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Abstract: BACKGROUND. Mental task identification using electroencephalography (EEG) signals
is required for patients with limited or no motor movements. A subject-independent mental task
classification framework can be applied to identify the mental task of a subject with no available
training statistics. Deep learning frameworks are popular among researchers for analyzing both
spatial and time series data, making them well-suited for classifying EEG signals. METHOD. In
this paper, a deep neural network model is proposed for mental task classification for an imagined
task from EEG signal data. Pre-computed features of EEG signals were obtained after raw EEG
signals acquired from the subjects were spatially filtered by applying the Laplacian surface. To
handle high-dimensional data, principal component analysis (PCA) was performed which helps in
the extraction of most discriminating features from input vectors. RESULT. The proposed model
is non-invasive and aims to extract mental task-specific features from EEG data acquired from a
particular subject. The training was performed on the average combined Power Spectrum Density
(PSD) values of all but one subject. The performance of the proposed model based on a deep
neural network (DNN) was evaluated using a benchmark dataset. We achieved 77.62% accuracy.
CONCLUSION. The performance and comparison analysis with the related existing works validated
that the proposed cross-subject classification framework outperforms the state-of-the-art algorithm in
terms of performing an accurate mental task from EEG signals.

Keywords: electroencephalography; deep neural network; principal component analysis; mental
task; feature extraction

1. Introduction

EEG classification signals have been widely used in different cognitive science and
healthcare applications. This includes brain computer interface (BCI) studies, neuro-
science and neurocognitive applications, mental task classification, etc. An effective ap-
plication of EEG is to classify mental tasks while subjects are known and available, i.e.,
subject-dependent mental task classification. Moreover, researchers are looking at subject-
independent mental task classifications. EEG plays a vital role in establishing interaction
between various areas and hence analyses of the consequences of diseases on brain function-
ing suggest BCI for paraplegic individuals [1,2]. The BCI is based on recorded EEG signals
from brain activity together with computational inferences. With upcoming accurate EEG
data collection techniques, researchers have developed new frameworks to analyze the
changes in the brain functioning of patients [3] at the time of the treatment. Therefore,
future research of BCIs for people with health alignments is based on EEG signals that
help them utilize existing mental and motor capabilities to regulate the system [4,5]. With
this, the patient would be able to operate and eventually control support systems such as
artificial limbs and wheelchairs.
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With cross-subject EEG training of these devices, the patient EEG data used by the
devices will not be mandatory for the training phase. Several researchers have applied
various classification methods for mental task classification. Manali et al. [6] have proposed
a mental task classification using variational mode decomposition (VMD) to extract features
from the single-channel EEG. There were three stages of processing in their work. They first
decomposed the signal using VMD and then calculated the variational mode energy ratio
proposed in their work followed by an adaptive boosting algorithm for the classification
purpose. Feature reduction is a crucial step in any machine learning task and has been
studied by Conrado et al. [7] for the classification of mental tasks using ANNs. The
convolutional neural network (CNN) has also been widely used by many researchers.
In their work, Pallavi et al. [8] studied the image processing capability of a CNN. They
used the scalogram images of EEG data for the classification of different emotions. The
model developed by these authors was tested for different datasets and was found to be
subject-independent.

The Bidirectional Long Short-Term Memory Network (BiLSTM) proposed by Jinru et al. [9]
was also used for the classification of various emotions using EEG signals. EEGNet [10] is
another CNN-based model developed for EEG-based BCIs. In their work, the authors used
depth-wise and separable convolutions for model development. They compared the results
obtained for cross-subject and within-subject classifications with the different approaches
across the four BCI paradigms, namely, P300 visual-evoked potentials, ERN, MRCP, and
SMR. Madhuri et al. [11] classified hand movement and word generation using a Hierarchical
classifier that employed optimized Neural Networks on the EEG signals.

