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The (S)-adenosyl-L-methionine (SAM)-dependent methyltransferases play essential roles

in post-translational modifications (PTMs) and other miscellaneous biological processes,

and are implicated in the pathogenesis of various genetic disorders and cancers.

Increasing efforts have been committed toward discovering novel PTM inhibitors

targeting the (S)-Adenosyl-L-methionine (SAM)-binding site and the substrate-binding

site of methyltransferases, among which virtual screening (VS) and structure-based drug

design (SBDD) are the most frequently used strategies. Here, we report the development

of a target-specific scoring model for compound VS, which predict the likelihood

of the compound being a potential inhibitor for the SAM-binding pocket of a given

methyltransferase. Protein-ligand interaction characterized by Fingerprinting Triplets of

Interaction Pseudoatoms was used as the input feature, and a binary classifier based

on deep neural networks is trained to build the scoring model. This model enhances

the efficiency of the existing strategies used for discovering novel chemical modulators

of methyltransferase, which is crucial for understanding and exploring the complexity of

epigenetic target space.

Keywords: deep neural network, virtual screening, methyltransferase, epigenetic, drug design

INTRODUCTION

Methyltransferases (MTases) are a class of enzymes that transfer methyl groups to the substrates
including DNA, proteins and small molecules (Zhang and Zheng, 2016). Based on different
substrates, MTases can be divided into three classes: DNA methyltransferases (DNMTs) (Da Costa
et al., 2017), protein methyltransferases (PMTs) (Boriack-Sjodin and Swinger, 2016) and MTases
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for small molecules like catecholamines (Bonifácio et al., 2007).
Most methyltransferases use S-adenosyl-L-methionine (SAM) as
a donor for methyl groups, where all have a SAM-binding pocket
and a substrate-binding pocket (Martin and McMillan, 2002).
These SAM-dependent MTases participate in numerous essential
biological processes, including the epigenetic control of cell fate,
cell signaling and degration of metabolites (Hu et al., 2015;
Schapira, 2016). Consequently, the dysregulation of MTases have
been implicated in diverse diseases including of many types of
cancers (Kaniskan et al., 2015), metabolic disorders (Deng et al.,
2013), cardiovascular disease (Bouras et al., 2013), inflammatory

FIGURE 1 | Overall workflow of model construction.

FIGURE 2 | Histogram showing the distribution of chemical similarity of any two molecules in the dataset.

response (Sun et al., 2015), neurological disorders (Meaney and
Ferguson-Smith, 2010), and so on. Therefore, SAM-dependent
MTases have been considered as a type of intriguing targets
for pharmacological intervention, and interest in developing
potent MTase inhibitors continues to grow in both academic
laboratories and pharmaceutical companies (Hu et al., 2016).
Targeting the SAM-binding pocket is an effective strategy for
designing methyltransferase inhibitors, akin to targeting the
ATP-binding pocket of kinases (Wu et al., 2015). A number of
inhibitors binding to SAM pocket have been reported, including
SGI-1027 (Rilova et al., 2014), CPI-1205 (Vaswani et al., 2016),
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EPZ-6438 (Kuntz et al., 2016), GSK-126 (McCabe et al., 2012),
EPZ-5676 (Stein et al., 2018), and so on (Biswas and Rao,
2018). Among them, pyridone-based EZH2 inhibitors CPI-1205,
EPZ-6438 and GSK-126 have been in phase I clinical trials.
In addition, compound EPZ-5676 has finished phase I clinical
trials for relapsed/refractory leukemias bearing a rearrangement
of the MLL gene, and has modest clinical activity in adult
acute leukemia. So far, there is still no small molecule MTases
inhibitors being approved, and many projects were temporarily
halted partially due to poor in vivo activity or unsatisfactory
bioavailability of current chemo types. Therefore, finding of
MTases inhibitors with novel scaffolds is still a challenging
research area.

To discover and design new MTases inhibitors more
efficiently, a variety of computational methods have been

developed and used in combination with experiment methods
(Kireev, 2016). For example, virtual screening based onmolecular
docking has been widely used to discover potential small
molecule leads (Kireev, 2016). Existing molecular docking
methods typically consists of conformation searching and a
scoring function for complex binding affinity evaluation (Morris
and Lim-Wilby, 2008). These molecular docking methods
can produce the binding poses with acceptable accuracy, but
they are less successful in scoring and active compound
ranking, leading to high false positive rates in virtual screening
campaigns (Berishvili et al., 2018). Furthermore, the performance
of molecular docking for different targets may vary widely,
especially with regard to the complexity of methyltransferase
family targets. Previously our group constructed a knowledge-
based general-purposed scoring function iPMF (Shen et al.,

TABLE 1 | The searched hyperparameters and their performance.

Hyperparameters Performance

Train Valid

Dropout Learning rate Layer size Stop epoch Recall Precision ROC-AUC PRC-AUC Recall Precision ROC-AUC PRC-AUC

