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Abstract—Hierarchical neural networks have been shown ef-
fective in learning representative image features and recognising
object classes. However, most existing networks combine the
low/middle level cues for classification without accounting for
any spatial structures. For applications such as understanding a
scene, how the visual cues are spatially distributed in an image
becomes essential for successful analysis.

This paper extends the framework of deep neural networks
by accounting for the structural cues in the visual signals. In
particular, two kinds of neural networks have been proposed.
First, we develop a multi-task deep convolutional network,
which simultaneously detects the presence of the target and the
geometric attributes (location and orientation) of the target with
respect to the region of interest. Second, a recurrent neuron layer
is adopted for structured visual detection. The recurrent neurons
can deal with the spatial distribution of visible cues belonging to
an object whose shape or structure is difficult to define explicitly.

Both networks are demonstrated by the practical task of
detecting lane boundaries in traffic scenes. The multi-task Con-
volutional Neural Network (CNN) provides auxiliary geometric
information to help the subsequent modelling of given lane
structures. The Recurrent Neural Network (RNN) automatically
detects lane boundaries, including those areas containing no
marks, without any explicit prior knowledge or secondary mod-
elling.

I. INTRODUCTION

Deep neural networks are powerful tools for visual analytics

[1] and have shown superior performance in various tasks

[2]. Compared to traditional models of shallow computational

structures, one essential advantage of deep nets is that the

data representations are constructed in the learning process

automatically. Therefore, deep neural networks are often con-

sidered to be capable of end-to-end learning, emphasising

that manual feature construction is replaced by automatic

representation learning. However, automatic data representa-

tion deals with the “input end” of the processing. For the

“output end”, most existing networks assume simplified output

representation, such as one or a few variables standing for a

binary or 1-in-N class labels.

In practical vision tasks, however, extra processing steps

are often needed to transform the simple outputs into the

actual learning targets. For example, when an object is to be
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Figure 1. Where are the lane boundaries? This figure demonstrates the
importance of context when recognising objects in images. The top subplots
(a), (b) and (c) are 7 × 7 image patches (scaled up for clear viewing). The
middle subplots show 30× 20 surrounding areas of the small patches. Green
rectangles show the areas in the image from which the patches are taken. The
area (a) contains paintings on road, not directly indicating traffic lanes. The
area (b) is on a boundary between two lanes, without obvious marks. The
area (c) is on the same boundary as (b) and contains a lane mark.

localised within an image (as opposed to merely perceiving its

presence), a detector may employ a sliding window scheme

to apply a neural network to examine every location within

the image. This approach is effective when the network

outputs can be independently evaluated for the problem [3],

[4]. In the above example, when the target is a monolithic

object detectable from individual image patches, the scheme

works well. However, in more challenging scenarios, such as

detecting objects of varying size and shape, making detections

from the simple outputs requires sophisticated structuring and

is non-trivial [5].

In this work, we propose that for visual detection, deep-

learning neural networks should not only automate input repre-

sentation but also adopt task specific structures in the outputs.

In particular, we consider the problem of detecting lanes in

a traffic scene, which is important for driving automation.

Two types of deep neural networks have been developed for

recognising the boundaries of the lanes from images. Before

introducing our networks, it is helpful to inspect a typical

example of lane detection. Fig. 1 illustrates a lane, with a solid

and a broken boundary on each side. Since lanes and their

boundaries usually span across large areas (the entire image

in Fig. 1), the localisation operates at least two levels: locally,

the lane model recognises the patterns that mark a boundary

with reasonable granularity (e.g., for every 7 × 7 image
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patch); globally, the model needs to revise the recognition with

respect to related areas, including both the surrounding image

context and structurally connected regions. As in Fig. 1, (c) is

recognised as boundary because of the visual evidence, while

boundary (b) is induced by the overall boundary structure. The

patch (a) is considered not to be a boundary mark due to its

surrounding image context.

The two proposed networks are tailored to perform struc-

tured predictions to meet the need for lane detection. The

first network is a deep convolutional neural network that

simultaneously performs multiple (two different) tasks. The

output of the neural network consists of both classifier and

regressor: the existence of visual cues (lane marks) is detected

by the classifier, and if the detection returns positive result,

the regressor estimates orientation and location of the lane

mark within the region of interest. Compared to traditional cue

detectors based on binary classification, the proposed network

can afford to work with relatively large regions of interest,

because the prediction about the target is further refined by the

regressor. Large regions contain richer contextual information

helping improve the detection accuracy.

