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ABSTRACT This paper presents a novel vision based approach for detecting rows of crop in paddy field.

The precise detection of crop row enables a farm-tractor to autonomously navigate the field for successful

inter-row weeding. While prior works on crop row detection rely primarily on various image based features,

a deep neural network based approach for learning semantic graphics to directly extract the crop rows from

an input image is used in this work. A deep convolutional encoder decoder network is trained to detect the

crop lines using semantic graphics. The detected crop lines are then used to derive control signal for steering

the tractor autonomously in the field. The results demonstrate that the proposed method is able to detect the

rows of paddy accurately and enable the tractor to navigate autonomously along the crop rows even with a

simple proportional only controller.

INDEX TERMS Convolutional encoder-decoder network, crop line detection, semantic graphics, vision

based control.

I. INTRODUCTION

The increase in global population has led to an increase in

the demand of agricultural food products to feed them. With

limited availability of resources, ramping up food produc-

tion to meet the ever-increasing demand is a challenging

task. Researchers, engineers and farmers have come up with

several ingenious solutions like better farming techniques,

precision farming, farm automation etc. to overcome these

challenges. Farming and most of the associated tasks are

highly labor-intensive. Though human population has been

increasing there has been a constant decline in the share

of labor force working in agriculture [1] due to the labor-

intensive and repetitive nature of the work.While much of the

agricultural tasks have already been mechanized resulting in

reduced human labor, researchers have been working towards

reducing the reliance on human labor with automation and

keeping it to minimal.

With the advancement in robotics, robots have been widely

used in the farm and have been crucial in improving crop
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productivity and reducing human labor. Farm automation

with robots is a promising area that has the potential to

overcome the challenges facing agriculture while keeping

human involvement to minimal. Accurate machine guidance

is one of the crucial factors determining the success of

autonomous farm robots.

The recent advancements in deep neural networks (DNNs)

have made profound impact in different areas like

autonomous navigation [2], computer-assisted diagnosis [3],

[4], speech recognition [5] etc. DNNs have also emerged as

a promising technique with potential to take automation in

agriculture to the next level. DNNs have been used exten-

sively to automate different agricultural tasks such as plant

recognition [6], crop type classification [7], plant disease

classification [8], weed identification [9], [10] and land cover

classification [7], [11] etc. The semi-constrained nature of

agricultural farm makes it comparatively easier for the adop-

tion of DNN, however it has its own challenges. The similar

shape, texture and color of crops and weeds makes it difficult

for the DNN system to discriminate them properly, resulting

in reduced classification accuracy. There is severe overlap

between the crops and weeds in the field which results in
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occlusion. Occlusion is a challenging phenomenon for vision

based system which leads to reduced performance.

In this paper we propose to use a DNN based system

for detecting the rows of crop in row-transplanted paddy

field using semantic graphics, and demonstrate that the

detected crop rows can be used to guide a tractor to navigate

autonomously in the field.

II. RELATED RESEARCH

Recently, autonomous agricultural robots have been widely

adopted to increase crop productivity and improve labor

efficiency. Navigation systems are a crucial part of such

autonomous robots. Different solutions to the navigation

problem are discussed in the literature, however computer

vision based systems are more popular due to low cost, easy

handling and wide availability of vision based sensors. Accu-

rate crop row detection to guide the robot is one of the most

important problems for computer vision based navigation of

agricultural robots.

Previous works on detecting crop rows using vision based

system primarily detect the position of the crops using dif-

ferent handcrafted features. Sogaard and Olsen [12] com-

puted an indicator for living plant tissue by utilizing the

color channels of a RGB image and estimated the center

line of crops from the distribution of the living tissue indi-

cator. Bakker et al. [13] used the living tissue indicator and

Hough transform to extract straight line representing the rows

of crops. Montalvo et al. [14] proposed to use vegetation

index derived from the RGB channels to segment the image.