0.1 0.0001 [500, 100] 42 0.75 0.86 0.96 0.91 0.55 0.76 0.82 0.76

0.2 0.0001 [500, 100] 46 0.68 0.67 0.90 0.79 0.57 0.68 0.80 0.72

0.1 0.0001 [100, 500] 50 0.74 0.92 0.97 0.93 0.58 0.74 0.84 0.75

0.2 0.0001 [100, 500] 40 0.59 0.94 0.94 0.88 0.42 0.88 0.81 0.75

0.1 0.0001 [320, 640] 31 0.68 0.93 0.97 0.92 0.47 0.86 0.81 0.76

0.2 0.0001 [320, 640] 40 0.69 0.91 0.96 0.91 0.47 0.86 0.81 0.74

0.1 0.0001 [500, 1,000] 29 0.79 0.87 0.97 0.91 0.58 0.70 0.84 0.76

0.2 0.0001 [500, 1,000] 22 0.42 0.94 0.86 0.77 0.28 0.94 0.75 0.71

0.1 0.001 [500, 100] 29 0.80 0.88 0.98 0.94 0.60 0.70 0.82 0.76

0.2 0.001 [500, 100] 27 0.54 0.84 0.92 0.82 0.49 0.70 0.82 0.74

0.1 0.001 [100, 500] 21 0.66 0.93 0.95 0.91 0.51 0.79 0.82 0.72

0.2 0.001 [100, 500] 78 0.79 0.93 0.98 0.95 0.55 0.78 0.80 0.75

0.1 0.001 [320, 640] 32 0.91 0.90 0.99 0.97 0.60 0.68 0.80 0.74

0.2 0.001 [320, 640] 102 0.83 0.99 0.99 0.98 0.58 0.84 0.81 0.72

0.1 0.001 [500, 1,000] 9 0.74 0.77 0.94 0.85 0.66 0.73 0.87 0.81

0.2 0.001 [500, 1,000] 34 0.85 0.99 0.99 0.98 0.60 0.78 0.83 0.78

0.1 0.0005 [500, 100] 18 0.67 0.80 0.93 0.85 0.60 0.78 0.79 0.74

0.2 0.0005 [500, 100] 21 0.67 0.73 0.92 0.82 0.60 0.73 0.81 0.75

0.1 0.0005 [100, 500] 43 0.88 0.96 0.99 0.99 0.62 0.83 0.83 0.77

0.2 0.0005 [100, 500] 51 0.84 0.93 0.98 0.96 0.57 0.79 0.84 0.77

0.1 0.0005 [320, 640] 28 0.82 0.96 0.99 0.98 0.51 0.71 0.81 0.74

0.2 0.0005 [320, 640] 24 0.77 0.93 0.97 0.94 0.49 0.68 0.80 0.74

0.1 0.0005 [500, 1,000] 17 0.79 0.82 0.95 0.88 0.60 0.65 0.78 0.70

0.2 0.0005 [500, 1,000] 14 0.74 0.84 0.95 0.87 0.60 0.73 0.80 0.74

0.1 0.00005 [500, 100] 82 0.72 0.92 0.97 0.93 0.53 0.78 0.84 0.77

0.2 0.00005 [500, 100] 131 0.69 0.97 0.97 0.94 0.49 0.81 0.83 0.76

0.1 0.00005 [100, 500] 55 0.51 0.94 0.92 0.84 0.36 0.83 0.78 0.72

0.2 0.00005 [100, 500] 87 0.57 0.97 0.95 0.89 0.42 0.92 0.79 0.75

0.1 0.00005 [320, 640] 40 0.57 0.95 0.93 0.87 0.42 0.88 0.77 0.73

0.2 0.00005 [320, 640] 50 0.64 0.83 0.92 0.84 0.43 0.68 0.82 0.71

0.1 0.00005 [500, 1,000] 46 0.68 0.96 0.96 0.93 0.45 0.96 0.81 0.79

0.2 0.00005 [500, 1,000] 71 0.77 0.91 0.97 0.93 0.51 0.75 0.81 0.73
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2011), which utilizes the interative-extracted statistical potentials
from protein-ligand complexes. However, the SAM-binding sites
exhibit great polarity and structural flexibility; therefore, it is
difficult for the general-purpose scoring functions like iPMF to
perform satisfactorily for this system. It is therefore a practical
compromise constructing a scoring function specific for SAM-
dependent MTases. Many target-specific scoring functions have
been constructed through different methods to improve the
performance of existing scoring functions on certain targets to
varying degree (Xing et al., 2017; Berishvili et al., 2018). Recently,
our group developed a SAM-dependent methyl transferase-
specific scoring function SAM-score using ε-SVR, and used this
scoring function in discovery of a new class of DOT1L inhibitors
(Wang et al., 2017). Regrettably, despite a lower rate of false
positive in our in-house use, the SAM-score still leaves large
room for improvement. For example, the Enrichment Factor (EF)
(5%) of SAM-score was only 1.46 in one of our recent tests,
which means that the screening power of the scoring model is
not satisfactory.

Recently, deep learning-based approaches have emerged
in the field of scoring function. For instance, Jiménez et al.
constructed a general-purpose scoring function KDEEP via
3D-convolutional neural networks (Jiménez et al., 2018). There
are clear differences between deep learning and traditional
machine learning methods, for example: traditional machine
learning methods uses sparse representations to describe
the input data, and learning-task related features are further
extracted from the representations, which needs extensive
domain knowledge and time investment, and may lose some
important information in the process; while the representation
learning framework of deep learning methods uses distributed
representations for the dataset and then automatically
extract features, which can extract abstract higher-level
features and finally generate more accurate prediction results
(LeCun et al., 2015).

In this study, we developed a SAM-dependent MTases-
specific classifier based on a fully connected neural network
to accurately distinguish between negative (inactive) and

positive (active) MTases inhibitors. First, crystal structures
of the SAM-dependent MTases and the compounds with
experimental affinity data against these targets were collected.
Decoys for each targets were also generated to expand
the data set in this step. Then, molecular docking was
used to produce protein-ligand interaction conformations.
Here, the Fingerprinting Triplets of Interaction Pseudo atoms
(TIFP) (Desaphy et al., 2013) were used to describe the
predicted complex conformations. In the next step, these
TIFPs were used as inputs to establish a fully connected
neural network model by mining the structure and activity
relationship of previously reported small molecules for different
MTases. The performance of the DNN model were also
compared with Glide, Autodock·vina, and the mixed model
of DNN and Glide. The results showed that DNN model
can significantly improve the screening power of docking
and has the ability to prioritize active molecules with diverse
scaffolds. Moreover, this model can also help to determine the
selectivity of the compounds targeting different MTases, which
may provide insight into developing novel inhibitors of SAM-
dependent MTases.

TABLE 2 | The performances of 10 trained models on the validation set.