Deep Learning Network has been used to study the correlation between various
features of input signals by Suwicha et al. [12]. In 2014, Xiu et al. [13] applied the DL
algorithm for the classification of EEG data extracted for the Motor Imagery task (MIT).
The two tasks studied by these researchers were the imagination of the left hand and the
right hand motor activities. Saadat et al. used Back Propagation Neural Network (BPNN)
along with the Hidden Markov Model (HMM) [14] for the classification of mental tasks.
The design of brain interfaces used by patients with neural disorders to communicate and
control various devices has been studied by Hema et al. [15,16]. They have proposed a
particle swarm optimization (PSO) algorithm for training the functional link neural network
for the classification of the EEG signals obtained from two subjects for five different mental
tasks. In their work, Jose et al. [17] studied various online learning mechanisms used in
brain–computer interfaces (BCI) that can help in obtaining fixed learning rates in patients
with neural disorders.

Debarshi et al. [18] studied subject-independent and subject-dependent models sep-
arately for EEG-based emotion detection and classification. From this work, they con-
cluded that conventional machine learning techniques work better in the case of subject-
independent decision making. The features have been extracted from the Power Spectral
Density (PSD) of the obtained EEG data and were combined with the Support Vector
Machine by the authors in [19] for the classification of subjects as happy and unhappy. Lin-
ear Discriminant Analysis (LDA) together with Common Spatial Patterns (CSP) achieved
extraction of relevant features and classification by the authors in [20]. An ensemble classi-
fier is formed by combining multiple classifiers with 11 different regression expressions.
However, since the hand-crafted features being used in these methods have very little
ability, the learning strategies being employed are also traditional. Hence, the performance
is quite poor. These cross-subject problems with large and complex data can be handled in
a much better way by employing deep learning techniques [10,21]. The studies reported
in [22–26] quantified EEG features to recognize neurological deteriorations according to the
task because of stroke and estimate the biomarkers to differentiate between healthy adults
and ischemic stroke patients.

The applications of EEG-based mental task classification have grown considerably
recently. However, subject-dependent mental classification is widely used and subject-
independent mental task classification has yet to be well explored by researchers. To
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this end, the main contribution and novelty of the current article is the classification of
mental tasks by averaging subjects’ task using the power spectral density (PSD). Since
the EEG signals are very random and have high variance, averaging aided in obtaining
better accuracy. In addition to this, we have achieved an accuracy which outperforms
state-of-the-art approaches.

The rest of the paper is arranged as follows: Section 2 focuses on the core concepts
employed in this research. The proposed model is discussed in Section 3 with a clear
block diagram illustrating each step clearly, and the experimental results are discussed in
Section 4. Section 5 explicitly discusses these results and conclusions and limitations of the
work are covered in Section 6.

2. Background
2.1. Feature Extraction

Feature extraction can be performed by using the power spectral density (PSD) of any
signal. This method is specifically suited for narrow band signals. By using this technique,
the signal power is distributed over a range of frequencies and helps us in obtaining
an estimate of spectral density from the dataset. To obtain the PSD, the autocorrelation
function of the signal was calculated, followed by calculating its Fourier transform (FT).
Here, the signal was perceived as a random sequence that was used to determine its power.
The unit of measurement for power spectral density is watts per hertz (W/Hz). PSD is
a frequency domain analysis in which a signal is decomposed into smaller sub-signals
and it can be categorized as parametric, non-parametric, and subspace. In the parametric
approach, the system parameters are calculated under the assumption that the presence
of white noise influences the output of any linear system. Burg’s method [27] and Yule–
Walker’s AR [28] method are examples of this approach. Non-parametric approaches are
computationally less expensive and robust but as they cannot extrapolate the finite length
sequence beyond the signal length so the frequency resolution is not very good. They also
suffer from the drawback of spectral leakage [29]. Some non-parametric approaches are
the Bartlett window, Periodogram-based estimation, and Welch window. The subspace
method is the preferred choice for signals that have a low signal-to-noise ratio (SNR). In this
method, the PSD is obtained by calculating the Eigen decomposition of the autocorrelation
matrix. This is a preferred choice for linear and sinusoidal signals, but it does not give the
true PSD values.

The EEG signal data are highly dimensional and hence dimensionality reduction
methods are needed before using them for any machine learning model. PCA (Principal
Component Analysis) is a well-established method in the literature for extraction of relevant
features and hence reducing dimensions of the dataset. During PCA, the original signal
data in matrix form are used to calculate covariance in the dataset [30]. Many linear
transformations are applied for this purpose [31] and finally, eigenvectors and eigenvalues
are obtained [32]. The largest eigenvalue obtained corresponds to the most discriminating
feature. Therefore, features having discriminating power are retained, and unimportant
features can be ignored. PCA is the most widely used technique to reduce the dimensions
of EEG data [33].