The second network introduces a layer of recurrent neurons

on top of the convolutional neural network. The resultant

network has memory and is able to account for structures in the

data. This is particularly useful to identify global targets (ones

that persist over a sequence of local image areas) from local

cues without explicitly specifying the structural knowledge of

the global target. From a small number of labelled images, the

network can be trained with a large set of augmented samples.

In the test stage, the network predicts boundaries of lanes from

images. The detection framework is a complete end-to-end

learning scheme. The proposed network is applied to real-life

traffic scene analysis showing promising results.

It is also worth noting that this work is focused on the low-

level detection, i.e. for each image location, determine whether

it belongs to a lane boundary. The low-level detection can be

integrated within any higher level models of traffic lanes, such

as those in [6], [7], [8].

To summarize our contribution, for the problem of lane de-

tecton from video we develop a multi-task deep convolutional

network, which simultaneously detects the presence of the

target and its geometric attributes (location and orientation)

with respect to the region of interest. In addition, for the same

problem we also develop a recurrent neural network which

utilizes its internal status memory to infer the presence or

absence of a lane over a sequence of image areas. Fig. 2

illustrates the overall workflow of the proposed neural network

systems.

This paper is organised as follows. We first review relevant

research background in Section II. Section III and Section IV

introduce the multi-task convolutional neural network and the

adoption of recurrent neurons, respectively. Section V reports

empirical evaluation of the proposed networks. Section VI

concludes the paper.

II. BACKGROUND

Deep neural networks have witnessed significant progress

in the past decade since the increased computational capacity
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Figure 2. Diagram of Lane Recognition using Deep Neural Networks. This
figure shows the workflow of the two frameworks for lane recognition pro-
posed in this paper. Both frameworks employ convolutional neural networks
for feature extraction. Framework I predicts both the presence of the targets
and relevant geometric attributes. Framework II first process an input image
as a sequence of regions of interest (ROI’s), and applies two steps of feature
extraction on each ROI: by convolutional neural networks and by recurrent
neural networks. The latter can automatically recognise global structures over
multiple ROIs. Optionally, higher level models (such as those in [6], [7],
[8]) of the lane structures can be constructed based on the predictions. This
step is shown as a transparent box “Lane Modelling”. The details of the two
frameworks are explained in Fig. 3 and Fig. 5, respectively.

has led to breakthrough in effective learning schemes [9], [10],

[11], [12]. The deep computational structure has been proved

useful in a wide range of application areas, including speech

recognition [13], [14], natural language processing [15], and

particularly relevant to this work, visual analytics [16], where

the neurons are organised and connected to the input in a

way that reproduces the convolution operation [17], [2], [18],

[19], [20]. The surveys [21], [22] can be referred to for a

comprehensive overview of the field.

The motivation behind this work is to design neural net-

works which learn features from inputs and output predictions

customised to the applications. Task-specific feature extraction

has been proven helpful. The learning nets [2], [18], [23]

have shown that given raw inputs, by adapting the outputs to

the desired category labels, useful low-/middle-level features

will emerge automatically during the training process, and

the entire network routinely outperforms classifiers tuned to

handcrafted features. However, as we have discussed above,

in most existing neural networks for image analysis, the task

is simplified to making choices from certain categories. But in

real world, the targets are often beyond independent individual

categorical labels. An effective way to encode structures in

the network outputs is to have internal status of the network

preserved from one instance to another. Recurrent neural

networks (RNN) employ a type of neuron units that have

cyclical connections to themselves, where the output of a

neuron is fed into the its input. Therefore the prediction on

one instance will affect that on the subsequent ones. RNN have

been shown useful in sequence analysis [24], [25], [26], as well

as many other applications in control, modeling and signal

processing [27], [28], [29]. Backpropagation through time
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Figure 3. A Multi-task Object Detector based on Hierarchical Convolutional Network. From left to right, a signal flows through the operational steps of the
neural network, which finally produces two kinds of outputs. The network accepts a rectangular area from an image (region of interest). The early steps of the
network are based on a LeNet [17], consisting of twice application of convolution (each convolutional kernel, e.g. a 2D filter of 5× 5, producing one feature
map) and down-sampling (shrink the size of the feature maps by pooling the maximum filter responses from local, e.g. 2× 2, areas). At the output stage, the
information flow branches and network simultaneously predicts: (i) whether the target is present in the input image area, and (ii) the geometry attributes of
the target if (i) is true. It is because of these two outputs, or two tasks, that the network is called a multi-task network.