Prior knowledge about the arrangement of crops like the

number of rows, expected location of each crop row and

approximate region of interest were utilized to extract the

crop lines using linear regression. Choi et al. [15] utilized

morphological characteristic of leaves converging towards

the direction of central stem to estimate the central region

of rice plant, and used Hough transform and regression to

extract the crop line. Jiang et al. [16] used living tissue

index to segment the image and extracted feature points from

the binary image using a sliding window approach. Hough

transform was then used to extract the candidate crop lines

and vanishing point was utilized to remove the false crop

lines.

Methods based on manual features work well under con-

trolled conditions, however they can fail to work in real farm

conditions. Methods based on color index can only work

well in the absence of inter-row weed as the vegetation index

or living tissue index of weeds is similar to that of crop.

The presence of weeds and challenging natural conditions

like shades or light reflection affects the extraction of binary

morphological features, which ultimately leads to inaccu-

rate crop line extraction. Guerrero et al. [17] recognized the

difficulty in discrimination of crops and weeds by applying

image segmentation techniques based on the RGB spectral

components and utilized geometric constraints to locate crop

rows with increased accuracy.

FIGURE 1. Convolutional encoder-decoder network based detection of
crop lines using semantic graphics.

Recent advancements in neural network have shown that

features learned automatically by convolutional neural net-

works are more robust and efficient than hand-engineered

features. Methods based on CNNs have produced state-

of-the-art results in different computer vision and pattern

recognition problems like object detection and classification,

and semantic segmentation [18]–[20]. While [21], [22] used

CNN-based semantic segmentation to discriminate crops,

weeds and background, the actual lines of crop are not

extracted. In our previous work we presented that CNN can

directly be trained to learn the concept of a crop line using

‘‘semantic graphics’’ [23], as shown in Fig. 1.

In this current work we extend the concept of learning

semantic graphics to extract crop rows and use the rows to

guide a farm tractor autonomously in a paddy field.

III. PROPOSED METHOD

In this work we take the use case of autonomous navigation

of tractor in row transplanted paddy field. The successful

navigation of the tractor is achieved in three steps. First a con-

volutional encoder-decoder network is trained using semantic

graphics to detect the rows of crop. The position of the tractor

wheel relative to the detected rows of paddy is then extracted

using template matching. Finally, the relative positions are

used to compute the steering angle and a simple proportionate

control algorithm is used to drive the tractor autonomously to

follow the rows without damaging the crop.

A. CROP ROW DETECTION USING SEMANTIC GRAPHIC

Semantic graphic [23] is a process of annotating an image

with simple graphical sketch for easy learning by neural

network. The concept of semantic graphic was introduced

to simplify the annotation of images and make it less labor

intensive than semantic segmentation for complex scenes.

However, semantic graphics is different from semantic seg-

mentation as it strives to annotate higher order concepts rather

than semantic regions. Pixels belonging to the same semantic

region can be assigned a different target category in semantic

graphic. An example of annotating the rows of crops using

semantic graphics is shown in Fig. 2.

Given an image of paddy field, the rows of paddy are anno-

tated with few-pixel thick lines. The line does not necessarily

cover the whole width of the row; however, it captures the

human understanding about the row of crop. A convolutional

encoder-decoder network is then trained to learn a mapping

from the image to the crop lines, as shown in Fig. 1.
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FIGURE 2. Semantic graphic annotation of paddy lines.

FIGURE 3. (a) The experimental farm tractor with the camera mounted
directly above the left wheel, (b) Field of view of the camera mounted on
the tractor. A template is manually extracted from a reference image and
compared against the test image by sliding it over the test image RoI to
identify the matching area using normalized cross-correlation.

B. ROBOTIC PLATFORM AND CONTROL

An autonomous farm tractor, shown in Fig. 3, is used as an

experimental platform for this study. The tractor consists of

an onboard computer where the trained neural network model

is loaded for inference and other auxiliary processing is done.