2.2. Deep Neural Network

A Deep Neural Network is designed with multi-hidden layers as opposed to a single
neuron network containing a single hidden layer. This means that the input data undergo a
non-linear transformation at multiple layers to produce the output. It uses algorithms such
as Stochastic Gradient Descent (SGD) and its variations for error estimation for the current
model state. Based on error estimation, the weights of the models are updated. Artificial
Neural Networks comprise weights between the neurons at the hidden layer and the input
and output layers which have to be fine-tuned to improve the model. Gradient descent
was used here during backpropagation to minimize the error. Stochastic Gradient Descent
is a more simplified and efficient version of Gradient Descent as it takes only a random
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subsample of the total available data to calculate the error function. As only a subset of the
complete dataset was used here, it can be used to train a very large dataset even if there
are memory constraints. Another advantage is that it is convex in nature and avoids local
minima and plateaus. In their work, [34] added a momentum term that showed better
performance in terms of convergence speed in the training of deep neural networks. The
value of the latest calculated gradient term influenced the next gradient value calculation
due to the addition of this momentum.

Adaptive Moment Estimation (ADAM) is another algorithm derived from SDG that
has an adaptive learning rate for each parameter [35]. This algorithm trains the model
more efficiently, but also requires more memory. Another important part of ANNs is
the activation function being used. Traditionally, Sigmoid activation has been the most
commonly used function. When this function is used for training a Deep Neural Network,
it suffers from a problem known as the vanishing gradient problem. Due to this problem,
the DNN or RNN is not able to backpropagate the gradient value toward the layers
closer to the input layer. This results in the poor learning ability of a model, and hence
premature convergence. A new activation function, Rectified Linear Unit (ReLU), has been
incorporated which gives the output as 0 if the input is below 0 and outputs the input
itself if it is above 0. This function is now most commonly used in DNNs as it solves the
problem of the vanishing gradient in a very efficient manner [36]. Traditionally, artificial
neural networks are fully connected in nature. These fully connected layers require a huge
amount of computation as the number of inputs increases and hence it has poor scalability.
Apart from these dense or fully connected layers, deep neural networks have many other
types of layers such as a convolutional layer, pooling layer, recurrent layer, etc. Each of
these layers performs differently and hence is best suited for different types of applications.

2.3. EEG Data Acquisition

Electroencephalography is a non-invasive procedure that represents captured electrical
potential by attaching electrodes to a subject’s scalp [37]. This instantaneous propagation
of voltage changes results in high-precision temporal information acquisition by the EEG.
That is why most researchers are using EEG data. Limited spatial resolution is achieved
through EEG as the human skull and scalp act as insulators affecting the dispersal of the
signal. However, the EEG signal acquisition process is not very expensive and does not
require protection since the magnetically shielded closed output of EEG is one time series
corresponding with a channel (between 32 and 256). Each of the time series represents the
electrical potential on the subject’s scalp. These channels are placed concerning a reference
electrode and signals are recorded at rates from 250 Hz to 1000 Hz. Five categories of EEG
frequency bands are generally referred to: frequencies less than 4 Hz are placed in the delta
band, the frequency range of 4–8 Hz is the theta band, the alpha band is the frequency range
of 8–14 Hz, the beta band is the frequency range of 14–40 Hz and frequencies above 40 Hz
are placed in the gamma band. The recording of EEG signals can be done in mono-polar
mode or bipolar mode. The monopolar recording is carried out by observing the voltage
difference between the reference electrode and the scalp position where an electrode is
placed. The position of the reference electrode is fixed, usually near the human ear lobe. On
the contrary, during the bipolar mode of recording, the difference in the electrode voltages
of two scalp electrodes is observed. For recording EEGs, the subject wears an electrode
cap having electrodes placed as specified by the “10/20 international electrode placement
system” [38] depicted in Figure 1.

