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Deep neural network-estimated
electrocardiographic age as a mortality predictor
Emilly M. Lima1,2,8, Antônio H. Ribeiro3,4,8, Gabriela M. M. Paixão1,2,8, Manoel Horta Ribeiro5,

Marcelo M. Pinto-Filho 1,2, Paulo R. Gomes 1,2, Derick M. Oliveira3, Ester C. Sabino 6, Bruce B. Duncan 7,

Luana Giatti2, Sandhi M. Barreto2, Wagner Meira Jr3, Thomas B. Schön 4✉ & Antonio Luiz P. Ribeiro 1,2✉

The electrocardiogram (ECG) is the most commonly used exam for the evaluation of car-

diovascular diseases. Here we propose that the age predicted by artificial intelligence (AI)

from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural

network is trained to predict a patient’s age from the 12-lead ECG in the CODE study cohort

(n= 1,558,415 patients). On a 15% hold-out split, patients with ECG-age more than 8 years

greater than the chronological age have a higher mortality rate (hazard ratio (HR) 1.79,

p < 0.001), whereas those with ECG-age more than 8 years smaller, have a lower mortality

rate (HR 0.78, p < 0.001). Similar results are obtained in the external cohorts ELSA-Brasil

(n= 14,236) and SaMi-Trop (n= 1,631). Moreover, even for apparent normal ECGs, the

predicted ECG-age gap from the chronological age remains a statistically significant risk

predictor. These results show that the AI-enabled analysis of the ECG can add prognostic

information.
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The electrocardiogram (ECG) is the most commonly used
exam for the screening and evaluation of cardiovascular
diseases. Computerized, rule-based, ECG interpretation

was developed to facilitate medical research and clinical practice.
However, the limited accuracy of these methods has limited their
application1,2. In this context, deep neural networks (DNNs) are a
promising machine learning approach for the automated analysis
of the ECG and have achieved unprecedented performance in
initial studies3,4.

DNNs present a paradigm shift from classical ECG automated
analysis methods. Classical methods use signal processing tech-
niques to extract the measurements, wavelengths, and detect
abnormal beats from the ECG signal and then use the extracted
information as input features to a classifier5. DNN-based ECG
analysis, on the other hand, is based on an “end-to-end”
approach, for which the raw signal is used as an input to the
classifier, which learns to extract the features by itself3,4.

Unlike the traditional methods, features learned by end-to-end
ECG automated analysis methods do not necessarily have an
interpretation rooted in electrocardiographic knowledge. If this
paradigm introduces new challenges regarding model
interpretability6 and out-of-distribution robustness7, it also
introduces new possibilities when it comes to applications.
Examples that go beyond traditional electrocardiography and
have been achieved using end-to-end approaches include: pre-
dicting the risk of death from the ECG8; identifying patients who
will develop atrial fibrillation from a previous ECG taken during
sinus rhythm9; and screening for cardiac contractile dysfunction
using only the 12-lead ECG10. This suggests that end-to-end
models might be able to identify additional markers that, in turn,
might be practical and useful tools in cardiovascular disease
prediction.

In this context, we turn to the use of machine learning algo-
rithms to infer age from ECG tracings11,12. Previous studies have
shown that the age estimated from the ECG (the ECG-age) is
related to cardiovascular health11,12: The ECG-age, calculated
using a Bayesian model in 5-min ECGs, tended to be close to the
chronological age in healthy non-athletes, whereas most subjects
with risk factors or proven heart diseases had a predicted ECG-
age that was higher than their chronological age11; in another
study, patients with a DNN-predicted age that exceeded the
chronologic age by 7 or more years presented a higher frequency
of low ejection fraction, hypertension, and coronary disease12.
More recently, ECG-derived age has also been related to vascular
aging, measured by peripheral endothelial dysfunction13.

Biological aging refers to the decline in tissue/organismal
function, whereas chronological aging simply indicates the time
passed since birth14. In normally aging individuals, chronological
and biological ages are the same. Biological aging, however, is
affected by lifestyle, environmental factors, inheritable and
acquired conditions, and diseases. Accelerated biological aging
points to the decline of tissue/organismal function at a faster rate
than the average, and hence associated with the risk of a pre-
mature death14. Most available biomarkers of biological age
measure a specific aspect of aging, like molecular and cellular
biomarkers, and functional and structural vascular parameters14.
Multiple exams and composite scores are often needed, adding
cost, risk, and complexity to the evaluation. ECG exams are low-
cost and widely available, being part of the routine evaluation of
many patients in both primary and specialized care. Thus, if ECG
can provide an accurate estimate of the biological age it can be
potentially useful in clinical practise.

We build on the hypothesis that an AI model exposed to many
ECG exams with the task of predicting the age might learn to
capture, on average, how aging affects the ECG exam. Age is a
risk factor for cardiac diseases that affects ECG measurements

and the likelihood of having an ECG with a higher incidence of
abnormalities15,16. Hence, here we study the possibility of using
this AI predicted ECG-age as an indicator of cardiovascular
health. We refer to this age predicted by the AI model from the
raw 12-lead ECG tracing as predicted ECG-age, or just ECG-age,
and, to contrast that, we refer to the patient age as
chronological age.

In this paper, we demonstrate that this AI predicted ECG-age
is a potentially useful tool in the assessment of the risk of death in
the general population. We developed, in the CODE Study
cohort17, a DNN-based age-prediction model and assessed if the
difference between predicted ECG-age and chronological age is a
predictor of overall mortality. The model is validated in two
external cohorts, ELSA-Brasil18, of Brazilian public servants, and
SaMi-Trop19, of Chagas disease patients. Furthermore, we tested
if the predictive value remains significant after controlling for the
presence of cardiovascular risk factors and for subjects with
normal ECGs. We sought to determine whether it can be used as
a prognostic marker in the general population. Finally, we also
undertook an exploratory analysis to investigate mechanisms that
are involved in ECG-age prediction, looking at the main com-
ponents used during the classification. This is done both by
analyzing the model sensitivity to changes in the ECG signal and
by the manual review of the ECGs and the corresponding pre-
dicted ECG-age by trained cardiologists.