(BPTT) and other algorithms have been developed to enable

RNN training [30], [31]. Long-short-term-memory (LSTM)

has been proposed to overcome the gradient dissipation or

explosion during the backpropagation by introducing gates

to conditionally regulate the nonlinearity in the nets [32],

[33]. LSTM is successful in long sequence analysis [15]. For

image analysis, LSTM was extended to multiple directions

and dimensions and applied to hand-written digits recognition

[34]. Recently, LSTM has been employed to learn directing

attention of perception in image recognition [35]. In this work,

we adopt LSTM as the structural learner of images.

Recognising lanes is an important step toward traffic scene

understanding and ultimately toward autonomous driving [36].

Most existing efforts on lane recognition rely on handcrafted

features to detect local cues, i.e. marks of lane boundaries [6],

[37], [38]. Explicit lane modelling and corresponding robust

selection methods (e.g. [39]) are necessary to infer global

lane structures from local detections. Despite the appearently

simple patterns of most lane marks, the task involves non-

trivial trade-off between several important aspects, including

the speed, the accuracy and resolution of the detection, and

modelling reliability [40], [6], [41].

A natural approach of recognising objects is to employ part-

based models and systematically compose the part models

in a comprehensive classifier [42]. The so-called deformable

model employs manually constructed features, which can be

optimised for the task if the feature learning can be integrated

in the model learning procedure. More importantly, existing

deformable models rely on explicit model families, where the

components and geometrical correlations of the target object

are prescribed. Although such visual grammar can be designed

for objects such as pedestrians or bicycles, it is usually difficult

to explicitly identify the components and the internal structure

for object without certain constituent parts or shapes, such as

traffic lanes or other elements of road. In this work, the local-

detection-and-global-modelling of the traffic lanes has been

formulated as a sequence modelling problem. The structural

learning problem has been tackled by probabilistic fields, such

as Markov random fields [43] or conditional random fields

[44] and more broadly by energy-based models [45]. The

probabilistic fields have been successful for problems such

as medical image analysis and segmentation [46]. For more

complicated visual cues, it is usually not obvious how to

design appropriate features of the energy function. Moreover, it

is difficult to represent objects with global support in an image

by local structures specified by the features. In contrast, we

propose to employ the LSTM RNN to capture such structures

in this work, where the long-term internal memory suits the

need of the problem.

III. MULTI-TASK CONVOLUTIONAL NETWORK

The specialised deep convolutional neural network simul-

taneously detects marked lane boundaries and extracts the

geometry attributes of the boundary for positive detections.

We adapted the hierarchical structure of the LeNet [17] to

perform the two tasks, which share the low-level features.

A. Convolutional Network

The overall structure of the network is illustrated in Fig. 3.

The input to the network is a region of interest from an image.

The feature extraction in a LeNet is through consecutively

applying convolutional image filters and down-sampling by

pooling the maximum responses in neighbourhoods on the

image plane. A convolutional layer of P input feature maps

(e.g. colour channels) {Xp}Pp=1 and Q output feature maps

{Hq}Qq=1 is specified by a set of filters {W q,p} of size K×K,

and Q bias terms bq . The output is calculated by

Hq := f(
∑

p

Xp ∗W q,p + bq)

where the operator ∗ represents 2D convolution and f(·) is

an element-wise non-linear activation function, e.g. f(x) =
1/(1 + ex). The resultant feature maps Hq is then processed

with spatial down-sampling. For example, taking the maxi-

mum output from a local area of 2 × 2 of each feature map

will shrink the signal by a factor of 4. Max-pooling improves

the recognition robustness against transformation of the pattern
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Figure 4. How to represent geometric attributes. The attributes consist of
(d, θ). The parameter d is a signed distance from the line segment to the
centre (“-” for above and “+” for below), which provides the location of the
segment. The parameter θ is the angle between the segment and horizontal
line, which is the orientation of the segment.

of interest within the input image. However, different from

previous recognition-only tasks [2], we must make a trade-

off, because this spatial invariance reduces the information

needed for estimating the geometric attributes of the lane

border within the detection area. In practice, we employ 2-

to-1 max-pooling twice, which provides robust detection, as

well as effective geometric prediction. After the second step

of max-pooling, all output neurons are combined to feed in

the next stage of prediction network.