The international system establishes the constraint that contiguous electrodes must
be at a distance of either ten percent or 20% of the skull. This distance is the total distance
from the front to the back or the distance from the left to the right of the skull. The area
of the head is divided into various lobes. Letters are used to represent various positions
of the lobes. The cerebral cortex appears to be the outermost layer of the brain. Vertically
splitting the brain shows two cerebral hemispheres (lengthwise). Each of these hemispheres
is divided further into four lobes: frontal, parietal, temporal, and occipital. The frontal
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lobe is in charge of a variety of tasks including body mood regulation, problem-solving,
and planning. The parietal lobe is responsible for the integration of sensory information.
Sensory information such as hearing memory and language recognition is processed by the
temporal lobe. The occipital lobe of the brain is where most visual processing takes place.

1 
 

 

Figure 1. Brain lobes and electrode placements [34].

2.4. Dataset

The dataset used in this work was taken from BCI competition III dataset V. The
authors in [17] generated the dataset by recording the EEG potential at electrode positions
according to the International 10–20 system using a Biosemi system and a cap. The EEG
signals in BCIs have been shown in various works [39–41]. The mental tasks performed
in [17] were:

i. Subject imagining self-paced movements performed with the left hand repetitively;
ii. Subject imagining self-paced movements performed with the right hand repetitively;
iii. Subject performing word generation of words starting with the same letter.

Figure 2 shows the brain power maps captured in the frequency range between 8 and
12 Hz. These maps correspond to the three above-stated imagined mental tasks of the
BCI competition III dataset V belonging to one subject. These maps were taken by [17] for
two consecutive recording sessions that are shown in the top panels and bottom panels
of Figure 2, respectively. The mean value of all the EEG data for a particular mental task
was calculated as movements (left panels) and then used to make maps. The left panel
depicts the imagination of the left hand. The imagination of the right hand movements is
shown in the central panels while the task of imagining word generation starting from the
same random letter corresponds to the right panels in Figure 2. In this figure, the filled
circles represent the electrode placement (frontal on top). Figure 2 shows that the brain
maps of the given imaginary mental tasks and the corresponding EEG data showed similar
results in different sessions. Specifically, this can be observed for the task of imagining left
hand and right hand movements. It was observed in [17] that the power map of the “right”
task recorded during the second session was similar to the power map of the “left” task
recorded during the first session. This shows that the variability present in the EEG data
between different sessions hampers accurate predictions.



Diagnostics 2023, 13, 640 6 of 16

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

and right hand movements. It was observed in [17] that the power map of the “right” task 
recorded during the second session was similar to the power map of the “left” task rec-
orded during the first session. This shows that the variability present in the EEG data 
between different sessions hampers accurate predictions.  

 
Figure 2. Power maps of subject 2 for two consecutive recordings [17] for all three considered tasks. 
In addition, the allotted band was 8–12 hertz, where electrode’s positions are represented by filled 
circles. 

3. Proposed Methodology 
In this section, the proposed methodology is described stepwise. First, a description 

of the data is given, and then the data pre-processing is explained, followed by the archi-
tecture of the methodology (model) in Figure 3. 

 

Figure 3. Flowchart for the proposed model. 

  

Figure 2. Power maps of subject 2 for two consecutive recordings [17] for all three considered tasks. In
addition, the allotted band was 8–12 hertz, where electrode’s positions are represented by filled circles.

3. Proposed Methodology

In this section, the proposed methodology is described stepwise. First, a description of
the data is given, and then the data pre-processing is explained, followed by the architecture
of the methodology (model) in Figure 3.

Diagnostics 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

and right hand movements. It was observed in [17] that the power map of the “right” task 
recorded during the second session was similar to the power map of the “left” task rec-
orded during the first session. This shows that the variability present in the EEG data 
between different sessions hampers accurate predictions.  

 
Figure 2. Power maps of subject 2 for two consecutive recordings [17] for all three considered tasks. 
In addition, the allotted band was 8–12 hertz, where electrode’s positions are represented by filled 
circles. 

3. Proposed Methodology 
In this section, the proposed methodology is described stepwise. First, a description 

of the data is given, and then the data pre-processing is explained, followed by the archi-
tecture of the methodology (model) in Figure 3. 

 

Figure 3. Flowchart for the proposed model. 

  

Figure 3. Flowchart for the proposed model.