Results
Deep neural network age-predictor model. We used the CODE
Study cohort17 to develop a DNN capable of predicting the
patient’s age from the raw ECG tracing. The dataset consists of
ECG records from 1,558,415 patients of 811 counties in the state
of Minas Gerais (Brazil) collected by the Telehealth Network of
Minas Gerais (TNMG). Patients were divided into 85–15% splits
with the 85% split being used to develop the model (see Methods
section).

The model is evaluated in three different cohorts, unseen by
the DNN model during its development, the 15% hold-out split
described above, which will be referred to as the CODE-15%
cohort (with 218,169 participants), the ELSA-Brasil (with 14,236
participants), and the SaMi-Trop cohorts (with 1631 partici-
pants). Table 1 summarizes the baseline characteristics for each of
the cohorts including median follow-up and number of events.
Compared to the CODE-15% cohort, mean age, the prevalence of
cardiovascular risk factors, and previous myocardial infarction
were higher in both ELSA-Brasil and SaMi-Trop cohorts. The
frequency of events was the highest in the SaMi-Trop cohort,
composed of Chagas disease patients, many with chronic
cardiomyopathy.

We used the DNN architecture known as the residual
network20 to perform the task. The architecture has been
successfully used for ECG abnormality detection in previous
work3,4. The DNN mean absolute error (MAE) in the age
prediction task is 8.38 (with standard deviation, s.d., 7.00), 8.44
(s.d. 6.19), and 10.04 (s.d. 7.76) for the CODE-15%, ELSA-Brasil,
SaMi-Trop, respectively. Figure 1 shows the relation between
predicted ECG-age and chronological age for all the patients in
the cohorts.

In the following sections, we try to establish the prognostic
relevance of the ECG-age. We perform regression analyses that
use the ECG-age as an input variable. In these analyses we always
use the CODE-15% cohort for deriving the statistics and the
ELSA-Brasil and SaMi-Trop for validating them.

Electrocardiographic age as a mortality predictor. We try to
establish the relevance of ECG-age as a predictor of mortality. We
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divided the patients into three groups, based on differences
between predicted ECG-age and chronological age: (a) those with
ECG-age more than 8 years greater than the chronological age;
(b) those with ECG-age within a range of 8 years from their
chronological age; and, (c) those with ECG-age more than 8 years
smaller than the chronological age. The MAE in the CODE
dataset is ~8 years, which motivates our choice for the thresholds
used. That is, when the predicted ECG-age deviates from the
chronological age by more than the mean deviation found in the
derivation cohort we classify into group (a) if the deviation is
positive, and into group (c), if it is negative. Experiments with
alternative choices of threshold yield qualitatively similar results.

The risk of death for these three groups, expressed by their
hazard ratios (HR), is shown in Table 2, together with the 95%
confidence intervals (CI). We fit a Cox model, adjusted for age
and sex, in the CODE-15% cohort. The adjusted survival curves
for this model are presented in Fig. 2. This model indicates that
participants with an estimated ECG-age of more than 8 years
greater than the chronological age had higher mortality risk (HR
1.79, 95% CI 1.69–1.90; p < 0.001). On the other hand, those with
an estimated ECG-age of more than 8 years smaller than the
chronological age had a lower mortality risk (HR 0.78, 95% CI
0.74–0.83, p < 0.001). Results in the ELSA-Brasil cohort, were
similar: with a higher mortality risk (HR 1.75, 95% CI 1.35–2.27;
p < 0.001) for those with estimated ECG-age of more than 8 years
greater than the chronological age; and a lower mortality rate (HR

0.74, 95% CI 0.63–0.88; p < 0.001) for those with ECG-age more
than 8 years years less than the chronological age. In the SaMi-
Trop cohort, patients with an ECG-age more than 8 years greater
than the chronological age had a higher mortality risk (HR 2.42,
95% CI 1.53–3.83; p < 0.001); for ECG-age more than 8 years
smaller than the chronological age, however, the observed
decrease in mortality risk was not statistically significant (HR
0.89, 95% CI 0.52–1.54; p= 0.68)). Additional analysis also show
that Cox model adjusted by sex and age presents a good
performance in the prediction of 1-year mortality, with an area
under the curve, AUC, of 0.80 (95% CI 0.79–0.81) for the CODE-
15% cohort, 0.77 (95% CI 0.66–0.87) for the ELSA-Brasil, and
0.74 (95% CI 0.68–0.80) for the SaMi-Trop.

The importance of the ECG-age in predicting mortality
remains also when we adjust the model for cardiovascular risk
factors. Hazard ratios for models adjusted by different selections
of variables cardiovascular risk factors are given in Table 2. In this
analysis, we additionally adjusted the model for hypertension,
diabetes mellitus, and smoking habits, but this did not yield
significant differences in the results. As in the first case, all
associations (except for ECG-age more than 8 years smaller than
the chronological age in the Sami-Trop cohort) remained
significant with little change in the adjusted HR. We also did
additional adjustments for dyslipidemia (CODE-15% and ELSA-
Brasil cohorts) and obesity (ELSA-Brasil), without changing
significantly the magnitude of the observed association.

Table 1 Baseline characteristics.

CODE-15% (n= 218,169) ELSA-Brasilb (n= 14,263) SaMi-Tropc (n= 1631)

Characteristicsa

Sex, male, n (%) 88,508 (41) 6494 (46) 550 (34)
Age (years), mean (s.d.) 51 (20) 52 (9) 60 (13)
Hypertension, n (%) 64,767 (30) 5108 (36) 593 (36)
Diabetes, n (%) 13,720 (6) 2830 (20) 161 (10)
Smoking, n (%) 13,645 (6) 1882 (13) 498 (31)
Previous myocardial infarction, n (%) 1553 (0.7) 258 (1.8) 76 (5)
Follow-up(years), median (IQR) 3.4 (2.1–5.0) 9.8 (8.9–10.0) 2.1 (2.0–2.2)
Events, n (%) 8110 (3.7) 617 (4.3) 104 (6.4)

The table summarizes the characteristics of the three cohorts analyzed in this study. It includes the baseline characteristics, the summary of follow-up time, and the number of events.
aData are expressed as number (percentage) unless otherwise indicated.
bThere are missing values in variables from the ELSA-Brasil cohort (hypertension, 13; diabetes, 3; smoking, 1; previous myocardial infarction, 7); valid percentages are reported.
cThere are missing values in a variable from the SaMi-Trop cohort (smoking, 6); valid percentages are reported.