B. Branched Model Construction

The features given by the convolutional network are shared

by two related prediction tasks. The detection task is essen-

tially to have a classifier to determine the presence of the

target, e.g. segments of traffic lane boundaries, in the region

of interest. On the other hand, we also let the network estimate

the geometric attributes of the target, when the detector returns

positive results. In principle, the geometric attributes can refer

to any quantities providing details about target in the region of

interest. In our particular task, the geometric attributes are the

position and the orientation of a line segment within the region

of interest, representing a traffic lane boundary intersecting

a rectangular area on road. Note that we consider inverse

perspective images (IPM), where the perspective projection

is removed from a camera image using known camera pa-

rameters, and each pixel corresponds to a point on the road

surface (detailed discussion is to be found in Section V, and

an example is shown by Fig. 8). The geometric attributes

consist of two parameters, including (i) the signed distance

between the line segment and the centre of the rectangle and

(ii) the angle between the segment and the bottom edge of the

rectangle. The geometric model configuration is illustrated by

Fig. 4, where d represents the signed distance and θ represents

the angle. The sign of d indicates the relative position between

the line segment and the centre (“-” for above and “+” for

below).

The detection and the geometric estimation are implemented

by two individual feed-forward networks. Both networks con-

sist of a layer of hidden units, which are fully connected to all

the outputs of the final max-pooling stage. The hidden neurons

then form two generalised linear models for the prediction

tasks. In particular, a neuron of the hidden layer (either of the

two) is activated by

z
{C,R}
i = h(

∑

j

U
{C,R}
i,j yj + c

{C,R}
i ) (1)

where C and R correspond to the classification and regression

branch of the network, Ui,· and ci represent the coefficients

and bias term for the i-th neuron zi of the corresponding

branch, j runs over all neurons output by the final max-

pooling, and h(·) is the activation function. The classification

and regression targets are computed as follows

p = σ(
∑

i

φiz
C
i + bC) (2)

(d, θ)T =
∑

i

ψiz
R
i + bR (3)

where φi and ψi are coefficients and bC and bR are bias. Note

that bold symbols represent 2D vectors. The loss functions

for the classification and regression tasks are defined by

negative log-likelihood and squared errors, respectively. Given

the ground-truth label g ∈ {0, 1} and geometry (d̂, θ̂), the

losses are

LC = − log pg(1− p)1−g (4)

LR = [(d− d̂)2 + (θ − θ̂)2]g (5)

Compared to the standard squared errors, loss (5) has the

detection label g as an additional “switch”. The switch has

the following meaning. Of the two branches of the network,

the classification is always performed. The estimation of the

geometry of the border segment only makes sense if there

is one within the detection area, otherwise, the geometry

prediction will be skipped and no loss should be counted.

According to Fig. 3, the switch of the gate is connected to

the signal at the binary output of the classification. It is worth

noting that the switch operates in slightly different ways during

the feed-forward and the back-propagation processes. In the

feed-forward process, the gate is controlled by the network

prediction, a binary status determined by p in (2), which means

that the geometry estimation is only valid when the target is

detected. This applies to both the training and the test samples.

During the back-propagation process, the gate is controlled by

the ground-truth status, g, i.e. the objective of the detection.

Back-propagation is only performed on the training samples,

where the ground-truth g is provided.

IV. RECURRENT NEURAL NETWORK

In this section, we present a neural network that makes

structured predictions, and is able to detect local visual cues

with accounting for the global object structures. The multi-

task network introduced above can help build global object

model by providing local geometric attributes. When it is

inconvenient to explicitly prescribe a global model, however, it

is desirable to enable the model to capture the global structures

of the distribution of the cues, and apply the knowledge in

detection.

To achieve the global awareness by local observations, we

allow the model to maintain internal memory. When the model
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Figure 5. A Structure-aware Detector Based on Recurrent Neural Network.
The initial steps represent the input region using the convolution-maxpooling
operations as shown in Fig. 3. The predictions are made from layer of
recurrent neurons, which are computed from the extracted features of the
current instance and their own current status. Since the status of the recurrent
neurons forms the system state, at any moment, the network takes the previous
observations into account to make the current predictions.

takes inputs by spatially traversing the image, the memory

enables the contents of the image in one part to affect the

analysis of the other part. When trained properly, such a model

is able to recognise meaningful structures in the image.

A. Network Structure of Recurrent Detector

Fig. 5 shows the chart of the main components of the recur-

rent network. From the input signals to the output predictions,

there are three main stages. First, the inputs region passes

a convolution/maxpooling step, which extracts representative

features from the raw signals. The settings of the convolutional

feature extraction net layers are similar to those used in

Sec. III, with minor adjustments to adapt the overall network

configuration. The second stage is implemented by a set of

recurrent hidden units. In the third stage, the status of the

recurrent neurons is transformed by a layer of classifiers to

produce the outputs.