3.1. Dataset Description

The dataset for imagined mental tasks from the BCI competition III dataset V was
used in this work. There are three training files for the first three sessions and one testing
file (corresponding to the fourth recording session). The training files are labelled and
hence were used in the training phase of supervised learning while testing files in the
dataset were without labels. Data are provided in ASCII format. The dataset provides
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raw EEG signals as well as pre-computed features of the EEG data. In this research, the
pre-computed features data file was used for experimentation. The pre-computed feature
files contain a PSD sample per row. The number of PSD samples for the three subjects is
given in Table 1. The 97th component of the training file indicates the output class label.
The flowchart of the proposed DNN-based model is shown in Figure 3.

Table 1. Number of PSD samples for the three subjects.

Number of Feature Vectors in the Training Dataset Number of Feature Vectors
in the Testing DatasetFile 1 File 2 File 3

First Subject 3488 3472 3568 3504

Second Subject 3472 3456 3472 3472

Third Subject 3424 3424 3440 3488

Features were extracted from raw EEG signals using PSD as a feature extraction
method. Power Spectral Density in band 8–30 Hz was calculated at a rate of 16 times per
second, that is every 6.25 ms. The frequency resolution for obtaining PSD values was 2 Hz.
The PSD method considered recoding data from eight centro-parietal channels C3, Cz, C4,
CPI, CP2, P3, Pz, and P4. Therefore, the EEG data obtained are 96-dimension. All the data
obtained together with the true class label of the mental task requested by the operator
were given to the classifier as training data. The dataset contained a PSD sample per row.
Thus, precomputed features contained 96 features as explained in Section 2.2 and the last
column, i.e., the 97th component, specifies the corresponding mental task label requested
by the operator.

3.2. Data Pre-Processing

The PSD values obtained during the feature extraction step are now pre-processed.
After pre-processing they are provided as an input to the Deep Neural Network. The
following steps describe the pre-processing.

Step 1: For each of the subjects, the training files were re-arranged according to the mental
task performed.
Step 2: The average power of an EEG signal in the given frequency range was computed
for each subject in the three training files. Since the records are arranged according to the
task performed, averaging was done for a similar task. Thus, we obtained three averaged
files, one for each subject.
Step 3: Then, the mean of averaged PSD values in a pair of two subjects was computed.
Thus, we obtained three training files: average PSD for the first subject and second subject,
average PSD for the second subject and third subject, and average PSD for the first subject
and third subject. These steps are sorted task-wise, i.e., for subject 1, we have three tasks,
for each task the trial is performed and activity is observed and recorded, and similarly for
subject 2. However, we used the task-wise average. The task-wise averaging means that the
right hand movement of subject 1 and right hand movement of subject 2 were considered
and the averaged values were kept for further proceeding. Similarly, when considering left
hand movement (LHM), the LHM of the two subjects under considerations were utilized.
Step 4: The leftover averaged file was used in the testing model. For example, when the
model was trained with averaged PSD of subject 1 and subject 2, the PSD of subject 3 was
utilized in the testing phase. Similarly, when the average PSD of subject 2 and subject 3
was considered for training purpose, the PSD of subject 1 was used for testing, etc.

It is noteworthy that the fold used for the testing set was not used in the training phase.
To illustrate this diagrammatically, we have sketched the process in Figure 4.
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training phase.

EEG is a time-domain brainwave and is very unlikely to perform perfectly in a single
trial. Therefore, it is suggested to take an average of PSD values. As the training file is
arranged according to the mental task performed, the average corresponds to a similar
mental task. The calculation of average PSD values across different subjects aims to find
PSD values at different electrode locations that can map a PSD value of a new subject in a
corresponding mental task. During Step 1, it was ensured that the averages are calculated
for similar mental tasks. Because the classifier is subject-independent, all but one subject’s
EEG data were merged in a file, and the PSD properties of the combined data were then
used as input for the deep neural network to perform the imagined mental activity. The
data of the subject that was not used in the training phase was used as test data. As a result,
the classifier was put to the test with data from a subject that it has not been trained on.
The dataset obtained in Step 4 must be restructured in such a way that the subject data that
were not included in the training phase were used during the testing stage of the model for
subject independence. As a result, three evaluation datasets were achieved. PCA is then
applied to these datasets in order to reduce the dimensions before feeding them as input to
the DNN.