Fig. 1 Chronological vs ECG-age. The scatter plots display the relation between the predicted ECG-age and chronological age. The black line is the identity
line. The lateral histograms show the distributions of predicted ECG-age and chronological age among patients of the cohorts. a CODE-15% cohort, b
ELSA-Brasil cohort, c SaMi-Trop cohort. The mean predicted ECG-age was 52 (s.d. 19), 47 (s.d. 11), 63 (s.d. 14), for CODE-15%, ELSA-Brasil cohort and
SaMi-Trop cohort, respectively. The R2 (Pearson correlation) was 0.71 (r= 0.84) in the CODE-15%, 0.32 (r= 0.57) in ELSA-Brasil cohort and 0.35
(r= 0.59) in the SaMi-Trop cohort.
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Supplementary Table 1 presents baseline characteristics for
each of the cohorts by ECG-age groups. We find that in all three
cohorts, the group of patients with an ECG-age of more than 8
years greater than the chronological age have the lowest average
chronological age (CODE-15%: 42.2; ELSA-Brasil: 48.5; SaMi-
Trop: 54, p < 0.001 for t-tests comparing average ages with the
other ECG-age strata). Although seemingly contradictory, this is
in accordance with the hypothesis that ECG-age is indeed a
predictor of mortality. Since patients that have an ECG-age
higher than their chronological age are more likely to die, older
patients whose ECG-age is higher than their chronological age are
not likely to be a part of the sample we are analyzing.

Electrocardiographic age as a mortality predictor in apparently
normal ECGs. Table 3 describes conventional ECG measure-
ments for the participants in the three groups described above -
i.e., (a) patients with predicted ECG-age more than 8 years
greater than their chronological age; (b) more than 8 years
smaller than their chronological age; and, (c) within a range of 8
years from their chronological age. Although in the CODE-15%
cohort statistically significant differences can be seen for all
measurements (p < 0.001 for all), these numbers do not yield a
clinically significant difference. From a clinical perspective, these
measurements can be considered remarkably similar to each
other. In the ELSA-Brasil cohort, measurements were also
numerically similar with a statistically significant difference
obtained only for heart rate (p < 0.001) and QTc interval
(p < 0.001).

To further evaluate whether the predicted ECG-age by the
DNN was related to traditional electrocardiographic abnormal-
ities, we performed an additional analysis, now restricted to
normal ECGs from the CODE-15% and ELSA-Brasil cohorts.
Which have, respectively, 80679 and 7691 participants with
normal ECGs. We did not perform this analysis in the SaMi-Trop
because most patients had ECG abnormalities related to Chagas
disease. What was considered as normal ECG is defined in
Methods section. An analysis with a Cox model restricted to the
normal ECG was performed and the obtained hazard ratios are
displayed in Table 4. The same parameters of the analysis in
Table 2 are used. In the model adjusted by age and sex, ECG-age
more than 8 years greater than the chronological age remained a
statistically significant predictor of death risk in both cohorts (HR
1.53, 95% CI 1.30–1.80, p < 0.001 in CODE-15% and HR 1.63,
95% CI 1.00–2.66 p= 0.050 in ELSA-Brasil). On the other hand,
ECG-age more than 8 years smaller than the chronological age
remained associated with reduced risk of mortality in the CODE-
15% (HR 0.66, 95% CI 0.57–0.76 p < 0.001) but was not
statistically significant in the ELSA-Brasil cohort (HR 0.91, 95%
CI 0.68–1.21 p= 0.502).

The results for models additionally adjusted for cardiovascular
risk factors is also displayed in Table 4. After the adjustment,
ECG-age more than 8 years greater than the chronological age
was associated with increased risk of mortality in CODE-15%
cohort (HR 1.52, 95% CI 1.29–1.79, p= 0.015), but not in ELSA-
Brasil (HR 1.49, 95% CI 0.91–2.43, p= 0.114). This was also true
for an ECG-age more than 8 years smaller than the chronological
age. Risk was significantly decreased in CODE-15% cohort (HR
0.66, 95% CI 0.57–0.76, p < 0.001) but not in ELSA-Brasil (HR
1.00, 95% CI 0.75–1.33, p= 0.990). Which might be justified by
the lack of statistical power due to the small number of deaths in
this group for the ELSA-Brasil cohort (n= 19). Additional
adjustments for dyslipidemia (CODE-15% and ELSA-Brasil
cohorts) and obesity (ELSA-Brasil) do not qualitatively change
the results.T
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Electrocardiographic age and cardiovascular risk factors. Fig-
ure 3a represents which cardiovascular risk factors were most
likely associated with a predicted ECG-age more than 8 years
greater than the chronological age considering all ECGs from
ELSA-Brasil cohort. After logistic regression adjusted for age and
sex, hypertension, diabetes, smoking, and obesity remained sig-
nificantly associated with an increased odds of having an ECG-
age more than 8 years greater than the chronological age. In
Fig. 3b the same model was applied only to participants with a
normal ECG. Hypertension, diabetes, and smoking were sig-
nificantly associated with a predicted ECG-age more than 8 years
greater than the chronological age.