Similar to the LeNet in Sec. III, the convolution-maxpooling

layer generates multiple feature maps for the input image and

takes the maximum responses in local areas. There are two

differences. First, there is only one, rather than two, passes of

convolution-maxpooling in our construction of the recurrent

detector network. Recurrent detector generally accepts smaller

images as inputs and needs fewer downsampling steps. It is

noteworthy that using smaller images is not a trivial pragmatic

setting. The ability of drawing connections between local pre-

dictions allows the network to deal with missing cues in small-

size inputs. Second, the convolution-maxpooling layer does

not include a nonlinear activation step, because subsequent

hidden neurons are complex units with non-linear activation

functions for the inputs. The details of the hidden neurons are

introduced in Subsection IV-C.

Following the convolution-maxpooling layer, the recurrent

hidden layer further transforms the signal. The final predictions

are made based on the status of the recurrent hidden units by

using a standard feed-forward layer.
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Figure 6. Applying Recurrent Neural Network Detector on road surface
image. The figure shows the detection process of lane boundaries on road
surface. Each region of interest (ROI) is a strip (green rectangles). The neural
network processes the strips in an image from left (near) to right (far). For
each ROI, multiple binary decisions are made, corresponding to detecting the
target (lane boundary) in small patches within the ROI. In the figure, each
ROI consists of a stack of such small patches (best to be viewed in colours on
a computer screen), and the red patches contain lane boundaries. In the charts
showing the neural network layers, “C” represents convolution-maxpooling
layer and “R” represents recurrent hidden layer. The CNN and the RNN are
illustrated in previous figures (Fig. 3 and Fig. 5).

B. Detection on Images

Given an image, the neural network is applied to multiple

regions of interest, which are fed to the network consecutively.

In each processing step, the network produces predictions for

the input region of interest, as well as maintains the status of

the recurrent units for the prediction of the next step.

The partition of an image and the order in which the

recurrent net is applied should be designed to suit specific

problems. For detecting lane boundaries in road surface images

(see IPM discussed in Subsection III-B and Section V), we let

individual regions be narrow strips crossing the road so that

the sequence of strips cover the road surface. The arrangement

of the regions and the detection procedure are illustrated in

Fig. 6. Because each region of interest (ROI) takes a thin slice

of the road surface, and the slice is roughly perpendicular to

the road direction, we can expect the boundaries of the lanes

occupy small segments within each ROI. The detection is thus

formulated as multiple binary predictions for individual ROIs.

In Fig. 6 some of the patches are recognised as boundaries

not according to the presence of visual cues but because of

the favourable context observed in previous ROIs in the input

sequence.

There are several practical advantages of the detection

problem as formulated above. An important one is that large

numbers of training examples can be generated from only a

few labelled images, to be discussed in Section V.

C. Recurrent Units

In the following, we briefly introduce the LSTM algorithm,

where [47] can be referred to for more details. A layer of
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Figure 7. The structure of LSTM cell. Solid arrows shows internal paths of
the neuron activation signals, and dotted arrows show the paths cross cells
(from lower layers to the input and gates) or cross time steps (from the output
to the input and gates). The internal status is the LSTM memory. The gates
regulate information paths through multiplication operators (shown as ⊗).

“standard” recurrent neurons can be formulated as

ht+1
i = f(at+1

i ) (6)

at+1
i =

∑

j

wijx
t+1
j +

∑

k

uikh
t
k (7)

where h
(t)
i represents the status of the i-th recurrent neuron

at step t, x-variables are neurons of previous layers in the

network and w and u are connection weights. The f(·)
function is a nonlinear activation. In an LSTM network, the

individual recurrent neurons are equipped with several gates

regulating the flow of signals. Fig. 7 shows one LSTM cell.

There are three types of gates, as well as additional input

and output activations. The cell status consists of modulated

activated network input and a decayed memory of previous

status. So replacing (7), we have

at+1
i = ct+1

i ati + bt+1
i g(

∑

j

wijx
t+1
j +

∑

k

uikh
t
k) (8)

where b-variable represents the input gate, c-variable repre-

sents the forget/keeping gate and g(·) is a nonlinear activation.

LSTM network has also an output gate checking the cell’s

contribution to the rest of the network. So in LSTM, (6) is

replaced by

ht+1
i = dt+1

i σ(at+1
i ) (9)

The d-variables are output gates and σ(·) is a nonlinear

activation. The gates, i.e. the b, c and d-variables, in (8) and (9)

are themselves neurons. Their net input constitutes the signals

from lower-layer neurons, x, the internal status of the hosting

cell, ai, and the previous output of all cells, h:

αt+1
i = g

(

∑

j

wα
ijx

t+1
j +

∑

k

uαikh
t
k + vαi a

t+iα
i

)

(10)

where α ∈ {b, c, d} represents the gates. Note the order of

execution is important: input gate (b), forget gate (c), cell status

(8), output gate (d) and final output (9). Thus in (10), the input

and forget gates use old status, ib = ic = 0 and the output

gate uses updated status id = +1.