A front facing camera is mounted above the left wheel of the

tractor, where the field of view includes a portion of the wheel

cover at the base of the image, as shown in Fig.3 (b).

1) WHEEL POSITION DETERMINATION

The placement of the camera and the presence of wheel cover

with contrasting color allows us to use a simple template

matching algorithm to determine the position of the wheel in

the image. A portion of the wheel cover, as shown in Fig-

ure 3(b), is pre-stored in the system as a template and its

location in the input image is found using normalized cross

FIGURE 4. (a) Field of view of the camera mounted on the tractor, (b) the
crop rows detected using the convolutional encoder-decoder network,
(c) detected crop rows overlaid in the source image, (d) yellow line is the
detected center line of the wheel, the blue and green lines are the
extracted left and right crop rows of the host row, respectively.

TABLE 1. Sliding window algorithm for paddy line extraction.

correlation, given as

R(x, y) =

∑

x ′,y′

(

T (x ′, y′) · I (x + x ′, y+ y′)
)

√

∑

x ′,y′ T (x
′, y′)2 ·

∑

x ′,y′ I (x + x ′, y+ y′)2
(1)

where, T denotes the template, and I the test image. R(x,y)

is computed at each pixel position and indicates the degree

of similarity of the test patch with the template. The pixel

position with the highest coefficient gives an estimate of the

position of the wheel. As the camera is fixed to the tractor,

the RoI for template matching is restricted to the lower part

of the image to reduce computation time.

2) HOST ROW DETECTION

The encoder-decoder network outputs semantic lines for

every visible row of paddy, as shown in Fig. 4. However,

for practical purpose it is enough to detect only the host

rows of paddy that lie on either side of the wheel, as shown

in Fig. 4(d), to guide the tractor along the rows.

The search area is restricted to the lower half of the image

to find an initial estimate of the starting points of the two

host rows. A histogram of the detected paddy line is then

computed, and the maxima of the histogram on the left half

and the right half of the image gives the initial estimate of

the starting position of the two rows. Starting from these
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FIGURE 5. (a) The RoI is restricted to lower half of the image to compute
the starting points, (b) Histogram of paddy line pixels is computed and
two maxima, one on each side from the center column gives the starting
point for two host rows, (c) Starting from the base of the image, sliding
window algorithm is used to find pixels belonging to the corresponding
paddy line, (d) Straight lines are fit to the corresponding paddy pixels to
extract the two host rows.

two initial positions, a sliding window algorithm (window

width: 20 pixels, height: image_height/6 pixels) is employed

to extract the rows of paddy. The details of the sliding window

algorithm are given in Table 1.

Due to the wide wheel cover of the tractor the nearby

paddy plants, i.e. plants appearing near base of the image,

are temporarily pushed outwards from their position. This

leads to incorrect alignment of the detected lines. To avoid

any errors that may be introduced by this phenomenon, the

pixels_within_window (pww) of the initial window at the base

of the image are not used for the fitting the final straight line.

Moreover, as the long-range information of paddy row is not

utilized for controlling the tractor, pww at the top of the image

are also excluded for computing the line. The overall process

of finding the two paddy rows to guide the tractor is presented

in Fig. 5.

3) GUIDANCE OF TRACTOR

Once the position of the wheel and the two host rows at either

side are determined, their relative positions are used to gener-

ate steering commands for the tractor to move autonomously

between the rows. In this work a simple proportional control

strategy is used to generate the steering commands for the

tractor. As the current wheel center point pwhl needs to follow

pmid , the actual center point of the crop row, the control signal

c uses a position control method that is proportional to the

position difference between pwhl and pmid . Therefore,

c = α (pmid − pwhl) (2)

where α is the control parameter. pmid is computed from the

position of the detected left (pL) and right (pR) rows,

pmid = (pR + pL)
/

2 (3)

From equation (1) and (2),

c = α (dR − dL) (4)

where, dR = pR − pwhl and dL = pwhl − pL are distances

from the right and left crop row to the center of the wheel,

respectively, as shown in Fig. 6. dR and dL are computed using

the pixel distance in the image from the center of the wheel

to the left and right crop rows, respectively.