Interpretability and time and frequency domain saliency maps.
To assess whether ECG-age captures signals that can be inter-
preted by cardiologists, we conducted an additional experiment.
We paired ECG-ages of subjects with the same chronological age,
but where one of them had an ECG-age more than 8 years greater

than their chronological age and the other more than 8 years
smaller than their chronological age. Then, three medical doctors
were asked to independently determine, for each pair, which ECG
tracing was associated with the subject with higher ECG-age.
Analyzing doctor’s assessments of 134 pairs of traces, aggregated
through majority voting, we found that they were not sig-
nificantly better than random (χ2= 3.0, p= 0.12). We provide
detailed results in Supplementary Table 2. Throughout the
experiment, doctors were given feedback about their predictions
(in Stage 2), this did not increase their accuracy in the subsequent
stage. In fact, they performed worse in Stage 3 (accuracy=
45.5%), after the feedback, than in Stage 1 (accuracy= 64.4%),
before the feedback, or in Stage 2 (accuracy= 62.2%), during the
feedback.

Additionally, we randomly generated 50 pairs of normal ECG
tracings, with saliency maps21 highlighting the regions in the
ECG tracing that have the highest impact in the predicted ECG-
age (see Methods section). Supplementary Fig. 1 provides some

Fig. 2 Adjusted survival curves. The plots display the survival curves for the different cohorts. a CODE-15% cohort, b ELSA-Brasil cohort, c SaMi-Trop
cohort. The curves are computed from the age and sex-adjusted Cox proportional model for all-cause mortality. Three groups of patients are taken into
consideration: those with ECG-age more than 8 years greater than the chronological age (denoted by: “>8 years older”); those with ECG-age within a range
of 8 years from their chronological age (denoted by: “±8 years”); and, those with ECG-age more than 8 years smaller than the chronological age (denoted
by: “>8 years younger”).

Table 3 ECG measurements.

CODE-15% (n= 80,679) ELSA-Brasil (n= 7,691)

± 8 years >8 years
younger

>8 years older p value ± 8 years >8 years
younger

>8 years older p value

Heart rate (bpm) 70 (63–78) 70 (62–79) 71 (64–79) <0.001 66 (61–72) 64 (59–71) 69 (63–75) <0.001
P duration (ms) 106 (100–114) 108 (100–116) 108 (100–116) <0.001 108 (102–116) 110 (102–116) 108 (100–116) 0.558
QRS axis 47 (27–65) 45 (25–62) 43 (24–60) <0.001 44 (21–60) 43 (20–61) 44 (19–61) 0.737
QRS duration (ms) 90 (84–96) 90 (84–96) 92 (84–98) <0.001 86 (80–92) 86 (82–92) 86 (80–90) 0.068
Average RR
interval (ms)

845 (757–942) 845 (750–950) 837 (750–932) <0.001 – – – –

QTc (ms) 411 (400–424) 413 (401–425) 413 (401–425) <0.001 416 (405–427) 414 (403–426) 418 (406–429) <0.001

The table displays the median, and (“under parentesis”) the interquartile range, for the ECG measurements. It considers three groups of patients: those with ECG-age more than 8 years greater than the
chronological age (denoted by: “>8 years older”); those with ECG-age within a range of 8 years from their chronological age (denoted by: “±8 years”); and, those with ECG-age more than 8 years smaller
than the chronological age (denoted by: “>8 years younger”). Statistical comparison of the medians is made through Kruskal–Wallis two-sided test.
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illustrative examples. We asked the same set of three medical
doctors to qualitatively analyze which sections of the ECG were
being frequently highlighted by the visualization algorithm.
Doctors independently suggested that low-frequency compo-
nents, as P and T waves, were disproportionately highlighted.

We also generate saliency maps in the frequency domain giving
the relative importance of each frequency component for the final
prediction (see Methods section). Supplementary Figure 2 shows
the median and interquartile range from this analysis for 100
normal exams in each cohort. The analysis suggests the frequency
component between 8 and 15 Hz of the ECG spectrum are the
ones that most contribute to the model prediction.

A fine-grained analysis of the relation between ECG-age and
mortality. In most of the discussion in this paper we use a hard
threshold of 8 years old between the predicted ECG-age and the
chronological age to separate the patients into different risk
groups. In Supplementary Fig. 4, we present an alternative setup
where we split the patients into five quintiles of the difference of
predicted ECG-age and chronological age and show adjusted
survival, hazard ratios, and 95% confidence intervals for these
groups. The results indicate that the groups where predicted
ECG-age is lower than the chronological age (Q1 and Q2) had a
lower risk of mortality and the groups Q4 and Q5 had a higher
risk of mortality. Both when all exams are considered and when
only normal exams are considered.

Discussion
In this paper, we use a data-driven approach to obtain a model
that predicts age from the raw ECG tracing. By having the
chronological age of the person as the prediction target, we expect
the trained model to learn to capture, on average, how aging
affects the ECG exam. Indeed, having a predicted ECG-age higher
than one’s actual age is an indication that the exam is similar to
those of older people, who have a higher associated cardiovas-
cular risk and are more likely to die from cardiovascular diseases.
We show that classical cardiovascular risk factors are associated
with having an ECG-age more than 8 years greater than the
chronological age. For some risk factors, such as hypertension,
diabetes mellitus, and smoking, the association remains even
when only normal ECGs were considered (cf. Fig. 3). Moreover,
this study shows, in three different cohorts, that the difference

between the ECG-age and the chronological age can be used as a
marker of the risk of death.

From a clinical perspective, ECG-age may present itself partly
as a natural summary index of ECG changes and abnormalities
accumulated during the life course of each subject. ECG tracings
are affected by a large number of factors and mechanisms and,
while summarizing them in a single number is a huge over-
simplification, it can still be useful. It transmits the idea of car-
diovascular risk in a language that does not require medical
expertize and can be understood by patients and other profes-
sionals without medical training. In the literature, an AI-based
model that predicts the probability of 1-year mortality have been
recently proposed8 and could also play a similar role. None-
theless, reporting the ECG-age seems more intuitive from a
patient perspective and, probably, easier to be used in clinical
practice.

The analyses suggest that ECG-age is capable of capturing
more than traditional ECG abnormalities or underlying condi-
tions. Over-estimation of ECG-age was significantly associated
with death after controlling for age and sex, cardiovascular risk
factors and, even, when calculated only for subjects with normal
ECGs. In the case of normal ECGs, this association was sig-
nificant in CODE-15% but not in the ELSA-Brasil cohort. This
might be explained by the small number of deaths in the ELSA-
Brasil cohort or by the poorer annotation of risk factors in the
CODE-15% study, in which this information is self-reported and
obtained during the clinical activity. Moreover, ECG measure-
ments were also not meaningfully different in the groups with
predicted ECG-age more than 8 years greater than, more than 8
years smaller than, and within a range of 8 years from their
chronological age.

