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ABSTRACT Digital signal modulation recognition is meaningful for military application and civilian

application. In the non-cooperation communication scenario, digital signal modulation recognition will help

people identify communication target and have better management over them. In order to the classification

accuracy, deep learning is widely used to complete this task. However, current papers have not considered

the deployment of deep learning in compute capability and storage limited edge equipment. In this paper,

we utilize neural network pruning techniques to reduce the convolution parameters and floating point

operations per second (FLOPs), which will pave a wide way to deploy signal classification convolution

neural network (CNN) in edge equipment. We set the Average Percentage of Zeros (APoZ) criterion for

convolution layers. Compared to original CNN, the experiment result shows that light CNN convolution

layer could use only 1.5%∼5% parameter and 33%∼35% time without losing significant accuracy.

INDEX TERMS Modulation classification, deep neural network, network prune, edge device.

I. INTRODUCTION

With the increasing demand for already congested wire-

less bandwidth of radio spectrum, it is important to

find a smart way to spectral allocation and interference

mitigation [1], [2].To achieve efficient data transmission and

avoid unnecessary signal interference, a lots of modulation

techniques, such as amplitude shift keying (ASK), frequency

shift keying (FSK), phase shift keying (PSK), Quadrature

Amplitude Modulation (QAM) has been used to encode

data on different carrier frequencies [3]. Therefore, effec-

tive modulation classification method has attracted many

researchers’ attention. In traditional way, people will consider

expert features, such as maximum power spectral density,

standard deviations amplitude, frequency, phase, and vari-

ance of the zero-crossing [4]. Reference [5] proposes a subtle

feature extraction and recognition algorithm for radiation

source individual signals based on multidimensional hybrid

features. Reference [6], [7] takes modulation classification in

the satellite communication scenario and Waveform Design.

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

Reference [8] uses dimensionality reduction and classifier in

machine learning to identify Radio frequency (RF) finger-

print in wireless device. Reference [9] uses powerful kernel-

based learning to process statistical signal. Reference [10]

applies Hilbert transform and principal component analysis

to generate the RF fingerprint of Device-to-device (D2D)

device, and use SVM and CV-SVM to be the classifier, sim-

ulation results proves that the proposed method is effective

for D2D device recognition. Reference [8] uses a combi-

nation of robust principal component analysis (RPCA) and

random forests and improves wireless device authentication

security protection. Reference [11] presents boosting algo-

rithm as an ensemble frame to achieve a higher accuracy

than a single classifier. The results show that the Fisherface

algorithm is effective in reducing the feature dimension of

digital signal in automatic modulation recognition. Based on

information entropy features and Dempster-Shafer evidence

theory, [12] proposes a novel automatic modulation recog-

nition methods to obtain a higher recognition result in low

SNR. However, those simple features that are considered in

ideal environment, is heavily depended on prior knowledge,

human experts and leads to limited classifier performance in
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noisy environment. Therefore, it is imperative to explore a

signal feature self-extractionmethod to confront with increas-

ingly complexed electromagnetic environment [13].

Deep learning (DL) is part of a broader family of machine

learning methods due to its learning data representations,

which use a cascade of multiple layers of nonlinear pro-

cessing units for feature extraction and transformation.

Nowadays, the world has witnessed a lot of success-

ful DL application in many fields, such as Computer

Vision, Speech Recognition, and Nature Language Process-

ing. In 2012, Krizhevsky et al. [14] firstly proposed a large,

deep convolutional neural network to classify the 1.2 million

high-resolution images and get the top in the competition of

ImageNet large scale visual recognition challenge (ILSVRC).

In 2016, He et al. [15] presented a residual learning frame-

work to ease deeper neural network training and the residual

nets framework won top place on the ILSVRC 2015 clas-

sification task. In 2018, Zhou et al. [16] proposes a new

framework termed transfer hashing with privileged informa-

tion (THPI) to address this so-called data sparsity issue in

hashing.

With the development of DL, many researchers also

exploited DL potential in signal processing field.

O’Shea1 et al. [1] firstly publishes an open access evaluation

dataset consists of modulated signal sampled from GNU

Radio. Wang et al. [3] adopt dropout in CNN instead of

pooling operation to achieve higher recognition accuracy.