FIGURE 6. The proportionate control signal is derived from the relative
position of the tractor wheel from the right and left host rows of paddy.

FIGURE 7. (a) ESNet: Extended Skip Net [23] for learning semantic
graphics, (b) Extended Skip module consists of multi-scale convolutions
to capture features at different scales.

IV. EXPERIMENTS AND RESULTS

A. DATASET AND NETWORK

The paddy line dataset [23] was used to train the neu-

ral network for detecting paddy lines. The dataset consists

of 350 images of row transplanted paddy field captured

while walking in between the rows of the crop. The rows

of paddy were annotated with few-pixels thick ‘‘semantic

lines’’ as shown in Figure 2. The images were down sampled

to 600 × 600 pixels and augmented using random rotation

and vertical mirroring. Finally, random crops of 512 × 512

were used as input to the neural network. The extended

skip network was adopted in this study due to its superior

performance in detecting paddy lines over other networks

as demonstrated in [23]. The detailed network is reproduced

in Fig. 7 for ready reference.

The network was trained from scratch on the whole paddy-

line dataset using cross-entropy loss. Xavier initializationwas
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FIGURE 8. Distribution of pixel deviations (a) overall pixel deviation (pd),
(b) pd for near field (lower 4 th of the image).

used for initializing and the network was trained on batch

size of 5 using Adam with exponential decaying learning

rate for 100 epochs. Class frequency based weighting was

used to mitigate the class imbalance between the paddy-

line and background classes. The network was trained with

Tensorflow using Titan X GPU.

B. EVALUATION METRIC

The performance of the trained model was evaluated on the

real field data by evaluating the mean pixel deviation (mpd)

of the extracted host rows from the ground truth. If (xp, y) is

a point on the predicted line and (xg, y) is its corresponding

point on the ground truth line, the row wise pixel deviation

(pd) and mpd are computed as,

pd =

∣

∣xp − xg
∣

∣ , (5)

and

mpd =
1

N

N
∑

i=1

(pd)i (6)

respectively, where N is the total number of row pixels con-

sidered in the test set.

C. RESULTS ON FIELD DATA

The weights of the trained network were stored in an indus-

trial automation computer (Intel CoreTM i7 2.5GHz (Four

cores), 32 bit, 4GB RAM) onboard the farm tractor. The

RoI of the image captured by the camera mounted on the

tractor was reduced, and an image of size 256 × 192 was

used for implementing the vision based control system. The

overall experiment was conducted for a single lap (45m) of

the tractor in an experimental row transplanted paddy field

where the inter-row distance is 30cm and separation between

plants in a row is 20 cm. In this study only the near field

measurement of the line was taken to compute dR and dL .

The mpd for near field (i.e., the lower 1/4th of the image near

the tractor) is 6.889 pixels which is equivalent to an average

error 2.2 cm in real world. The mpd computed over the entire

length of the row is 5.137 pixels. The overall and near field

only distribution of pixel deviations are presented in Fig. 8(a)

and Fig. 8(b), respectively. Some qualitative results of the

detected paddy lines are presented in Fig. 9.

The dR and dL values were computed for each frame and

fed as control signals to another onboard industrial automa-

tion computer. The machine control and monitoring system

FIGURE 9. Qualitative results of paddy line detection for a section of the
test field. The bold thick red lines are the binarized outputs of the neural
network representing the rows of paddy, blue and green lines are the
extracted left and right guidance lines, respectively, and the yellow line
represents the position of the tractor wheel. The angle and pixel distance
are also indicated near the respective guidance lines.

FIGURE 10. a) The computed left and right distance dR and dL and (b) the
steering angles at different positions for a single lap of 45m in the test
field.