Figure 8. An example of the inverse perspective mapped image . Each pixel
corresponds to a 0.1×0.1m2 ground area (assuming the road surface is flat).
Depending on the application, an IPM image can aggregate one or multiple
camera images to a unified map of the road surface. This figure shows an
IPM image integrating three camera observations.

V. EXPERIMENTS

The proposed models have been tested on real-world traf-

fic data. In this section of experiment reports, we discuss

the performance of the proposed model with comparison to

widely used detectors, and the characteristic behaviour of the

proposed model, as well as practical scheme of integrating the

model in comprehensive traffic scene analysis. According to

the attributes of the models proposed in Section III and Section

IV, two sets of tests have been conducted, regarding merging

and normal driving scenarios respectively.

The multi-task deep CNN has been applied to detect lane

boundaries in a merging scenario, where the estimated ge-

ometric attributes can help further mapping of the scene. On

the other hand, when driving on a multi-lane road, the number

of lanes can vary and a general model can be cumbersome to

specify. Thus it is preferable to directly infer the lanes from

the visual cues. Section V-A will discuss the experiments on

multi-task deep CNN, and Section V-B will discuss the flexible

lane detection and modelling by RNN.

A. Lane Mark Detection and Geometry Estimation with Multi-

task Deep CNN

For the merging scenario, we use images taken by three

cameras facing the front, left and rear sides of the ego-vehicle.

The observations are integrated in one Inverse-Perspective-

Mapped (IPM) image using the calibrated camera parameters.

An IPM image can be seen as a bird’s view of the road surface

recovered from the camera image by “inverse” perspective

projection – mapping pixels in camera image to a virtual

horizontal plane approximately corresponding to the road

surface. The “inverse perspective” is accurate only for physical

points on an assumed flat road, but is adequate as visual cues

for a lane boundaries. Fig. 8 shows an example of the IPM

images we use for detection1.

1We use this IPM image to illustrate behaviour of the detection algorithms.
The image is about freeway merging from right, but the approach applies
equally to the case of merging from left.
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Figure 9. Intensity bump, a pattern of road markings to be detected in images

Figure 10. Receiver operating characteristic (ROC) curve of detecting line
segments on the IPM image . ROC curve shows the rates of correctly
detected targets against those of incorrectly reported spurious detections:
the higher the true positives achieved with lower false positives, the better
the detector performs. Area under the curve (AUC) quantitatively measures
detector accuracy. A large AUC is desirable.

For training and evaluation, the lane marks in the IPM

images are labelled. Given a labelled IPM, two sets of training

samples are extracted. For conventional local detectors, the

samples consist of 7×7 image patches, which is corresponding

to an area of 0.7m × 0.7m in the physical world. According

to our discussion in Section III, the multi-task convolutional

neural network accepts samples of 28× 20 patches2. Positive

samples are extracted at the locations of labelled lane mark-

ings, geometric information is encoded as explained in Fig. 4.

Negative samples are random patches containing no marks.

We first examine how the proposed CNN model compares

with widely used classifiers as a road marking detector. Three

commonly used classifiers have been applied. The simplest de-

tector checks the output of applying an “intensity bump” filter

to the image patch [48], [38], [37]. The filter is constructed

heuristically to represent a plausible pattern of lane markings,

as shown in Fig. 9.

A more systematic method is to learn classifiers from

example patterns. The proposed CNN and two widely used

classifiers, support vector machine (SVM) and feedforward

neural network (MLP) are tested [6]. The classifiers are

applied at every pixel in the IPM image to predict whether

a segment of lane marking is present. Fig. 10 shows the

ROC curves of those classifiers. CNN has achieved superior

performance in this test according to the ROC plot. The

behaviours of the bump filter response, MLP and SVM are

2Traditional detectors output a binary decision for a particular input. Thus a
patch must be reasonably small to reach an acceptable resolution of detection.
In contrast, the proposed network additionally estimates the geometry, which
makes further refinement possible. Relatively large patches are fed into the
network to include additional contextual information.