Gui et al. [17] propose a novel and effective DL-aided

NOMA system, in which several NOMA users with random

deployment are served by one base station. Peng et al. [4]

firstly use high-resolution image, Signal Constellation Dia-

grams, to perform signal modulation classification and they

has showed promising result due to great learning power of

AlexNet and GoogLeNet. In our related work [18], we use

dots density to recover deep level signal statistical infor-

mation in Signal Constellation Diagrams at lower signal-to-

noise ratio (SNR) and create Contour Stellar Image (CSI),

our method achieved average 7% ∼ 8% higher accuracy

at lower SNR compared to [4]. Further, we also use CSI

dataset to conduct data augmentation on GANs [18] and

semi-supervised learning on GANs [19]. In, Liu et al. [20]

propose a multi-objective resource allocation (MORA)

scheme for the UAV-assisted Het-IoT.

Despite of the great success in DL, a typical deep model

is hard to be deployed on resource-constrained devices due

to the limitation of compute capability and storage. It is

a widely-recognized that most of deep neural network are

over-parameterization [21]. To solve this, network prune

technique has been identified as an effective way to combat

with high computational cost and high memory cost issues.

Current network pruning technique mainly includes three

step:

1) Training from Scratch: the deep neural network

will find the way to extract data feature from

dataset and adjust neural weight to get a better

result.

2) Network Pruning: This is core step of deep neural net-

work. According to the different pruning granularity,

we could choose a weight connection or a convolution

filter. Then we will evaluate whether it is an impor-

tant component of accuracy due to different evalua-

tion criterion. Different method has different evaluation

criterion.

3) Finetune: during network slimming processing,

the pruning operation will unavoidable undermine

influence network accuracy. At this time, fine-tuning

is a necessary step to recover the generalization ability.

Nowadays, mainstream pruning processing [22], [23] can

be depicted in Fig. 1:

FIGURE 1. Current network pruning process.

The rest of this paper is organized as follows. We first give

a briefly introduce to our dataset in section II. Section III

at-tempts to explain how our pruned network will behavior.

Section IV gives the details of our prune criterion on convolu-

tion layer channel level. Latter, we will post the network slim-

ming evaluation criterion and experiment result in Section V.

Lastly, we give the conclusion about our original intention.

II. CONTOUR STELLAR IMAGE

We introduce the conception of CSI in our related work [18].

Inspired by [4], we believe CNN could perform better if

deeper level feature in Constellation Diagrams (CD). In CD,

a dot in the image derives from a sample point in signal wave

and CD carries the amplitude and the phase information about

this sample point.

In CSI, we consider dot density. Sliding on CD, CSI will

utilize a square window function to count how many dots

are in the window in different area. Then we will use (2) to

calculate normalized dots density:

ρ (i, j) =

∑m2
i=m1

∑n2
j=n1

dots (i, j)
∑W1

m1=W0

∑H1
n1=H0

∑m2
i=m1

∑n2
j=n1

dots (i, j)
(1)

where m1, n1 is top-left corner of square windows function

currently coordinate, m2, n2 is bottom-right corner of square

windows function currently coordinate, W0, H0 denotes for

CD top-left corner coordinate, W1, H1 denotes for bottom-

right corner coordinate of CD. ρ (i, j) is Relatively Point
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FIGURE 2. Transfer from CD to CSI color bar.

FIGURE 3. (a) CSI of BPSK at SNR equals to 14dB and CSI of QPSK at SNR
equals to 14dB (b) CSI of OQPSK at SNR equals to 14dB and CSI of 8PSK
at SNR equals to 14dB.

Destiny (RPD), dots(i, j) are:

dots (i, j) =

{
1 if (i, j) exists a dot

0 if (i, j) exists no dot
(2)

After calculating all RPD on the CD, we will map RPD

into color, the color bar is as followed:

From the perspective of signal processing, CSI could indi-

cate deep statistics information. At higher SNR, both CD and

CSI could reveal modulation signal statistical information,

such as Gaussian noise, Non-coherent single frequency inter-

ference, Phase noise, Amplifier compression in the signal

waveform. At lower SNR, due to heavily perturbation from

noise, CD modulation signal statistical information will be

disguised and CSI will use dot density to recover statistical

information by different color mapping from RPD.