Model Recall Precision Accuracy ROC-AUC PRC-AUC

1 0.622 0.742 0.874 0.853 0.689

2 0.800 0.653 0.856 0.876 0.793

3 0.725 0.518 0.782 0.849 0.688

4 0.638 0.750 0.845 0.822 0.746

5 0.738 0.660 0.845 0.856 0.791

6 0.682 0.612 0.810 0.863 0.785

7 0.718 0.718 0.874 0.859 0.760

8 0.547 0.690 0.787 0.817 0.723

9 0.436 0.750 0.776 0.800 0.681

10 0.535 0.767 0.845 0.813 0.714

Average 0.64 ± 0.09 0.69 ± 0.06 0.83 ± 0.03 0.84 ± 0.02 0.74 ± 0.04

FIGURE 3 | (A) Variation tendency of PRC-AUC with epochs in DNN model. (B) Variation tendency of PRC-AUC with epochs in DNN-Glide model. The PRC-AUCs of

the DNN model have reached the peak on the 9th epoch, while the DNN-Glide reached the peak on the 59th epoch.
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RESULTS AND DISCUSSION

This research was aimed to build a target-specific classification
model to distinguish whether a compound is a potential inhibitor
of a given methyltransferase. The workflow contains deep neural
network model construction and model evaluation steps, which
will be explained in details below. The overall workflow of this
study was shown in Figure 1.

Deep Neural Network Model Construction
Data Sources
Based on the previous work of our workgroup, the
data used to build model include the same set of 12
SAM-dependent methyltransferases, which are DNA
(cytosine-5)-methyltransferase 1 (DNMT1), coactivator-
associated arginine methyltransferase 1 (CARM1),
protein arginine N-methyltransferase 1 (PRMT1), protein
arginine N-methyltransferase 3 (PRMT3), protein arginine
N-methyltransferase 5 (PRMT5), protein arginine N-
methyl-transferase 6 (PRMT6), euchromatic histone-lysine
N-methyl-transferase 1 (EHMT1), euchromatic histone-lysine
N-methyltransferase 2 (EHMT2), SET domain containing lysine
methyltransferase 7 (SETD7), SET domain containing lysine
methyltransferase 8 (SETD8), suppressor of variegation 3-9
homolog 2 (SUV39H2) and disruptor of telomeric silencing
1-like histone H3K79 methyltransferase (DOT1L). The crystal
structures in the data set are derived from the Protein Data
Bank (PDB) (https://www.rcsb.org), which are all complex
crystal structures with a ligand occupying the SAM pocket.
The structures and activities data of small molecule ligands
for the 12 targets were collected from the ChEMBL database,
and the IC50, EC50, and Ki values less than or equal to 10
micromole were used as positive data, and that more than 50
micromole as negative data. Totally, there were 919 positive
samples and 366 negative samples. The IC50, EC50, and Ki

values in the activity data were normalized to PIC50, PEC50

or PKi (PActivition = 9 – lg(Activation)). Furthermore, a total
of 1212 decoys were generated in the DUD-E website (http://

dude.docking.org/generate) (Mysinger et al., 2012) to better
correspond to the fact of actual virtual screening where the
negative data are much more than the positive data. Each
molecule, either positive or negative, has at least one of 12
Mtase targets reported. The 211-bit TIFP interaction fingerprints
(Desaphy et al., 2013) were used as inputs to construct the
deep neural network classification model, due to its capability
in characterizing directional molecular interactions such as
hydrogen bonding and pi-pi stacking. Totally, 1740 molecules
were compiled for deriving interaction features, which including
446 positive data and 1294 negative data. Tanimoto coefficients
of Morgan fingerprints of any two molecules in the data set
were calculated by RDKit python package (Figure 2), and
most of them were below 0.2, suggesting that the data set has
diverse chemical structures and would make the DNN model
less biased.

Datasets Partition
(1) The total 1,740 samples were randomly divided into two

parts with the proportion 1:10, in which the smaller one was
used as a test set.

(2) The bigger one was shuffled and randomly divided into
a validation set and a train set with the proportion
of 1:8, which were used in the hyperparameter
optimization processing.

(3) This process of step 2 was repeated for ten times to obtain
ten different training/validation datasets, and the best model

TABLE 3 | The performances of 4 methods on the test set, and the best

performed method and its metrics are shown in bold.

Method ROC-AUC PRC-AUC EF (5%)

Glide 0.75 0.54 2.97

Autodock vina 0.61 0.32 0.99

DNN 0.86 0.67 3.46

DNN-Glide 0.80 0.58 3.46

FIGURE 4 | (A)The ROC curves of Glide, Autodock vina, DNN model and DNN-Glide model on the test set. (B) The PRC curves of Glide, Autodock vina, DNN model

and DNN-Glide model on the test set.
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FIGURE 5 | Structures of the positive compounds predicted by Glide and DNN model before the intersection. Structures in darkorange and yellow box are predicted

to be positive by Glide; structures in dark, blue and green box are predicted to be positive by DNN model.

among the models trained on the ten datasets was evaluated
with the test set.

Hyperparameter Optimization
Themulti-grid searchingmethod was applied to the optimization
of the hyperparameters. Because the area under Precision-
Recall curve (PRC-AUC) is more informative than the area
under receiver operating characteristic curve (ROC-AUC)
when evaluating classifiers on imbalanced datasets (Saito and
Rehmsmeier, 2015), PRC-AUC on the validation set was used for
the evaluation of the hyperparameters. During training process,
Adam optimizer was used for model optimization and cross-
entropy was utilized as the loss function, which is a common
loss function for classification model. Early stopping with a
stop window size of 15 was used to save training time and to
prevent over-fitting, i.e., training would be stopped if the PRC-
AUC on the validation set did not increase for 15 consecutive
epochs. The performance of evaluated hyperparameters in the
hyperparametric search are shown in Table 1. According to
the best set of hyperparameters, a fully connected three-layer
neural network model with two hidden layers (500 × 1,000)
was established. The input layer had 211 neurons, and the
output layer was softmax-standardized dichotomous probability.
Learning rate, weight decay penalty and dropout were set to
0.001, 0.0001, and 0.1, respectively. The activation function was
set as ReLU. Figure 3A shows the variation tendency of PRC-
AUC with epochs on training set and validation set when the
DNN model was trained with the best set of hyperparameters.
The PRC-AUCs of DNN model have reached the peak on

the ninth epoch, and the model at that epoch was used for
further evaluation.