Since the maintenance of a normal ECG status over time is
associated with a low risk of cardiovascular diseases in a dose-
response relationship22, we hypothesize that the DNN might be
able to identify subtle abnormalities that are not being currently
identified in traditional analysis. This could help justify the
capacity of evaluating the risk even for apparently normal ECGs.
The lack of capability of trained doctors to distinguish between
pairs of normal ECGs of the same age but different ECG-age (see
Supplementary Table 2) also supports this hypothesis.

The advance of interpretable machine learning algorithms23

might make it possible to leverage the features used by these
models into clinical practice. Our initial insights on the
mechanisms used for the estimation of ECG-age - and its

Table 4 Hazard Ratios for normal ECGs.

CODE-15% (n= 80,679) ELSA-Brasil (n= 7,691)

HR (CI 95%) p value HR (CI 95%) p value

Adjusted by age and sex
ECG-age < age−8 years 0.66 (0.57–0.76) <0.001 0.91 (0.68–1.21) 0.502
ECG-age > age+8 years 1.53 (1.30–1.80) <0.001 1.63 (1.00–2.66) 0.050
Adjusted by age, sex, hypertension, diabetes mellitus, and smoking
ECG-age < age−8 years 0.66 (0.57–0.76) <0.001 1.00 (0.75–1.33) 0.990
ECG-age > age+8 years 1.52 (1.29–1.79) <0.001 1.49 (0.91–2.43) 0.114
Adjusted by age, sex, hypertension, diabetes mellitus, smoking, and dyslipidemia
ECG-age < age−8 years 0.66 (0.57–0.76) <0.001 1.00 (0.75–1.33) 0.990
ECG-age > age+8 years 1.52 (1.29–1.79) <0.001 1.49 (0.91–2.43) 0.114
Adjusted by age, sex, hypertension, diabetes mellitus, smoking, dyslipidemia, and obesity
ECG-age < age−8 years Not available 1.00 (0.75–1.33) 0.992
ECG-age > age+8 years 1.42 (0.86–2.35) 0.171

The table displays, for patients with a normal ECG, the hazard ratios (HR) according to the differences between ECG-age and chronological age. The HR summarizes the Cox regression models obtained
for overall mortality. The models were adjusted by different selection of variables (including age, sex, and cardiovascular risk factors).
The number of events was n= 1074 for CODE-15% and n= 228 for ELSA-Brasil. The number of events when ECG-age is more than 8 years smaller than the chronological age there were, n= 249 and
n= 105 for CODE-15% and ELSA-Brasil, respectively. Considering ECG-age is more than 8 years greater than the chronological age there were n= 203 and n= 19 events for CODE-15% and ELSA-Brasil,
respectively.
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prognostic value - suggest that low-frequency components of the
ECG, usually associated with P and T waves, might play an
important role although these considerations would deserve a
specific and more detailed investigation.

Despite being part of the routine evaluation of many patients in
both primary and specialized care, the role of ECG exams are
low-cost and widely available, the role in cardiovascular disease
prediction and, hence, prevention is not as clear. Its prognostic
impact has been explored in previous publications24,25, none-
theless, the available methods are not widely adopted as a
screening tool for individuals free of cardiovascular disease26. Our
study is a further step towards a more practical use of the ECG in
prognostic evaluation, considering that ECG-age can be a marker
of the biological age of the cardiovascular system, or “cardio-
vascular age”. This concept was introduced in previous
studies27,28 with the purpose of improving risk communication
and patient adherence to proposed interventions. There, however,
the value does not provide additional information to what the
calculated risk already informs (since it is calculated based only
on them). Doctors often struggle in decision making regarding
treatment for primary prevention of cardiovascular diseases in
intermediate risk patients. Identifying new risk modifiers that can
potentially improve risk prediction in this population (either by a
positive net reclassification index or by derivation of a new pre-
dictive model) is paramount. This is specially true if such a
marker is derived from an inexpensive and widely available tool
such as the ECG. The analysis presented here shows that the
ECG-age can inform on risk that is not accounted for in tradi-
tional cardiovascular risk factors. And, in this sense, the concept
can go beyond the concept of “cardiovascular age” proposed in
previous studies27,28.

Our work is perhaps best understood in the context of its
limitations. The use of end-to-end DNN models is central to this
work and yielded interesting findings (such as the possibility of
predicting mortality even for apparent normal ECGs). None-
theless, the complexity of these models makes it hard to fully
interpret the results. Our exploratory analysis included sensitivity
analysis both in the time and frequency domain and the analysis
and review of more than 100 ECGs by trained cardiologists.

While it did provide some insight on what is being detected by
the model, it is far from sufficient to completely explain the
findings. Furthermore, while our study demonstrates the potential
clinical utility of the ECG-age in individual risk prediction, fur-
ther studies are desired to evaluate its incorporation in the clinical
practise, including its use in addition to established risk calcula-
tors for primary prevention of cardiovascular diseases.

Here, we present the mortality risk prediction as a downstream
task. That is, a model that was trained for predicting the patient’s
age is later used for a different task: that of mortality prediction.
This shows the model is useful in scenarios that it has not been
explicitly trained on and when used in a simple linear cox model
it can help separate patients in different risk groups. Nonetheless,
one possible limitation of this analysis is that the relations con-
sidered in this second step are only the linear ones. Hence, taking
into consideration nonlinear relations in this second step could
possibly modify the observed relationship.

To conclude, the predicted ECG-age may reflect biological age
and it is a promising tool for risk prediction of overall mortality.
It summarizes the information from the ECG in a single index
with a clear interpretation for the patient. Data for training these
models are also easy to obtain: while producing large datasets
fully annotated with electrocardiographic abnormalities requires
many hours of work by trained physicians, self-reported age is
usually easy information to come by. Finally, the ability to predict
mortality even for normal ECGs suggests that there might still be
subtle electrocardiographic markers and abnormalities that are of
interest and are not being captured in traditional analysis and the
models presented here might be a useful tool in trying to
find them.