III. NETWORK PRUNE BASED ON APoZ CRITERION

There exists some heuristic criteria to score the importance of

each filter in the literature. In this paper, we apply APoZ to

convolution layer.

Convolution Layer calculation time master the most of

forwards propagation time, due to numerous matrix most of

multiplication operation compared to fully connected layer.

After pruning convolution layer, the CNN will run faster.

In [24], APoZ was proposed to calculate the sparsity of

each channel in output activations as its importance score:

APoZ
(
O

(i)
C

)
=

∑N
k

∑M
I δ(O

(i)
C (k))

MN
(3)

where O
(i)
C denotes the output of c-th channel neuron in

i-th layer, O
(i)
C (k) denotes the corresponding k validation

image output of c-th channel n in i-th layer. δ is Dirac delta

function. M means the dimension of output channel of O
(i)
C ,

and N is the total number of validation examples.

Now, given a set ofm training examples {x̂i, ŷi}, and valida-

tion set {xi, yi}, we denotes the i-th neuron in l-th layer acti-

vation to ai,j, the convolution filter level pruning algorithm

based on APoZ can be defined as the following:

For convolution filter level APoZ pruning, the process can

be also depicted in Fig. 4:

FIGURE 4. Convolution filter level pruning base on APoZ.

We take AlexNet at 6dB and 0dB as an example and

consider those filter channels with APoZ higher than 0.9 to

be the less activated convolution filters. The less activated

convolution filters proportion can be depicted in Fig. 5:

FIGURE 5. (a)Activated filters and less activated filters in convolution
layer at SNR = 6dB (b) Activated filters and less activated filters in
convolution layer at SNR = 0dB.
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Algorithm 1Convolution Layer Channel Level Pruning Base

on APoZ

Input: Select i-th channel in l-th layer;

Training set {X̂i, Ŷi}; The number of ChannelC;Activation

ThesholdH ; The neuron unit a; The tolerate accuracy loss

P; Validation examples numbers N ; Output feature map

dimension M

Output: Convolution Layer Pruned CNN Model

1: initialize: CNN Parameter fixed;

APoZ (i, l) = 0

2: for t = 1, 2, . . . ,N do

3: for j = 1, 2, . . . ,M do

4: Feed CNN with t-th validation examples

5: Get the output of i-th channel

6: if ai,j = 0 then

7: APoZ (i, l) = APoZ (i, l) + 1

8: else

9: Continue

10: end if

11: end for

12: end for

13: APoZ (i, l) =
APoZ (i,l)
M×N

14: if APoZ (i, l) > H then

15: Remove Channel (i, l) from CNN

16: else

17: Continue

18: end if

19: Fine tune CNN with {̂xi, ŷi}

From Fig. 5, we could see (a) and (b) that less activated

filters makes up of 71.9 % of convolution filter in AlexNet

at 6dB and 72.2 % of convolution filter in AlexNet at 0dB,

it shows that original AlexNet trained on CSI at 6dB and 0dB

obtains a lot of redundancy parameters in convolution layer,

we may prune them.

IV. EXPERIMENT

In this section, we will firstly introduce the experiment imple-

ment detail, secondly, we will evaluate network slimming

result from FLOPs and storage perspective. Lastly, we deploy

original CNN and pruned CNN into different device to verify

our work in reality situation.

A. IMPLEMENT DETAIL

Thanks to Keras user friendliness, modularity and easy exten-

sibility feature, in our experiment, we choose AlexNet, which

is implemented in Keras 2.2.4, to conduct signal modula-

tion classification and network slimming. AlexNet consist

of 5 layers’ convolution layers and 2 fully connected lay-

ers, with 60 million parameters, and 727 million FLOPs.

We slightly modify softmax layers, change 1000 neurons

to 8 neurons to satisfied classification task while keeping

the rest layers unchanged. In addition to the changes of

model architecture, we still choose the default parameter

according to [14]. After that modification, AlexNet param-

eters shrinks to 21 million parameters and FLOPs declines to

43.20 million.

For dataset, we choose CSI dataset ranges from

−6dB to 6dB, with 8000 training set, 8000 validation set and

8000 test set per SNR. Modulation signal category includes:

4ASK, BSPK, QPSK, OQPSK, 8PSK, 16QAM, 32QAM,

64QAM.