Model Evaluation and Comparison
DNN Model Evaluation
To validate the feasibility and effectiveness of the models, the
searched best set of hyperparameters were then trained on 10
datasets and evaluated on the validation set. The performances
of these 10 models were similar, as shown in Table 2, among
which the performance of 2nd model has the best PRC-AUC
and ROC-AUC (Bradley, 1997) here, which was selected for
further evaluation on the test set. It showed PRC-AUC, ROC-
AUC and EF (5%) of 0.67, 0.86 and 3.46, respectively, on the
test set.

In order to evaluate the DNN model comprehensively,
Glide and Autodock vina were compared with the DNN
model. The docking score of the Glide SP was added as a
descriptor to the end of interaction fingerprint, which was
used to build a hybrid model named DNN-Glide. The DNN-
Glide model was trained in the same way as DNN model
and on the same datasets, and it obtained the same set of
best hyperparameters as DNN model, although there is a
delay of reaching the best PRC-AUC on the validation set
(Figure 3B). By comparison, both the ROC curves and PRC
curves of the DNN model were above that of the other
models, indicating the high-quality performance of the DNN
model (Figure 4 and Table 3). Especially, the true positive
rate of DNN is consistently higher than that of Glide and
Autodock vina when the false positive rate was extremely
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TABLE 4 | The ligands of DOT1L and their scores valued by Glide, Autodock vina and DNN model.

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170206_10 COC1=CC

=CC(=C1)C1=

NN2C(CN3N=

NC4=CC=CC=

C34)=NN=C

2S1

5.19 −7.627 −8.5 0.8542

C170206_15 C(N1N=NC2

=CC=CC=C1

2)C1=NN=C2

SC(=NN12)C

1=CC=C2OC

OC2=C1

5.40 −7.915 −8.4 0.9927

C170206_16 C(N1N=NC2

=CC=CC=C1

2)C1=NN=

C2SC(=NN12)C

1=CC=C2OC

COC2=C1

5.08 −7.898 −9.9 0.9821

C170206_17 CC(C)(C)C1=

CC=C(C=C1)

C1=NN2C(C

N3N=NC4=C

C=CC=C34)=

NN=C2S1

5.35 −5.374 −8.8 0.555

C170206_39 BrC1=CC

(=CC=C1)C1=

NN2C(CN3C=

NC4=CC=C

C=C34)=

NN=C2S1

5.39 −8.233 −8.8 0.9007

C170206_6 FC1=CC=CC

(=C1)C1=NN2

C(CN3N=NC

4=CC=CC=C

34)=NN=C2S1

5.08 −6.629 −8.7 0.8713

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170206_9 FC1=CC=

C(C=C1)C1=NN2

C(CN3N=NC

4=CC=C

C=C34)=N

N=C2S1

5.33 −7.839 −8.4 0.9439

C170214_3 NC(=O)CN

C(=O)NC1=C

C2=C(C=C

N2C2=C(Cl)

C=CC=C2)

C=C1

5.05 −8.322 −8.3 0.6092

C170214_4 ClC1=CC=

CC=C1N1C=

CC2=C1C=

C(NC(=O)

NCC(=O)NC

CCN[C@@H]1CC

CN(C1)C1=

C3C=CNC3

=NC=N

1)C=C2

8.4 −9.432 −8.3 0.0141

C170214_5 ClC1=CC=C

C=C1N1C=C

C2=C1C=C

(NC(=O)NCC

(=O)NCCC

CN[C@@H]1CCCN

(C1)C1=C3C=C

NC3=NC=N1)

C=C2

8.4 −7.773 −9.6 0.8417

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C170214_6 CN(CCCNC

(=O)CNC(=

O)NC1=CC2

=C(C=C

N2C2=C

C=CC=C2

Cl)C=C1)[C

@@H]1CCCN(C1)

C1=C2C=C

NC2=NC=N1

9.82 −10.445 −9.2 0.9239

C170214_7 CN(CCCNC(=O)

CNC(=O)NC1=C

C=C2SC(Cl)=C

(C2=C1)C1=C

C=CN=C1C)

[C@@H]1CCC

N(C1)C1=C2

C=CNC2=N

C=N1

8.52 −9.125 −8.8 0.9996

C180224_6 O1C=CC=C

1C=CC1=N

N2C(S1)=NN=C

2C1=CC=

CC=C1

5.15 −5.67 −7.9 0.8878

C180224_7 CC1=CC=C

C(=C1)C1=NN

=C2SC(C=

CC3=CC=

CO3)=NN12

5.03 −7.471 −8.3 0.6535

C180224_9 COC1=C(C=C

C=C1)C1=NN

=C2SC(C=

CC3=CC=

CO3)=NN12

5.01 −6.375 −7.8 0.9412

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_3a CC1=CC(N)=C2

C=C(NC3=NC

(NC4=CC=

C5N=C(C)C

=C(N)C5=

C4)=CC(C)

=N3)C=C

C2=N1

5.82 −6.461 −9.8 0.7206

C180722_3b CC1=NC(NC2

=CC=C3N=

C(C)C=C(O)

C3=C2)=NC

(NC2=CC=

C3N=C(C)C=

C(O)C3=C

2)=C1

5.36 −7.745 −9.1 0.8655

C180722_3d CC1=NC2=C

C=C(NC3=C

C=NC(NC4=C

C=C5N=C

(C)C=C(N)C5

=C4)=

N3)C=C2C

(N)=C1

5.97 −8.945 −10.1 0.7807

C180722_3e CC1=NC2=C

C=C(NC3=CC

(NC4=CC=C

5N=C(C)C=

C(N)C5=C4)

=NC=N3)

C=C2C

(N)=C1

5.97 −6.465 −9.3 0.7952

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_8b CC1=NC(NCCCN

C(=O)NC2=C

C=C(C=C2)

C(C)(C)C)=NC

(NC2=CC=C

3N=C(C)C=C

(N)C3=C2)=C1

5.11 −5.558 −8.3 0.9847

C180722_8f CN(CCNC(=O)NC

1=CC=C

(C=C1)C(C)