Figure 11. Detection scores given by (a) SVM and (b) CNN. Both classifiers
are applied to each image point to predict the presence of lane markings. The
top 10% scored points are plotted with colours representing their respective
scores. Blue indicates relatively low scores (among the top 10%), and red
indicates relatively high ones. The locations of the top 10% scored points
given by SVM and CNN are different. CNN tends to score points with more
respect to how close the points are to the true lane markings than SVM
does. SVM is affected by background clutter. (This figure is best viewed on
a computer screen in colours).

as expected. Both SVM and MLP performed better in the

detection task than the simple filter, likely because the image

characteristics learned from data are more representative than

the handcrafted intensity bump. For generating the ROC curve

with a range of varying false-vs-true positive rates, SVM is

configured to output probability of its prediction. The scores of

CNN model consolidates the prediction of both the classifier

and the geometry predictor: s = y − α|d|, where y is the

log probability given by the classifier, |d| is the predicted

distance between the centre of the region and the line segment,

α = PatchRadius
2 = 10.

In addition to the hit-or-miss criterion shown in the ROC

curves, the decisions made by the CNN-based detector are

also more accurate in spatial terms, i.e. the confidence of the

detector is closely related to the distance between the sample

and a true target. Fig. 11 shows example by applying SVM

and CNN at each location on an image and comparing the top

10% scored points3. The plots show that CNN has a different

map of detection scores than SVM does, particularly for points

that are not located exactly on the target curves. The CNN

3Note that such an exhaustive search is NOT how CNN is usually applied,
see active search below.
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Figure 12. Detection with active search and CNN. The result is presented
similarly as in Fig. 11, and improvement is evident. Details of the active
search are in the text. Here we show all detections, rather than the top 10%
scored points as in Fig. 11.

tends to give higher scores to locations close to the target

curves, and the score is linked to the distance. In contrast,

SVM simply relies on local texture of the image to detect lane

markings. If some extent of false detection is to be expected in

practice, those of CNN are more benign to the subsequent task

of modelling the road than those of SVM. This benefit of CNN

is hardly surprising, because CNN considers a large context

and extra geometric information for detection compared to

standard classifiers.

CNN-based active search scheme: The efficiency and ac-

curacy of CNN-based detection can both be further improved

by exploiting two attributes of the network: (i) the detection

area is relatively large and (ii) the location and orientation

of the target can be estimated when a detection is made. An

active search scheme can be designed, so that once a detection

area is examined, we can employ light-weight weak detectors

and avoid evaluating the entire network on overlapping and

surrounding areas. This is different from most detectors, for

which a sliding window searching must be performed on a

dense grid of the image, and the detection areas are overlap-

ping with each other heavily. For example, if SVM is applied

to large image patches, one will have a binary prediction on

a large patch, without any hint to refine the location of the

target within the patch.

In contrast, when CNN reports a detection and predicts a

line segment within a rectangle area, we then apply the bump

filter (see Fig. 9) within ±3 pixels of the predicted location of

the segment (see Fig. 4, point p∗), and refine the location to

where maximum response is. Then the search moves to a new

site following the predicted orientation of the lane. The process

continues until the search encounters previous detections or

track is lost (all filter responses in a local area are low). Fig.

12 shows an example of detection by searching, which further

improves the detection quality.

B. Lane Boundary Detection via Recurrent Neural Network

Lane Detection by Recurrent Neural Networks: As shown

by the above experiments, the multiple predictions by the

convolutional neural network can be helpful to subsequent

modelling. However, in many practical scenarios, a prescribed

road or lane model can be too restrictive. The recurrent neural

network introduced in Section IV is a suitable learning model

for tasks where the visual cues can only be partially observed.

For example, when lane boundaries are defined by broken

lines, target (boundaries) can exist at locations where the local

appearance is the same as non-target (road surface). In such

cases, the target object is best detected by accounting for

both the appearance and the spatial structure of the visual

cues. Moreover, the recurrent neural network learns structures

implicitly from the local labels in the training data without

heuristic knowledge about the structures.

The setting-up of the prediction problem has been discussed

in Subsection IV-B. An example is shown in Fig. 6. Specif-

ically, we use strips of 10 × 80 pixels on the IPM (road

surface image). The neural network generates 16 predictions

for each strip, i.e. the predictions are about whether the 16

small patches (10 × 5, partitioning the strip along the 80-

pixel elongated dimension) contain lane boundaries. In this

test, we take totally 50 strips in an image, making an area

of 500 × 80 in an IPM image. Note that in practice, once a

network has been trained, there is no limit on the length of

the sequences the network can process in the test stage. We

also include the dataset of [49] in this test (Caltech dataset).