For Validation device, we choose NVIDIA Jetson

TX2 Module to simulate computability limited environment.

In this paper, we use the concept of APoZ to measure the

importance of convolution filters. We experimented different

ways to prune the convolution filter according to the APoZ

measurements. It was found that pruning specified convolu-

tion filter or neurons too many time in one step will cause

serious and irreversible damage to accuracy. However, an iter-

ative route has been adopted to slim the network. The strategy

we use is firstly keep pruning Conv1 then pruning Conv2 and

Conv3, Conv4, Conv5 repeatedly by APoZ criterion until we

discover the loss of accuracy after fine tune. Having done

many experiment, we found the best APoZ threshold is:

T = APoZ + std(APoZ) × C (4)

where APoZ denotes the mean value of APoZ, std(APoZ)

denotes the standard deviation value of APoZ, C denotes a

hyper parameter to adjust reject threshold, T is the threshold.

In this paper, we setC to 1 and those neurons which get APoZ

higher than T will be pruned.

For dataset, [4] uses exponential decay model to convert

CD into 3-channel image, named enhanced CD, and we

choose dot density to convert CD into 3-channel image,

named CSI. To prove CSI method behave better than [4],

in this paper, we pick the same CNN architecture, AlexNet

and GoogLeNet [25], and the same category modulation sig-

nal to [4], which is 4ASK, BSPK, QPSK, OQPSK, 8PSK,

16QAM, 32QAM, 64QAM.We just use 1/10 training set and

conduct the comparison experiment.

B. ACCURACY COMPARISON

In this part, we will evaluate accuracy pruned AlexNet and

original AlexNet. In traditional view, there always exists

tradeoff between accuracy between compute complexity and

we will figure out how severely network pruning will dam-

age the accuracy. Since our test set is a balance dataset,

we directly use average accuracy to be our criterion. To com-

pute average accuracy, we use:

Acc =
Ncorrect

N
× 100% (5)

where Ncorrect is the number of correctly classified test sam-

ples, N is the total number of test samples, Acc is average

accuracy. Then we give accuracy comparison between origi-

nal AlexNet and Pruned AlexNet and [4] method in Fig. 6:

According to [26], DNN with fewer neurons may lost

capacity to present the data accurately and DNN with more

neurons will not generalize well. In other word, there exists

58116 VOLUME 7, 2019



Y. Tu, Y. Lin: Deep Neural Network Compression Technique Towards Efficient Digital Signal Modulation Recognition

FIGURE 6. Average accuracy comparison between Pruned AlexNet and
Original AlexNet and [4] method.

trade-off between train error and the network complexity.

It is a little surprise to find that pruned AlexNet perfor-

mance worse than original AlexNet just about 0.2 % ∼ 1.2%.

In essence, the pruning process based on APoZ has served

as regularity, which will pick out those filters or neurons

does not have generalizability weights. What is more, CNN

and enhanced CD achieves higher classification compared to

shallow machine learning method with expert feature, since

CNN will extract the feature that can contributes more to

classification accuracy. CNN andCSImethod surpasses CNN

and enhanced CD method in precision, which indicates CSI

is a better choice for CNN based modulation classification

dataset.

We also give the confusion matrix for pruned AlexNet and

original AlexNet at 0dB:

Compared with (a) and (b), we could find that the accuracy

decreases in OQPSK and 32QAM after pruned. From Fig. 7,

we could see that accuracy start to decline due to the different

category signal CSI feature gets close to others, AlexNet will

become more sensitive to the change of architecture.

C. FLOPS COMPRESS

Flops is one of the most prevalent ways to estimate the

amount of calculation in DNN model [23]. Flops will take

amount of calculation in convolution layer and fully con-

nected layer into consideration. This index will point how

well the pruned model will behave in computability lim-

ited device. In this part, we inspect how many Flops have

been reduced. To compute parameters compression ratio,

we use:

FCR =
Foriginal

Fpruned
(6)

where Foriginal denotes the amount of FLOPs belongs to

original AlexNet, and Fpruned denotes the amount of FLOPs

belongs to pruned AlexNet.

FIGURE 7. (a) Pruned AlexNet’s confusion matrix at 0dB (b) Original
AlexNet’s confusion matrix at 0dB.