(C)C)C1=NC(NC2

=CC=C3N=C

(C)C=C(N)C3=

C2)=CC(C)=N1

5.22 −7.641 −9.9 0.5408

C180722_8h CCN(CCNC(=O)N

C1=CC=C(C=

C1)C(C)(C)

C)C1=NC(NC

2=CC=C3

N=C(C)C=C

(N)C3=C2)

=CC(C)=N1

5.24 −5.082 −8.6 0.2014

C180722_8i CCN(CCCNC(=O)

NC1=C

C=C(C=C

1)C(C)(C)C)C

1=NC(NC

2=CC=C3

N=C(C)C=C

(N)C3=C2)

=CC(C)=N1

5.1 −5.542 −9 0.9797

(Continued)
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TABLE 4 | Continued

Label Structure Smiles pIC50 Glide score Vina score DNN score

C180722_9b CC1=NC(NCC

CNC(=O)NC

2=CC(=

CC(=C2)

C(F)(F)F)C

(F)(F)F)=

NC(NC2=CC

=C3N=C(C)

C=C(N)C3

=C2)=C1

5.06 −7.433 −8.7 0.9993

C180722_9e CC1=NC(NCC

CCCCNC(=

O)NC2=CC(=

CC(=C2)C(F)

(F)F)C(F)(F)F)=

NC(NC2=CC

=C3N=C(C)C

=C(N)C3=

C2)=C1

5.45 −7.664 −9.3 0.9985

low, which is an obvious merit for applications in virtual
screening. Unfortunately, the added Glide SP didn’t improve
the performance of the DNN model. It is noteworthy that the
PRC curve of the Glide and DNN model intersected each other
at (0.14, 0.86), before the point (Recall <0.14), the precision
of Glide is higher than the DNN model. Figure 5 shows the
structures of the positive compounds predicted by Glide and
DNN model before the intersection point. We may find that
Glide tends to retrieve compounds with one or two common
scaffolds, while the DNN model is able to provide more diverse
scaffolds, suggesting its generalization ability on recognizing
active compounds.

To investigate the performance of the DNN model on a
specific target, an external test set containing 25 molecules
was collected, which were reported binding to SAM pocket
of DOT1L recently (Möbitz et al., 2017; Wang et al., 2017;
Song et al., 2018). The structures and the DNN model

scores of the molecules were shown in the Table 4. There
are two molecules “C180722_8h” and “C170214_4” predicted
far lower than the threshold of 0.5, which means that they
were wrongly classified. The reason of the wrong judge was
considered to be improper inputs originated from inaccurate
simulated binding conformations. Since the structure of DOT1L
is flexible, especially in SAM-pocket region, crystal structures
obtained from experiment are quite different, which leads to
various simulated binding conformations in docking (Figure 6),
and different conformations may cause different results. To
prove the guess, a different PDB entry 5MVS (the previous
used one was 1NW3) was used as receptor structure to
generate input data with the two compounds. As expected,
the C170214_4 and C180722_8h was evaluated with high
scores of 0.90 and 0.89, respectively, which suggests that
it is vital to select a suitable receptor structure for more
accurate results.
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FIGURE 6 | (A) Docking poses of the molecule “C170214_4” in PDB entry of 1NW3 (green) and 5MVS (magentas). (B) Docking poses of the molecule “C180722_8h”

in PDB entry of 1NW3 (green) and 5MVS (magentas).

Methods
Ligand-Protein Binding Conformations Generation
Accurate binding poses of protein-ligand complexes are required
for extracting interaction information. In view of the fact that
most collected molecules don’t have available complex crystal
structures with their related target, we used molecular docking
to produce the binding conformations.

Cross docking was carried out to choose an appropriate
receptor structure of each target for generating binding poses. At
first, all the complex crystal structures of each target were aligned
via pymol software (version 1.8.2.2) (Schrodinger, 2015), and
then the Xglide module of Maestro version 10.2 (Schrödinger,
LLC, New York, NY, 2015-2) was used for cross docking. In
this process, every ligand extracted from a crystal structure
was docked to collected crystal structures of the target, and
the root-mean-square deviation (RMSD) values of the docked
poses with reference to the corresponding native poses in the
crystal structures were calculated. For every target, the crystal
structure with the smallest average RMSD of all extracted ligands
of this target was selected as the receptor structure for the next
molecular docking. Selected protein crystal structure structures
and the average RMSD values between the predict ligand binding
conformations and the native conformations in crystal structures
were shown in Table 5. According to the results of cross docking,
the average RMSD between the ultimately chosen docking poses
and the ligand original poses in crystal structures are all less than
1.5 Å, suggesting molecular docking is accurate in generating the
protein-ligand binding conformations for MTases.

Then, all the small molecules in our dataset are docked into
the chosen protein crystal structures in Glide of Maestro version
10.2. Each protein crystal structure was prepared by the Protein
Preparation Wizard module of Maestro version 10.2, including
adding hydrogens, assigning the bond level, creating disulfide
bonds, converting selenomethionines to methionines, and filling
in missing side chains using Prime, hydrogen bond network
optimization and restrained minimization; removing all the
water molecules and metal ions. The protein receptor grids were
generated by the Maestro Receptor Grid Generation module of
Maestro version 10.2, and the grid centers were set as the centroid

of ligands binding in the SAM pocket. All small molecules
were prepared by the LigPrep module of Maestro version 10.2,
including creating 3D coordinates, calculating ionization states,
generating tautomers and stereoisomers, and producing a low
energy ring conformation. Grid docking was completed by the
Glide module of Maestro Version 10.2, precision of which was
set as SP (standard precision) and the number of poses to
write out of which was limited to at most 1 per ligand. All
other parameters were set as default. Only the binding pose
with the best docking score was retained. According to the
result of the molecular docking, some molecules preferentially
bound other sites than the SAM-binding pocket, and some
molecules showed lower docking scores. With the docking
score of −8.2 as the threshold, the lower-scored conformations
may not be the actual binding conformations, which are not
studied in the virtual screening generally. These molecules were
disregarded in the followed study. Similarly, binding conformers
of decoys were generated through molecular docking by the
same process.