3.3. Model Architecture

The Keras over TensorFlow framework was used for the implementation of the pro-
posed DNN-based model. The model is a deep learning network that is trained in a
supervised manner from scratch. The model description, hidden layers, and neurons
exploited are shown in Table 2. The loss function based on cross-entropy is minimized with
stochastic gradient descent. The use of an optimization algorithm in a classifier based on
deep learning drastically improves results. The Adam optimization algorithm [31] can be
employed for iteratively updating network weights during the training phase. The Adam
optimization algorithm is used in the proposed model together with stochastic gradient
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descent. The rationale for using Adam optimizers were as follows: first, it assures that
the parameter’s learning rate is well-maintained. This significantly boosts performance on
issues with sparse gradients. Second, the learning rates for each parameter are updated
depending on the mean of the current gradient’s magnitudes for the weight, allowing the
system to perform well with live and non-stationary data such as EEG. As a result, for
each network parameter, a learning rate is maintained and is distinctly updated as learning
progresses. In contrast, stochastic gradient descent works on static and fixed learning rates
for all weight updates.

Table 2. The accuracy obtained for various DNN topologies using ‘Relu’ as activation function.

Number of Hidden Layers Number of Neurons Accuracy

3 12, 12, 12 0.780

3 12, 12, 24 0.806

3 24, 24, 12 0.791

3 24, 12, 24 0.778

5 12, 24, 12, 24, 12 0.807

6 12, 24, 12, 24, 12, 24 0.791

Dropout layers help in the DNN by removing inputs to a layer probabilistically. The
removed inputs may be input variables of feature vectors or previous layer activations. It
creates a simulation of a huge number of networks having different network compositions.
It results in the robustness of nodes to inputs in DNN. The rate of dropout layer indicates
the probability value for assigning every input to the layer as zero. In our DNN model,
the dropout rate was set to 0.5 and the training epochs and batch sizes were 64 and 10,
respectively. Weight regularization was applied for the reduction of overfitting of a DNN
with the training data, which in turn improved the performance of the model. Changes in
the number of hidden layers and the number of neurons in the hidden layers were also used
to experiment with different DNN topologies. The averaged data of all subjects are used as
the training data for all observations. Two subjects at a time were used for training and the
remaining one for testing, and then the training and testing subjects were changed. For
example, as shown in Figure 3, first subject 1 and subject 2 were considered for training and
subject 3 was used for testing. Then, for next iteration, we considered subject 2 and subject 3
for training, and subject 1 for testing, and so on. The top results were attained at five hidden
layers, as shown in Table 2. There are various categories for weight regularization. They
are L1 and L2 vector norms that need a hyperparameter to be configured. L1 regularization
signifies the sum of the absolute weights and L2 regularization signifies the sum of the
squared weights.

4. Experimental Results

First, we defined the performance metrics as given in previous studies [23–26,42–45].
Precision, the percentage of labels that were correctly predicted is represented by the

model precision score. Another name for precision is the positive predictive value. False
positives (Fp) and false negatives are traded off using precision together with the recall.

Precision =
Tp

Tp + Fp

Recall—the model’s accuracy in predicting positives as distinguished from actual
positives—is measured by the model recall score. This differs from the precision, which
counts how many of the total number of positive predictions produced by the models are



Diagnostics 2023, 13, 640 10 of 16

truly positive. Another name for recall is sensitivity or the true positive (Tp) rate. The
model’s ability to recognize positive instances is demonstrated by a high recall score.

Recall =
Tp

Tp + Fn

F1 Score—the model score as a function of the recall and accuracy is represented by
the model F1 score. As an alternative to accuracy measurements, the F-score is a machine
learning model performance statistic that equally weights the precision and recall when
assessing how accurate the model is.

F1 Score =
2 × recision × Recall

Precision + Recall

Accuracy—the model accuracy is mathematically defined as the ratio of Tp and
Tn to all the positive and negative observations, representing one of the most widely
used performance metrics for machine learning classification models. In other words, the
accuracy indicates the number of times our machine learning model predicted a result
accurately out of all the predictions it made.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
× 100

The usefulness of each module of the proposed DNN-based model was established by
conducting a study on different criteria for the inputs to the model. The results of different input
criteria were further compared with the presented model to show that it performed better.