Methods
Ethics declarations. This study complies with all relevant ethical regulations.
CODE Study was approved by the Research Ethics Committee of the Universidade
Federal de Minas Gerais, protocol 49368496317.7.0000.5149. Since this is a sec-
ondary analysis of anonymized data stored in the TNMG, informed consent was
not required by the Research Ethics Committee for the present study. ELSA-Brasil
was approved by the Research Ethics Committees of the participating institutions
and by the National Committee for Research Ethics (CONEP 976/2006) of the
Ministry of Health. Sami-Trop study was approved by the Brazilian National
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Fig. 3 Adjusted odds ratios (ORs) for the ELSA-Brasil cohort. The figure shows the adjusted ORs of the ECG-age being more than 8 years greater than
the chronological age for risk factors. a All patients; and, b only for patients with normal ECG. The dots represent the adjusted ORs (by age and sex) and
the horizontal lines represent the corresponding 95% CIs. HAS hypertension, DM diabetes mellitus, DLP dyslipidemia.
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Institutional Review Board (CONEP), No. 179.685/2012. In both investigations, all
human subjects were adults who gave written informed consent. All researchers
who deal with datasets signed terms of confidentiality and data utilization.

The CODE cohort. Clinical Outcomes in Digital Electrocardiography (CODE)
study17 was developed with the database of digital ECG exams of the TeleHealth
Network of Minas Gerais (TNMG)29,30, Brazil, linked to the public databases of the
Mortality and Hospitalization Information Systems. It was expected that the
consolidated database would be useful for multiple purposes, including the eva-
luation of the epidemiological and prognostic significance of ECG findings31 and
the development of new methods of automatic classification of ECG
abnormalities3, using both conventional statistical methods and new machine
learning techniques.

Patients over 16 years old with a valid ECG performed from 2010 to 2017 were
included. Clinical data were self-reported. A hierarchical free-text machine learning
algorithm recognized specific ECG diagnoses from cardiologist reports. The
Glasgow ECG Analysis Program provided Minnesota Codes and automatic
diagnostic statements. For the CODE database, the presence of a specific
electrocardiographic diagnosis was considered automatically when there was an
agreement between the diagnosis extracted from the cardiologist report and the
automatic report from Glasgow Diagnostic Statements or Minnesota code. In cases
where there were discordances between medical reports and one of the automatic
programs, a manual revision was done by trained cardiologists17.

The electronic cohort was obtained linking data from the ECG exams (name,
sex, date of birth, and city of residence) and those from the national mortality
information system, using standard probabilistic linkage methods (FRIL: Fine-
grained record linkage software, v.2.1.5, Atlanta, GA). After the linkage, the data
was anonymized for storage17.

From a dataset of 2,470,424 ECGs, 1,773,689 patients were identified. After
excluding the ECGs with technical problems and patients under 16 years old, a
total of 1,558,415 patients were included for analyses. The mean age was 51.6
[s.d.17.6] years with 40.2% male. The overall mortality rate was 3.34% in a mean
follow-up of 3.7 years17.

The model was also evaluated in two established cohorts, the São Paulo-Minas
Gerais Tropical Medicine Research Center (SaMi-Trop)19 of Chagas disease
patients and the Longitudinal Study of Adult Health (ELSA-Brasil)18, of Brazilian
public servants, in which raw ECG tracings from the baseline and follow-up with
total mortality as the end-point are available. These cohorts are described next.

The CODE-15% cohort. The CODE-15% is a subset of the CODE cohort. The
CODE cohort was divided into 85-15% splits, with the 85% split being used for
developing the model and 15% hold-out being the one used in subsequent analyses
and referred to as CODE-15%. This hold-out set is obtained by a stratified sam-
pling procedure, where the stratification is made with respect to the patients age.
The procedure is illustrated in Supplementary Fig. 5. Given all the exams from the
original CODE cohort, we group the exams by the age of the patient at the time of
the examination. One group for each age ranging from 16 to 85 years, i.e. a total of
70 uniformly spaced age groups. The CODE-15% cohort is obtained by picking the
same number of exams (~3100) at random from each age group. The result is an,
approximately, uniform age distribution from 16 years to 85 years. Only the first
patient exam is considered in all the analysis with this cohort and the remaining
exams from the patients are removed from the remaining data and not used in the
analysis. We do not sample from patients older than 85 or younger than 16 years,
which do not appear in the CODE-15% cohort.

The ELSA-Brasil cohort. ELSA-Brasil is a cohort study that aims to investigate the
development of chronic diseases, primarily diabetes and cardiovascular diseases,
over a long-term follow-up32,33. All active or retired employees of the six institu-
tions (and, in a few instances, also of related educational or health institutions)
from six Brazilian capitals, of both sexes, and with ages between 35 and 74 years,
were eligible for the study. Exclusion criteria were severe cognitive or commu-
nication impairment, intention to quit work at the institution in the near future for
reasons not related to retirement, and, if retired, residence outside the corre-
sponding metropolitan area. Women with current or recent pregnancy were
rescheduled so that the first interview could take place ≥4 months after delivery. A
total of 15,105 participants were enrolled, 6887 men and 8218 women, thus giving
reasonably large numbers for sex-specific analyses. Baseline assessment (2008–10)
included detailed interviews and measurements to assess social and biological
determinants of health, as well as various clinical and subclinical conditions related
to diabetes, cardiovascular diseases, and mental health. A second and third visit of
interviews and examinations were done (2012–14 and 2017–2019) to enrich the
assessment of cohort exposures and to detect initial incident events. Annual sur-
veillance has been conducted since 2009 for the ascertainment of incident events.
Biological samples (sera, plasma, urine, and DNA) obtained at both visits have
been placed in long-term storage. In a mean of 9.36 years of follow-up, 14,263
(94,5%) participants were followed, until 01/01/2020, 617 (4.3%) died and 842
(5.6%) were lost to follow-up.