Interaction Fingerprint Generation
The Fingerprinting Triplets of Interaction Pseudo atoms
(TIFP) were used to encode the protein-ligand interaction
patterns. Firstly, the interactions between protein and ligand
are recognized, including hydrophobic contacts, aromatic
interactions, hydrogen bonds, ionic interactions and metal
complexation. Then, each interaction was abstract into a pseudo-
atom, which is located in the position of the geometric center of
the interaction, the acceptor interacted atom or the interacted
ligand atom. Then, the number of triples are counted in 6
distance ranges: 0–4, 4–6, 6–9, 9–13, 13–17, 17+Å. Each type of
triples is taken as one characteristic and the 211 most common
characteristics are retained to form a 211-bit vector.

For each complex crystal structure used for docking, residues
within 6 Å of the ligandwere retained as binding site information,
which was needed for the generation of TIFP fingerprints. The
binding sites and selected ligand conformers were converted to
the standard mol2 format using chimera (version 1.13). Standard
formatted 211-bit TIFPs was generated using IChem software.
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TABLE 5 | Protein crystal structure structures including the selected structure in

cross-docking and the average RMSD between the predict ligand binding

conformations and the native conformations.

Target PDB ID Ligand Average RMSD Selected PDB

ID

CARM1 2y1w SFG 0.32 2y1w

5dx1 SFG 0.44

5is6 SFG 0.46

6arv SAH 0.46

5dwq SFG 0.48

5dxa SFG 0.49

5dxj SFG 0.49

5lv3 SAH 0.50

5dx8 SFG 0.56

5dx0 SFG 0.62

6arj SAH 1.83

2v74 SAH 1.84

5ih3 SAH 2.09

5u4x SAH 2.24

6d2l FTG 3.34

2y1x SAH 3.40

4ikp 4IK 3.45

5k8v 6RE 3.48

5is8 SAH 3.59

3b3f SAH 3.65

DNMT1 3swr SFG 0.81 3swr

5gut SAH 0.89

3av5 SAH 0.90

3pta SAH 0.98

3pt6 SAH 1.02

3pt9 SAH 1.13

4wxx SAH 1.27

3av6 SAM 1.32

4da4 SAH 2.09

DOT1L 1nw3 SAM 1.17 1nw3

3sx0 SX0 1.19

4er0 AW1 1.24

4ek9 EP4 1.45

4ekg 0QJ 1.52

5juw 6NR 1.68

4eqz AW0 1.74

4hra EP6 1.74

3uwp 5ID 1.76

4er7 AW3 1.79

4eki 0QK 1.98

3qox SAH 3.68

4er3 0QK 3.75

3sr4 TT8 3.91

3qow SAM 3.97

4er6 AW2 4.03

5mw3 5JT 4.19

4wvl 3US 4.39

4er5 0QK 4.98

5mw4 5JU 5.02

(Continued)

TABLE 5 | Continued

Target PDB ID Ligand Average RMSD Selected PDB

ID

EHMT1 2igq SAH 0.44 2igq

3mo2 SAH 0.74

3mo5 SAH 0.89

3sw9 SFG 0.90

4i51 SAH 0.93

3fpd SAH 0.95

5tuz SAM 0.98

3hna SAH 1.01

5vsd SAM 1.11

3mo0 SAH 1.13

5vsf SAM 1.15

2rfi SAH 1.18

5ttg SAM 2.49

3swc SAH 2.57

5v9j SAM 2.59

EHMT2 3k5k SAH 0.69 3k5k

5t0m SAM 0.71

5vse SAM 0.72

5tuy SAM 0.75

5v9i SAM 0.75

5jhn SAM 0.86

3rjw SAH 0.89

4nvq SAH 0.90

5t0k SAM 0.92

5jj0 SAM 0.97

5jin SAM 0.98

5ttf SAM 1.02

5vsc SAM 1.04

2o8j SAH 1.14

5jiy SAM 1.73

SETD8 2bqz SAH 1.27 2bqz

1zkk SAH 1.33

3f9z SAH 1.34

5teg SAM 1.50

3f9w SAH 1.73

3f9x SAH 2.59

4ij8 SAM 2.63

3f9y SAH 2.66

PRMT1 1or8 SAH 0.65 1or8

1orh SAH 0.94

1ori SAH 0.97

3q7e SAH 3.99

PRMT3 1f3l SAH 0.47 1f3l

2fyt SAH 3.95

PRMT5 5emk SFG 0.76 5emk

5emm SFG 0.91

4gqb 0XU 1.15

6ckc F5J 1.29

4x63 SAH 1.54

5emj SFG 1.56

3ua3 SAH 1.61

(Continued)
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TABLE 5 | Continued

Target PDB ID Ligand Average RMSD Selected PDB

ID

5c9z SFG 2.03

5eml SAM 2.10

4x60 SFG 2.30

5fa5 MTA 2.57

4g56 SAH 2.71

4x61 SAM 3.13

PRMT6 4c04 SFG 0.64 4c04

4y30 SAH 0.70

4qqk 37H 0.89

5wcf SAH 0.89

4c03 SFG 0.92

4hc4 SAH 0.94

4c05 SAH 0.99

5fqo SAH 1.24

4qpp SAH 1.29

5hzm SAH 1.29

5egs SAH 1.37

4y2h SAH 1.61

5fqn SAH 3.03

5e8r SAH 3.78

4lwp SAH 3.91

SETD7 3vv0 KH3 0.72 3vv0

3vuz K15 0.91

4e47 SAM 1.02

4j83 SAM 1.02

3m57 SAH 1.05

3m5a SAH 1.07

1n6a SAM 1.14

3m55 SAH 1.58

3m58 SAH 1.89

3cbm SAH 2.00

3cbo SAH 2.07

3m59 SAH 2.36

4j7i SAH 2.38

4j7f SAH 2.41

5eg2 SAH 2.46

3m53 SAH 2.54

4jlg SAM 2.56

3m56 SAH 2.74

4j8o SAH 2.77

3cbp SFG 2.90

1o9s SAH 3.07

3os5 SAH 3.07

2f69 SAH 3.08

3m54 SAH 3.27

1xqh SAH 3.48

4jds SAM 3.73

5ayf SAM 4.31

1n6c SAM 5.91

1mt6 SAH 7.82

SUV39H2 2r3a SAM 0.69 2r3a

DNN Model Construction and Evaluation
The DNN model was built by the MultitaskClassifier module
of Deepchem (version 2.1.0), and the data set was randomly
divided by the RandomSplitter of Deepchem. The Evaluator
module of Deepchem was used to evaluate the performance of
DNNmodels.

