different. There are a

total of 47 target speakers over the 30 different phrases. The dataset

also contains a development set with 49 female speakers that can be

used to train or adapt hyperparameters of the systems. All speech

files are downsampled to 8kHz for compatibility with other datasets

used for system development.

4.2. i-vector-PLDA and JFA system configurations

MFCC features with 20 dimensions are extracted from the speech

signal along with delta and acceleration parameters. Short time gaus-

sianization is applied to the features using a 3 sec sliding window

[20]. A subset of Fisher database (approximately 120 hours) of

female speech utterance is used to train the parameters of a 1024

mixture UBM and i-vector system (T) of 400 dimensions. To train

the PLDA model, the development data for Part1 of the RSR2015

database is used.

To train the JFA system only the development data from the

RSR2015 dataset is used as it is necessary to have multiple sessions

of speaker-phrase combinations. The UBM is obtained by adpating

the UBM trained on Fisher dataset [21]. The eigenchannel matrix

was trained with rank 50. The trails are evaluated by a simple cosine

distance scoring. Unlike in [11], in which the JFA systems are eval-

uated in only the Condition 2, we test our systems on all conditions.

4.3. DNN system

The HMM/DNN system is bootstrapped with alignments from

a HMM/GMM based ASR system trained on context dependent

phoneme units. The ASR systems have 1909 tied states. The DNN

is configured with 4 hidden layers trained on MFCCs with a 11-

frame context. The entire training is done on the subset of the Fisher

corpus as mentioned earlier. The Word Error Rate (WER) of the

ASR system is 24.7% when tested on a separate subset of the Fisher

coprus with 720 utterances. Unlike the state-of-the-art approaches,

the speaker independent DNN is trained. That is, techniques such

Table 1: Performance of all the systems on the RSR2015 database in

terms of EER(%). The overall EER refers to the system performance

across all the 3 conditions.

Systems/Conditions #1 #2 #3 Overall

EER

Baseline systems

i-vector PLDA 1.2 3.0 0.3 0.9

JFA 1.6 2.3 0.5 0.8

GMM-posteriors with DTW 0.5 7.2 0.2 1.7

Proposed systems

DNN-ivector PLDA 0.8 2.5 0.2 0.7

DNN-JFA 0.1 1.0 0.02 0.24

DNN-posteriors with DTW 0.1 8.4 0.1 2.0

as Feature space Maximum Likelihood Linear Regression (fMLLR)

are not used because of limited adaptation data for speakers in the

evaluation dataset.

The posteriors for the proposed systems are obtained at the out-

put of a forward-pass on the DNN. For the i-vector and JFA systems,

each posterior vector is processed to obtain the top 10 scoring states.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

Six systems are evaluated and compared on the conditions men-

tioned in Section 4.1:

• i-vector PLDA: the conventional i-vector-PLDA system for

speaker recognition. This system is used as our baseline.

• DNN-ivector PLDA: the i-vector PLDA system that uses

posteriors obtained from HMM/DNN ASR.

• GMM-posteriors with DTW: Posteriograms obtained from

the UBM-GMM are compared using the DTW algorithm in

this system.

• DNN-posteriors with DTW: This system uses Posteri-

ograms obtained from the HMM/DNN ASR and compares

two sequences usin the DTW algorithm.

• JFA: This system is an alternative baseline to the i-vector

PLDA. It models speakers as given by Equation 2.

• DNN-posteriors with JFA: This system uses posteriors from

the ASR system instead of the conventional UBM-GMM

models.

Table 1 compares the performances of all above-mentioned sys-

tems across all 3 conditions in terms of Equal Error Rate (EER). The

performances on the combined condition are also presented as the

”Overall EER”. EER for the model-based baselines, namely the i-

vector PLDA and the JFA system, are comparable (better in most

conditions) to those found in the literature. The baseline for the

DTW based template matching system uses the posteriors obtained

from the GMM-UBM system, both for i-vector PLDA and JFA. In

conditions 1 and 3, the GMM-DTW system is better compared to

other two baselines as it explicitly matches the content. Its perfor-

mance serve as a good benchmark for those conditions. In all three

conditions, the JFA system outperforms the i-vector PLDA system.

This validates the assumption that low rank eigenvoice modelling in

JFA (V matrix in [22]), which is similar to Equation 1, does not



capture the content information as well as the model in Equation 2.

Among the baseline systems, the JFA system provides the best over-

all performance. Therefore, in the following text unless mentioned

we compare the overall EER only with the JFA baseline.

Incorporating DNN posteriors from HMM/DNN into the i-

vector-PLDA and JFA systems leads to consistent improvements.

For the DNN-i-vector-PLDA, the overall EER improves by 12% rel-

ative (0.7% vs. 0.8%). Improvements observed with the DNN-JFA

system are far superior to all other gains achieved. The DNN-JFA

system outperforms the baseline by 70% relative EER (0.24% vs.

0.8%) and is the best system among the proposed in all conditions.

Thus, the combination of using a speaker-content model (Equation

2) along with leveraging linguistic information system is highly

essential for accurate text-dependent speaker verification.

On conditions 1 and 3, the DTW based approaches are amongst

the best ranked systems. For these conditions, train and test contents

are different, the DTW algorithm is sufficient to discriminate im-

postor from target speakers. However, this can not be applied to all

conditions, condition 2 in particular. The use of DNN-based posteri-

ors once again helps improve the system to detect content mismatch

with relative improvements of 80% (0.1% vs. 0.5%) and 50% (0.1%

vs. 0.2%) EER on conditions 1 and 3, respectively.

In general, the use of a DNN system for extracting posteriors is

observed to be useful. The gains obtained by incorporating the DNN

in the two different speaker recognition frameworks supports the hy-

pothesis that exploiting content information is essential to achieve

high recognition accuracies.

6. CONCLUSIONS

The problem of text-dependent speaker verification was addressed.

Three different systems were considered, namely the i-vector PLDA

system, the JFA system and a simple DTW-based template matching

system. In general, the JFA system performed better with the best

overall EER of 0.8% among the three systems. As the model based

approaches do not use the sequence information explicitly, the DTW-

based approach performed better in conditions that required content

mismatch detection. A DNN/HMM based ASR system was incorpo-

rated into the baseline systems to make better use of the content in-

formation. Significant performance gains are obtained in the model

based approaches with the best EER of 0.24% with the DNN-JFA

system. Thus, utilising sequence information obtained from ASR

systems can be beneficial for text-dependent speaker verification.
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