The SaMi-Trop cohort. SaMi-Trop is an NIH-funded prospective cohort of 1959
patients with chronic Chagas cardiomyopathy to evaluate whether a clinical pre-
diction rule based on ECG, brain natriuretic peptide (BNP) levels, and other
biomarkers can be useful in clinical practice19,34. The study is being conducted in
21 municipalities of the northern part of Minas Gerais State in Brazil with at least 2
years of follow-up, including one visit at baseline and another at 24 months. Eli-
gible patients were selected based on the ECG results performed in 2011–2012 by
the Telehealth Network of Minas Gerais, which from now on will be called index
ECG. Only patients who fulfilled all of the following inclusion criteria were
selected: (1) self-reported Chagas disease; (2) an index ECG reported as abnormal
and (3) aged 19 years or more. The exclusion criteria included pregnancy or
breastfeeding, and any life-threatening disease with an ominous prognosis that
suggested a life expectancy of <2 years. The baseline evaluation included a col-
lection of sociodemographic information, social determinants of health, health-
related behaviors, comorbidities, medicines in use, history of previous treatment for
Chagas disease, functional class, quality of life, blood sample collection, and ECG.
Patients were mostly female, aged 50–74 years, with low family income and edu-
cational level, with known Chagas disease for >10 years; 46% presented with
functional class > II. Previous use of benznidazole was reported by 25.2% and
permanent use of pacemaker by 6.2%. Almost half of the patients presented with
high blood cholesterol and hypertension and one-third of them had diabetes
mellitus. N-terminal of the prohormone BNP (NT- ProBNP) level was >300 pg/mL
in 30% of the sample. Clinical and laboratory markers predictive of severe and
progressive Chagas disease were identified as high NT-ProBNP levels, as well as
symptoms of advanced heart failure34. During a mean follow-up of 2.09 years, 1631
patients were being followed until the 2nd visit. In total, 104 (6.4%) died and 328
(16.7%) were lost to follow-up.

Electrocardiographic and clinical definitions in CODE and ELSA-Brasil. An
ECG was considered “normal” in the CODE cohort according to conventional
clinical reporting and by having automatic measurements by the Glasgow software
within the normal range. In the ELSA-Brasil and Sami-Trop cohorts, ECGs were
codified by the Minnesota code18,35 with manual review of a trained cardiologist.
Those with no major or minor abnormalities according to the criteria were con-
sidered normal.

All clinical risk factors included in the CODE cohort were self-reported in a
clinical standardized questionnaire. Hypertension, diabetes, and dyslipidemia were
also considered if informed use of antihypertensives, oral hypoglycemic agents or
insulin, statins or fibrates; respectively. In the Sami-Trop cohort, the risk factors
were also self-reported in a baseline interview. In the ELSA-Brasil study,
hypertension was defined as systolic blood pressure ≥140 mmHg or diastolic blood
pressure ≥90 mmHg, or verified treatment with anti-hypertensive medication
during the past 2 weeks; diabetes mellitus as a report of a previous diagnosis of
diabetes, or the use of medication for diabetes, or meeting a diagnostic value for
diabetes according to one of the following tests: fasting or 2-h plasma glucose
obtained during a 75-g oral glucose tolerance test or HbA1C; dyslipidemia as either
a total cholesterol ≥240 mg/dl, LDL cholesterol ≥160 mg/dl, HDL cholesterol
<40 mg/dl or triglycerides ≥150 mg/dl; obesity as BMI ≥ 30 kg/m2 and smoking by
participants self-report.

The model. Exams from patients in the CODE cohort that were not included in the
hold-out set CODE-15% (see section above) were used to develop a convolutional
DNN to predict age. This split contains 85% of the patients and was further divided
into 80-5% splits: being the first used to learn the neural network weights, and the
samples from the 5% remaining patients used for comparing design choices and
adjusting optimization parameters.

The 5% validation split for is obtained by using a stratified sampling procedure.
The procedure is illustrated in Supplementary Fig. 4 and is similar to the one used
for generating the CODE-15% cohort. Given all the patients that are not in the
CODE-15% cohort, we group their exams by the age of the patient at the moment
it was taken. One group for each age ranging from 16 to 85 years. The 5%
validation set is then obtained by sampling the same number of exams (~1600) at
random from each age group. As for the CODE-15% cohort, such a procedure aims
to guarantee an, approximately, uniform age distribution in the validation set, by
picking the same number of patient exams for equally spaced 1-year intervals. The
training dataset is composed of all exams from the 80% remaining patients. The
training dataset has an unbalanced distribution of ages and, to correct for it during
the training procedure, we weight the exam records inversely proportional to the
frequency of patients with that given age.

The architecture and the set of hyperparameters are described next and are
similar to a previous study3, for which the DNN was trained to detect 6 types of
ECG abnormalities (considered representative of both rhythmic and morphologic
ECG abnormalities) on the same dataset. The results with this choice of
hyperparameters were considered satisfactory and no further hyperparameter
search was performed.

We used a convolutional neural network similar to the residual network
proposed for image classification20, but adapted to unidimensional signals. This
architecture allows deep neural networks to be efficiently trained by including skip
connections. We have adopted the modification in the residual block proposed by
He et al.36.
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All ECG recordings, which have between 7 and 10 s of duration and are
sampled at frequencies ranging from 300 to 1000 Hz, are re-sampled to 400 Hz and
zero-padded, resulting in signals of fixed length (4096 samples), which are fed to
the neural network. The output is the age predicted for that given exam.

The network consists of a convolutional layer followed by five residual blocks
with two convolutional layers per block. The output of each convolutional layer is
rescaled using batch normalization37 and fed into a rectified linear activation unit
ReLU. Dropout38 is applied after the nonlinearity. The convolutional layers have
filter length 17, starting with 4096 samples and 64 filters for the first layer and
residual block and increasing the number of filters by 64 and subsampling by a
factor of 4 every residual block. Max Pooling39 and convolutional layers with filter
length 1 are included in the skip connections to make the dimensions match those
from the signals in the main branch.