The evaluation indexed used to evaluate the performance
of these modules were area under the precision-recall
curve (PRC-AUC) and area under the Compute Receiver
operating characteristic curve (ROC-AUC), which are
widely used in evaluation the enrichment of scoring model.
The closer that the AUC is to 1, the more likely it is
that the model is an ideal classification model. Especially,
when the ROC-AUC is close to 0.5, the model is close
to a random classifier. When the PRC curve reports the
evolutions of Recall and Precision, the ROC curve shows
the changes of true positive rate (TPR) and false positive
rate (FPR):

Recall =
NTP

NTP + NFN
(1)

Precision =
NTP

NTP + NFP
(2)

TPR =
NTP

NTP + NFN
(3)

FPR =
NFP

NFP + NTN
(4)

where NTP, NTN, NFP, and NFN refer to the numbers
of true positives, true negatives, false positives, and false
negatives, respectively.

The performance of Autodock vina in the test set was
also compared with that of DNN model. Before applying
Autodock vina (Version 1.1.2), the protein receptor structures
and ligand structures were prepared using python scripts
named “prepare_receptor4.py” and “prepare_ligand4.py” in
AutoDockTools, respectively, which included standard steps
such as adding hydrogens and electrons. The grid was also
centered on the centroid of the ligand. The grid size was set to 25
Å× 25 Å× 25 Å, and the energy range was set to 4, and all other
parameters were used the default settings. The conformation with
the best affinity score of each ligand was selected for further
study. All figures in this article were produced by Matplotlib and
Seaborn python package.

CONCLUSIONS

In this study, we have developed a target-specific classifier
for methyltransferases based on protein ligand interaction
fingerprint and deep neural network. Binding poses of active
and inactive compounds for 12 methyltransferase were generated
via molecular docking. TIFP interaction fingerprints were
employed as input features of full-connected deep neural
network models. The performance of the DNN model on
the test set showed that our classifier can classify active
and inactive compounds more accurately. In comparison with
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Glide Autodock vina and DNN-Glide hybrid model, the DNN
model improved both classification performance and compound
ranking capability.

Currently, the scoring model can be used in virtual
screening and experimentally verified. As a target-specific
classifier, this neural network model may be applied to
other targets through transfer learning, or if the data used
for training is appropriate, the classifier of other targets or
even the general classifier can be constructed through the
same workflow.
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Jiménez, J., Škalič, M., Martínez-Rosell, G., and De Fabritiis, G. (2018). KDEEP:

protein–ligand absolute binding affinity prediction via 3D-convolutional neural
networks. J. Chem. Inf. Model. 58, 287–296. doi: 10.1021/acs.jcim.7b00650

Kaniskan, H. U., Konze, K. D., and Jin, J. (2015). Selective inhibitors of protein
methyltransferases. J. Med. Chem. 58, 1596–1629. doi: 10.1021/jm501234a

Kireev, D. (2016). Structure-based virtual screening of commercially
available compound libraries. Methods Mol. Biol. 1439, 65–76.
doi: 10.1007/978-1-4939-3673-1_4

Kuntz, K. W., Campbell, J. E., Keilhack, H., Pollock, R. M., Knutson, S. K.,
Porter-Scott, M., et al. (2016). The importance of being me: magic methyls,
methyltransferase inhibitors, and the discovery of tazemetostat. J. Med. Chem.

59, 1556–1564. doi: 10.1021/acs.jmedchem.5b01501
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539
Martin, J. L., and McMillan, F. M. (2002). SAM (dependent) I AM: the S-

adenosylmethionine-dependent methyltransferase fold. Curr. Opin. Struct.

Biol. 12, 783–793. doi: 10.1016/S0959-440X(02)00391-3
McCabe, M. T., Ott, H. M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G.

S., et al. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with
EZH2-activating mutations. Nature 492, 108–112. doi: 10.1038/nature11606

Meaney, M. J., and Ferguson-Smith, A. C. (2010). Epigenetic regulation of the
neural transcriptome: the meaning of the marks. Nat. Neurosci. 13:1313.
doi: 10.1038/nn1110-1313

Möbitz, H., Machauer, R., Holzer, P., Vaupel, A., Stauffer, F., Ragot, C.,
et al. (2017). Discovery of potent, selective, and structurally novel Dot1L
inhibitors by a fragment linking approach. ACS Med. Chem. Lett. 8, 338–343.
doi: 10.1021/acsmedchemlett.6b00519

Morris, G. M., and Lim-Wilby, M. (2008). Molecular docking. Methods Mol. Biol.

443, 365–382. doi: 10.1007/978-1-59745-177-2_19
Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet, B. K. (2012). Directory

of useful decoys, enhanced (DUD-E): better ligands and decoys for better
benchmarking. J. Med. Chem. 55, 6582–6594. doi: 10.1021/jm300687e

Rilova, E., Erdmann, A., Gros, C., Masson, V., Aussagues, Y., Poughon-
Cassabois, V., et al. (2014). Design, synthesis and biological evaluation
of 4-amino-N- (4-aminophenyl)benzamide analogues of quinoline-based
SGI-1027 as inhibitors of DNA methylation. ChemMedChem 9, 590–601.
doi: 10.1002/cmdc.201300420

Saito, T., and Rehmsmeier,M. (2015). The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS ONE 10:e0118432. doi: 10.1371/journal.pone.0118432

Schapira, M. (2016). Chemical inhibition of protein methyltransferases. Cell Chem.