The usefulness of each pre-processing through averaging over training data in the
proposed model was inspected here on the three datasets described in Section 2.4 with the
corresponding accuracy values and F1 scores. The results are summarized in Table 3. The
model settings “cross-subject” and “train averaged” represents models with cross-subject
training settings without any averaging for data, and models with averaged data in the
training stage, respectively. The necessity of performing averaging of the training subjects
was first studied and then the importance of cross-subject averaging was emphasized. The
comparison results in Table 3 indicate the importance of averaging testing and training data
before providing input to the deep neural network. After analyzing the results of each test
subject data, the proposed DNN-based model achieves a mean accuracy above 77%. The
best result obtained is 85.7% with the data from subject 1 as the test data. It was also noted
that the proposed model had varied accuracy scores as the test subjects were changed in
experiments. The key cause is that EEG signals have high variability with diverse subjects
and in some cases, there is a possibility that a particular subject was unable to accomplish
the said tasks during the EEG signal recording.

Table 3. Input criteria study for proposed DNN-based model.

Model Input
Cross-Subject

without Averaging

Test
Evaluation Criterion

Accuracy Precision Recall Fl

Subject 1 0.392027 0.430207 0.392028 0.401665

Subject 2 0.346009 0.357656 0.34601 0.350267

Subject 3 0.336554 0.336071 0.336547 0.342108

After Averaging

Subject 1 0.859479 0.865772 0.859348 0.857809

Subject 2 0.67134 0.675895 0.671341 0.670794

Subject 3 0.798715 0.830384 0.798713 0.800336
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Based on the values obtained as shown in the confusion matrices in Tables 4–6, we can
calculate the true positive rate and the true negative rate using the formula defined and
shown in Table 7.

Table 4. Confusion matrix of subject 1.

A
ct

ua
lV

al
ue

s Predicted Values

Imaginary Task Left Hand Movement Right Hand Movement Word Generation
Left hand Movement 757 71 57

Right hand Movement 112 1000 184
Word Generation 10 49 1183

Table 5. Confusion matrix of subject 2.

A
ct

ua
lV

al
ue

s Predicted Values

Imaginary Task Left Hand Movement Right Hand Movement Word Generation
Left hand Movement 528 198 85

Right hand Movement 113 970 264
Word Generation 222 192 851

Table 6. Confusion matrix of subject 3.

A
ct

ua
lV

al
ue

s Predicted Values

Imaginary Task Left hand Movement Right hand Movement Word Generation
Left hand Movement 714 5 4

Right hand Movement 188 825 38
Word Generation 201 322 1126

Table 7. True Positive Rate (TPR) and True Negative Rate (TNR) values for subjects 1, 2, and 3.

Subject TPR = TP/(TP + FN) TNR = TN/(TN + FP)

Subject 1 0.858895706 0.918809884

Subject 2 0.68624014 0.825365854

Subject 3 0.778556822 0.889278411

5. Discussion

Table 8 shows an in-depth comparison of the proposed method with the most recent
methods. For a reasonable evaluation, the most recent work that has an application code
accessible on the Web was carefully chosen. The comparison was carried out with the
EEGNet [10] based on the EEG feature extraction method. The CTCNN (Cropped Training
CNN) method [46] is based on different convolutional networks with the suggestion of
the crop training method. The EEG Image [47] method is based on spatial, temporal,
and spectral features and deep learning, while AE-XGboost [48] and FBCSP [49] employ
a traditional classification method in EEG analysis for the classification of mental tasks.
Table 3 shows that the performance of the proposed model was clearly above the other
approaches based on the accuracy and F1 score.

In addition to accuracy, FPR and FNR were also obtained for the proposed approach.
The results showed that high accuracy for mental task classification has yet to be achieved
high; however, with the state-of-the-art comparison, the proposed approach obtained
slightly better results with an accuracy above 75% (0.7762).
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Table 8. Comparison of proposed model with recent models.