The weighted mean square error is minimized using Adam optimizer40 with
default parameters and a learning rate of 0.001. The learning rate is reduced by a
factor of 10 whenever the validation loss does not present any improvement for
seven consecutive epochs. The neural network weights were initialized sampling
from a normal random variable scaled as in He et al.41 and the bias was initialized
with zeros. The training runs for 70 epochs with the final model being the one with
the best validation results during the optimization process.

Cardiologist assessment of ECG-age from the tracings. To assess whether ECG-
age was capturing ECG changes that are recognizable to medical doctors, we con-
ducted an additional experiment asking three experienced medical doctors to
identify, in paired ECGs, ECG tracings associated with having higher ECG-age. All
ECGs considered were normal ECGs from the CODE cohort. Within each pair of
equal chronological age and sex, one individual had an ECG-age more than 8 years
greater than their chronological age and the other had an ECG-age more than 8
years smaller than their chronological age. We included one pair of male and one
pair of female patients for each age between 16 and 85 (whenever possible), totaling
134 pairs. At the edges of our age-range, it was not always possible to have an ECG
tracing with ECG-age more than 8 years smaller than the chronological age paired
with a tracing with ECG-age more than 8 years smaller than the chronological age,
and, in these situations, we use tracings associated with ECG-ages within the 8 years
range of the patient’s chronological age. The experiment was divided into three
stages where doctors annotated 44, 45, and 45 pairs of ECGs tracings respectively. In
stages 1 and 3, doctors were not given the answer after accomplishing the task, and
in stage 2 they were. The idea behind this distinction is to see whether doctors
would fare any better after a round with explicit feedback on their performance.

Saliency maps in the time and frequency domain. We performed an analysis to
assess the relative importance of different segments of the ECG trace in the age
prediction. The results are displayed in Supplementary Fig. 1 and the relative size of
the blue disks in the image might be interpreted as the relative importance of each
point to the output prediction (at least in terms of the linearized local analysis).
Similar approaches have been pursued in the interpretation of other DNN-based
ECG predictors8,42. Here we use a rather straightforward procedure for generating
the saliency maps21: the raw ECG tracing is fed to the deep neural network and the
ECG-age is computed. Using backpropagation we compute the derivative of the
ECG-age with respect to each point. We then generate transparent blue disks in the
same plot as the ECG tracing, where the size of these disks is proportional to the
magnitude of the derivative in this point. This procedure results in the saliency
map displayed in Supplementary Fig. 1.

In Supplementary Fig. 2, we show a similar analysis, but now in the frequency
domain. We take the discrete Fourier transform of the gradients computed as
described above. We do that for 100 ECG exams, sampled at random, from the
ECG exams classified as normal in each of the three different cohorts (CODE-15%,
ELSA-Brasil, and SaMi-Trop) and show the median and interquartile range in the
Figure.

Statistical analysis. To assess the performance of the DNN model in the CODE-
15%, ELSA-Brasil and SaMi-Trop cohorts, we computed the R square metric using
linear regression and calculated the mean absolute error (MAE) using the chron-
ological age. For further analysis, we divided the samples in three groups, based in
differences between predicted ECG-age and chronological age: those with ECG-age
more than 8 years smaller than the chronological age, those with ECG-age within a
range of 8 years from their chronological age, and those ECG-age more than 8
years greater than the chronological age.

For mortality analysis, we used Cox proportional regression model, reporting
hazard ratios (HR) and 95% confidence intervals (95% CI). The analysis was
performed in all ECGs of the three cohorts, with two levels of adjustments: age and
sex; age, sex, and other cardiac risk factors (hypertension, diabetes mellitus, and
smoking). Other two models in the second level of adjustment including
dyslipidemia, for CODE-15% and ELSA-Brasil, and obesity, only for ELSA-Brasil,
were fitted. A second mortality analysis with the same parameters, was performed
considering only normal ECGs from CODE-15% (n= 80679) and ELSA-Brasil
(n= 7691) cohorts. The proportional hazard assumption was verified using a log
(−log (survival)) plot and Schoenfeld residuals. We also performed the mortality
analysis for CODE-15%, dividing the samples into five groups according to

quintiles of the difference of ECG-age and chronological age, showing the adjusted
survival curves and HRs from the adjusted Cox models by age and sex. The area
under the receiver operating characteristic curve (AUC) was used to evaluate the
Cox model performance for 1-year mortality risk prediction.

To explore the association of risk factors with the ECG-age being more than 8
years greater than the chronological age we performed a logistic regression analysis
for the ELSA-Brasil cohort including all ECG and only subjects with normal ECG.
In this analysis we fitted a model for each risk factor adjusted by age and sex and
reported the ORs and 95% confidence intervals.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
SaMi-Trop cohort was made openly available (https://doi.org/10.5281/zenodo.4905618).
The CODE-15% cohort was also made openly available (https://doi.org/10.5281/
zenodo.4916206) The datasets contain information about mortality, age, sex, the ECG
tracings, and the flag indicating whether the ECG tracing is normal. The DNN model
parameters that give the results presented in this paper are also available (https://doi.org/
10.5281/zenodo.4892365). This should allow the reader to partially reproduce the results
presented in the paper. Restrictions apply to additional clinical information on the
CODE-15% and SaMi-Trop cohorts; to the full CODE cohort; and, to the ELSA-Brasil
cohort. Researchers affiliated to educational or research institutions might make requests
to access the datasets. Requests should be made to the corresponding author of this
paper. They will be forwarded and considered on an individual basis by the Telehealth
Network of Minas Gerais and by ELSA-Brasil Steering Committee. An estimate for the
time needed for data access requests to be evaluated is three months. If approved, any
data use will be restricted to non-commercial research purposes. The data will only be
made available on the execution of appropriate data use agreements.

Code availability
The code for the model training, evaluation and statistical analysis is available at the
github repository https://github.com/antonior92/ecg-age-prediction (the release at the
time of submission was archived in https://doi.org/10.5281/zenodo.4975439 43).
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