Biol. 23, 1067–1076. doi: 10.1016/j.chembiol.2016.07.014
Schrodinger, LLC. (2015). The PyMOL Molecular Graphics System, Version 1.8.
Shen, Q., Xiong, B., Zheng, M., Luo, X., Luo, C., Liu, X., et al. (2011). Knowledge-

based scoring functions in drug design: 2. Can the knowledge base be enriched?
J. Chem. Inf. Model. 51, 386–397. doi: 10.1021/ci100343j

Song, Y., Li, L., Chen, Y., Liu, J., Xiao, S., Lian, F., et al. (2018).
Discovery of potent DOT1L inhibitors by AlphaLISA based high throughput
screening assay. Bioorg. Med. Chem. 26, 1751–1758. doi: 10.1016/j.bmc.20
18.02.020

Stein, E. M., Garcia-Manero, G., Rizzieri, D. A., Tibes, R., Berdeja, J. G., Savona,
M. R., et al. (2018). The DOT1L inhibitor pinometostat reduces H3K79
methylation and has modest clinical activity in adult acute leukemia. Blood 131,
2661–2669. doi: 10.1182/blood-2017-12-818948

Frontiers in Chemistry | www.frontiersin.org 16 May 2019 | Volume 7 | Article 324

https://doi.org/10.1002/minf.201800030
https://doi.org/10.1016/j.ejphar.2018.08.021
https://doi.org/10.1111/j.1527-3458.2007.00020.x
https://doi.org/10.1021/acs.biochem.5b01129
https://doi.org/10.2174/1568026611313020007
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1097/PPO.0000000000000278
https://doi.org/10.1039/c3md00021d
https://doi.org/10.1021/ci300566n
https://doi.org/10.1517/13543784.2016.1144747
https://doi.org/10.2174/0929867321666141106114538
https://doi.org/10.1021/acs.jcim.7b00650
https://doi.org/10.1021/jm501234a
https://doi.org/10.1007/978-1-4939-3673-1_4
https://doi.org/10.1021/acs.jmedchem.5b01501
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0959-440X(02)00391-3
https://doi.org/10.1038/nature11606
https://doi.org/10.1038/nn1110-1313
https://doi.org/10.1021/acsmedchemlett.6b00519
https://doi.org/10.1007/978-1-59745-177-2_19
https://doi.org/10.1021/jm300687e
https://doi.org/10.1002/cmdc.201300420
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1016/j.chembiol.2016.07.014
https://doi.org/10.1021/ci100343j
https://doi.org/10.1016/j.bmc.2018.02.020
https://doi.org/10.1182/blood-2017-12-818948
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Li et al. Methyltransferases-Specific Scoring Function

Sun, Q., Liu, L., Roth, M., Tian, J., He, Q., Zhong, B., et al. (2015).
PRMT1 upregulated by epithelial proinflammatory cytokines participates in
COX2 expression in fibroblasts and chronic antigen-induced pulmonary
inflammation. J. Immunol. 195, 298–306. doi: 10.4049/jimmunol.1402465

Vaswani, R. G., Gehling, V. S., Dakin, L. A., Cook, A. S., Nasveschuk, C. G.,
Duplessis, M., et al. (2016). Identification of (R)-N-((4-Methoxy-6-methyl-2-
oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1 -(2,2,2-trifluoroethyl)
piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and
selective inhibitor of histone methyltransferase EZH2, suitable for phase
I clinical trials for B-cell lymphomas. J. Med. Chem. 59, 9928–9941.
doi: 10.1021/acs.jmedchem.6b01315

Wang, Y., Li, L., Zhang, B., Xing, J., Chen, S., Wan, W., et al. (2017).
Discovery of novel disruptor of silencing telomeric 1-like (DOT1L) inhibitors
using a target-specific scoring function for the (S)-adenosyl-l-methionine
(SAM)-dependent methyltransferase family. J. Med. Chem. 60, 2026–2036.
doi: 10.1021/acs.jmedchem.6b01785

Wu, P., Nielsen, T. E., and Clausen, M. H. (2015). FDA-approved small-
molecule kinase inhibitors. Trends Pharmacol. Sci. 36, 422–439.
doi: 10.1016/j.tips.2015.04.005

Xing, J., Lu, W., Liu, R., Wang, Y., Xie, Y., Zhang, H., et al. (2017).
Machine-learning-assisted approach for discovering novel inhibitors targeting
bromodomain-containing protein 4. J. Chem. Inf. Model. 57, 1677–1690.
doi: 10.1021/acs.jcim.7b00098

Zhang, J., and Zheng, Y. G. (2016). SAM/SAH analogs as versatile tools
for SAM-dependent methyltransferases. ACS Chem. Biol. 11, 583–597.
doi: 10.1021/acschembio.5b00812

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Li, Wan, Xing, Tan, Li, Wang, Zhao, Wu, Liu, Li, Luo, Lu and

Zheng. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 17 May 2019 | Volume 7 | Article 324

https://doi.org/10.4049/jimmunol.1402465
https://doi.org/10.1021/acs.jmedchem.6b01315
https://doi.org/10.1021/acs.jmedchem.6b01785
https://doi.org/10.1016/j.tips.2015.04.005
https://doi.org/10.1021/acs.jcim.7b00098
https://doi.org/10.1021/acschembio.5b00812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Deep Neural Network Classifier for Virtual Screening Inhibitors of (S)-Adenosyl-L-Methionine (SAM)-Dependent Methyltransferase Family
	Introduction
	Results and Discussion
	Deep Neural Network Model Construction
	Data Sources
	Datasets Partition
	Hyperparameter Optimization

	Model Evaluation and Comparison
	DNN Model Evaluation

	Methods
	Ligand-Protein Binding Conformations Generation
	Interaction Fingerprint Generation
	DNN Model Construction and Evaluation


	Conclusions
	Data Availability
	Author Contributions
	Funding
	References