Research Work Contribution Averaging Training Data Accuracy

EEGNet [10] EEG signals from different
BCI paradigms No 0.513

CTCNN [37] Cropped training strategy No 0.4767

EEG Image [38] Multi-channel EEG time series No 0.327

AE XGboost [39]

Apprehending the
inconsistency of inter-class

EEG data with inter-class and
inter-person EEG signals

No 0.3318

FBCSP [40] Filter Bank Common Spatial
Pattern (FBCSP) No 0.3569

Proposed
Averaging EEG data for

subjects in the training and
testing phases

Yes 0.7762

The proposed DNN-based model was also compared in terms of the requirement of
total trainable parameters and the corresponding runtime for all models and the results are
given in Table 9. It clearly shows that the proposed model had a satisfactory requirement of
trainable parameters and had a low runtime requirement. The same results are also shown
graphically in Figure 5.
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Table 9. Comparison based on runtime and trainable parameters.

Model Number of Parameters (mil) Runtime (ms)

EEGNet 2.0 × 10−03 5.0 × 10+00

CTCNN 1.0 × 10−01 2.0 × 10+01

EEGImage 2.0 × 10+01 5.0 ×10+01

Proposed 3.0 × 10−03 3.0 × 10+01

In addition, we have also analyzed the convergence of the proposed model throughout
the testing and training phases. Figure 6 depicts that, as the training epoch progresses,
the accuracy of the training set first slowly increases and then finally stabilizes. Similarly,
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Figure 7 depicts that, as the training epoch progresses, the loss in the training set slowly
decreases, demonstrating that the proposed model eventually converges in training with
decent stability.
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6. Conclusions

In the domain of BCI applications, the issue of subject-independent models is widely
researched. The main challenge is to handle the high variability present in brain signals.
The reason for the high variability is the involvement of the brain in other background tasks.
During the imagination of a given mental task, the subject’s brain is also occupied with
additional happenings. The observed brain signals are thus the output of the combination
of these two tasks which is highly variable. The factors that affect the performance of the
mental task can be attention, fatigue, or motivation. One of the major factors at the initial
stage of the subject’s training is deviations in the policies the subjects make for performing
the mental tasks.

This research focuses on mental task classification from EEG signals using a deep
neural network. The proposed model is subject-independent, and therefore test subject
data are not included in the training dataset for the model. The field of cross-subject
EEG analysis is highly desired but has limited extant work. The proposed work suggests
a DNN-based model for the analysis of EEG signals in a subject-independent way, that
is, subject-independent mental task classification. We have averaged the PSD from the
signals of all but one subject in the training phase. Once a deep learning model was
trained, the PSD of the test subject was averaged with training data. This reduces the high
variability of EEG signals across diverse subjects. The proposed subject-independent work
was compared with the common benchmark dataset from BCI competitions. Different
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experimental setups and results indicate the significance of averaging training and testing
data. Thus, the proposed model can be applied for the classification of mental tasks from
the PSD values of EEG of any person whose data are not utilized during the training phase
of the model. The only limitation could be the need to keep some training data for the
testing phase as well. This work can be extended by building similar models with other
deep learning models such as LSTM and bidirectional LSTM that are suitable for time series
data (EEG).

We can further dive into the depths to explore other deep learning methods, and a
few experiments can be performed to improve the accuracy. For example, factors that
can influence the EEG signal data, possibly any noise or any disturbance caused by the
cognitive aspects and hidden imbalanced state of an individual, would be of great interest.
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Abbreviations

Abbreviation Full Form
BCI Brain Computer Interface
BiLSTM Bidirectional Long Short-Term Memory Network
CNN Convolutional Neural Network
EEG Electro Encephalography
BPNN Back Propagation Neural Network
HMM Hidden Markov Model
PSO Particle Swarm Optimization
PSD Power Spectral Density
SVM Support Vector Machine
LDA Linear Discriminant Analysis
CSP Common Spatial Patterns
SNR Signal-to-Noise Ratio
FBCSP Filter Bank Common Spatial Pattern
MIT Motor Imagery task
DNN Deep Neural Network
SGD Stochastic Gradient Descent
ADAM Adaptive Moment Estimation
ReLU Rectified Linear Unit
PCA Principal Component Analysis
TP True Positive
TN True Negative
FP False Positive
FN False Negative
TPR True Positive Rate
TNR True Negative Rate
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