We give the result about FCR in Fig. 8:

FIGURE 8. FCR result.

The average FCR is 13.76 ×, which shows our method has

greatly reduced the model compute complex. At higher SNR,

the image is easily to distinguish, so many feature extracted
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by convolution filter are redundancy and there exists more

space to compress the model.

D. CONVOLUTION LAYER PARAMETERS COMPRESS

Parameters amount will influence the storage and memory

cost. This index should be taken into account for storage

and memory limited devices. In this part, we will inspect

how many parameters have been compressed. To compute

parameters compression ratio, we use:

PCR =
Poriginal

Ppruned
(7)

where Poriginal denotes the amount of convolution parameters

belongs to original AlexNet, and Ppruned denotes the amount

of parameters belongs to pruned AlexNet.

We give the result about PCR in Fig. 9:

FIGURE 9. PCR result.

The average PCR is 30.28 ×, which shows our method has

greatly reduced the model parameter amount. With the same

tendency to FCR. At higher SNR, the image is easily to dis-

tinguish, so we just need few channels to finish classification

and there exists more space to compress the model.

E. THE TRANSFORMATION OF CONVOLUTION

LAYER AFTER PRUNE

In Fig. 5, we could see there exists a large amount of

less activated convolution filter with (APoZ > 0.9). To

prove the method we adopt is competent in sliming AlexNet,

we explore how convolution layer activated redundancy infor-

mation change. We still deem those neurons which has

APoZ > 0.9 to be less activated and obtain following com-

parison result:

Seen from Fig. 10, we could easily see that less activated

convolution filter (APoZ > 0.9) makes up of most propor-

tion in original AlexNet, which indicates original AlexNet

great potential in network compression by APoZ. Secondly,

we could also notice APoZ has pushed convolution layer to

be denser which tell us APoZ success to remove redundancy

from CNN.

FIGURE 10. Less activated convolution filters proportion before pruned
vs after pruned.

FIGURE 11. NVIDIA Jetson TX2 module.

F. DEVICE VALIDATION

In this part, we will start to deploy original AlexNet and

prunedAlexNet into reality device. The device we used in this

part is NVIDIA Jetson TX2 and we find out how our network

slimming will effect signal classification task in compute

limited capability device.

NVIDIA Jetson TX2 Module is an embedded AI comput-

ing device. It features a variety of standard hardware inter-

faces that make it easy to integrate it into a wide range of

products and form factors. NVIDIA Jetson TX2Module tech-

nical specification consists of NVIDIA PascalTM, 256 CUDA

cores for GPU, HMP Dual Denver 2/2 MB L2 +, Quad

ARM R© A57/2 MB L2 for CPU and 8 GB 128 bit LPDDR4.

To measure the different performance of the pruned

AlexNet and original AlexNet. We firstly read 1000 test data

sample per SNR into RAM, then we estimate the forward

propagation time by the time they need to predict all the

images in RAM. To simulate the computability limited envi-

ronment and eliminate random factor, we only set processor

to be CPU and get 10 mean of forward propagation time,

we get the comparison result as follow:
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FIGURE 12. Prediction time comparison for 1000 samples.

It can been seen that pruned AlexNet at all SNR get

faster about 3× in predicting samples in NVIDIA Jetson

TX2 Module, since we cut down the FLOPs amount in con-

volution layer. We could also inspect that the predict time are

equal at every SNR, even 6dB pruned AlexNet’ FLOPs are

much smaller to other SNR AlexNet’ FLOPs. We believe it

is caused by hardware communication delay.

V. CONCLUSION

Nowadays, more and more deep learning model have been

applied into communication field. There is an also tendency

to deploy powerful DNN model, such as AlexNet, into com-

pute and storage limited device to confront the increasing

complex communication environment. However, some pow-

erful DNN model that is designed for computer vision may

cause over-parameterized for edge equipment. In this paper,

we choose APoZ criterion to prune the network. Result shows

that light CNN convolution layer could use only 1.5% ∼ 5%

parameter and 33% ∼ 35% time without losing accuracy

more than 1.2%. However, we still lose some accuracy and

we believe we could find a safe network prune technique to

slim the networkwithout losing accuracy and even get a better

accuracy. In future, we will find a more effective criterion to

conduct network prune.
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