FIGURE 11. Failure of the template matching algorithm to correctly
determine the position of the wheel can lead to incorrect row following.
Continuous error in wheel position determination can lead to row
jumping by the tractor and damage to crops.

was implemented in this computer using LabVIEW. dR and

dL values were computed using the pixel distance measured

in the row shown in Fig. 6. The dR and dL values computed

while the tractor moved autonomously by following the rows

of paddy detected using the neural network for a lap in the

field are shown Fig. 10(a). The corresponding control signal

applied when the tractor traversed 45m in the field is shown

in Figure 10(b).

Whenever the tractor is biased towards either the left or

the right side of the row, a control in the opposite direction

is applied and the direction of the tractor is corrected. The

images in Fig. 9 correspond a section of the field marked by

the box in Fig. 10.

V. DISCUSSION

The color based simple template matching system to deter-

mine the position of wheel is prone to errors. A wrong

estimation of the wheel position results in wrong control

signals being sent to the tractor, which may lead to the tractor

not following the host rows and possibly jump to another

row. Example of a sequence where the template matching

algorithm failed to determine the correct position of the wheel

is presented in Fig. 11.

From Fig. 11 we see that after two successive failures in

detecting the correct position of the wheel at n31 and n32,
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the tractor is at the verge of jumping the correct host row

at n33. However, at this moment (n33) the correct wheel

position is determined, and a large control signal is applied

in the opposite direction, shown in Figure 10(b), to restore

the trajectory of the wheel, as seen in n34.

Temporal tracking of the template can be employed to

reduce jitters in wheel position estimation and enhance the

accuracy of the system. Wheel encoders can be incorporated

in the tractor to measure the actual turning angle of the wheel

and make the system more robust. The ability of the tractor to

navigate the field by following the rows depends mainly on

the accurate detection of the crop rows. The current system

in trained on a limited dataset of 350 images, which does

not cover the different scenarios that can occur in a field.

However, the proposed system is robust to shadows, field of

view, row spacing and age of the crop as long as the rows are

distinguishable. Training the network on a larger dataset is

expected to significantly increase the accuracy and robustness

of the system. Temporal tracking of the detected paddy lines

is further expected to increase the quality of line detection.

The current system uses data from a single camera placed

over the left wheel. The control of the tractor can also be

improved by detecting the host rows of another wheel by

using an additional camera over the right wheel. Unlike the

simple proportionate only controller used in this study, amore

complex PID controller or a neural network based controller

can mitigate the oscillations observed in Fig. 10 (b) and

smoothen the trajectory of the tractor.

The current CPU based onboard system is limited in com-

putation. Due to the multiple convolution operations involved

in the encoder-decoder network, the paddy line detection

system runs at 0.5 frames per second. Due to the low frame

rate, the speed for autonomous navigation of tractor is also set

at a low of 0.5 m/s. The current processing time and tractor

speed are compatible and practical for our experiments using

a proportionate only controller in a swampy rice field. How-

ever, any additional improvement as mentioned above needs

additional computation power. Considerably fast inference

time can be expected if the inference is carried out in an

embeddedAI computing device. From our preliminary exper-

iments, it was observed that the current system can run at 5 fps

by replacing the onboard industrial computer implementing

the line-detection sub-system with the NVIDIA Jetson TX2.

VI. CONCLUSION

A deep neural network based system for autonomous naviga-

tion of tractor in row transplanted paddy field was presented

in this study. A deep convolutional neural network was used

to learn the concept of rows of paddy using semantic graphic.

The detected rows were then used to derive control signal

for autonomous navigation of a tractor in between the crop

rows. Successful autonomous navigation of the tractor for

a single lap of the test field was demonstrated using a sim-

ple proportional only controller. Agricultural robots that can

navigate autonomously in the field will have an enormous

social and economic impact with wide ranging applications

like autonomous weeding, precision spraying of nutrients,

pesticides, herbicides etc. Autonomous farm systems can

substantially reduce the drudgery of farmers while increasing

the efficiency, productivity and quality of crops.
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