The dataset consists of video clips taken during four sessions

of urban driving with calibrated camera parameters and IPM

image generator. The original experimental configuration of

the dataset for temporal tracking of lanes, and differs from

our testing objective of inferring partially marked lanes. Thus

we test the algorithms on individual frames. For dataset, each

sample is a sequence of 24 strips of 5 × 100 pixels, on each

of the strip, we make 20 predictions of the 5× 5 areas.

For the networks on both datasets, the feature extrac-

tion and recurrent neuron layers have the same structure.

The convolution-maxpooling layers have 5 × 5 convolutional

kernels and 2-to-1 pooling. We employ 64 LSTM cells in

the recurrent layer. The RNN layer is specified by 64 ×
4 × #.features weights, because each LSTM complex cell

contains 4 individual neurons, corresponding to the internal

status, input, output and forget gates.

The network is trained by fitting data with labelled lane

boundaries. Labelling images is expensive and slow. For-

tunately, fitting the model actually requires labelled strip

sequences, which can be obtained in large quantities from a

few labelled images. A distinctive sample of sequence can be

extracted by shifting the position of each strip in a labelled

image, and adjust the labels correspondingly. Intuitively, one

can understand the procedure by considering the sequence as a

stack of strips and producing multiple training samples through

sliding each strip by a small distance.

The effect of the structural information is best shown by

comparing the proposed recurrent network with detectors mak-

ing independent predictions. First, we train a SVM classifier on

the individual patches, i.e. the small areas within one strip (16

for our dataset and 20 for the Caltech dataset). The classifier

treats each small patch as independent instances. As we have

discussed above, the small patches contain insufficient context

to allow the classifier to deal with ambiguities. What is worse



9

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic curves

RNN, AUC=0.99
CNN, AUC=0.94
SVM, AUC=0.64

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic curves

RNN, AUC=0.99
CNN, AUC=0.90
SVM, AUC=0.82

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic curves

RNN, AUC=0.93
CNN, AUC=0.83
SVM, AUC=0.73

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic curves

RNN, AUC=0.96
CNN, AUC=0.91
SVM, AUC=0.77

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

Receiver operating characteristic curves

RNN, AUC=0.99
CNN, AUC=0.97
SVM, AUC=0.90

(d) (e)

Figure 13. Receiver operating characteristic (ROC) curves of lane boundary detectors. Sub-plot (a) represents the results on our dataset, and (b–e) correspond
to those on four video clips in the Caltect dataset of lane marks [49]. The ROC curves and AUC areas compare the prediction of the detectors and the ground
truth, which is explained in Fig. 10.

for small-patch detectors in this test is that the positive labels

are given to virtual boundaries, which means that for some

positive samples, no local visual cues are present. Thus for

small-patch classifiers, the positive supervision is unreliable,

and the confusion is very damaging to the training process.

An example is shown in Fig. 14 (a1), where local appearance

on the boundaries can have similar appearance as surrounding

road surface (at locations between the marks along a boundary

of broken line, as indicated by circle marks in the sub-plot).

Second, we attempt to treat the individual strips as indepen-

dent samples. This is done by removing the recurrent neurons

and replacing the layer with non-recurrent hidden neurons. In

particular, the network has 64 fully connected hidden neurons

between the convolution-maxpooling layer and the final output

layer (referred to as CNN network).

The ROC curve is shown in Fig. 13. The sub-figure (a)

corresponds to the test result on our dateset and (b–e) represent

the four video clips in the Caltech data. These curves shows

that the performance of a detector is largely affected by how

the detector utilises the structural information in the data. The

RNN network outperforms the CNN network, because the

recurrent neurons allow inference about one strip to help that

about subsequent ones. CNN network accounts for contextual

information within a strip, but also suffers from the lack of

sequential structural information. By a large margin, the SVM

classifier on the small patches is outperformed by CNN.

Noticeably, the SVM detector has behaved poorly, not

only compared to the neural network-based models, but also

compared to its own performance in Subsection V-A. We have

trained and verified the SVM models using a reasonable range

of settings, including both the linear and radial basis function

(RBF) kernels, and on a parameter grid of C = 10{0,1,2,3,4}

and γ = 10{−2,−3,−4,−5}. Such settings have given good

models in the experiments in Subsection IV-C. It is unlikely

that it is an inadequate training or model selection procedure

to blame. A possible reason for the poor SVM classification

is discussed above: the training samples are labelled with

hypothetical lane boundaries. If we consider the individual

small patches, many positive samples contain no distinctive

patterns. The lack of context and the confusing positive

samples jointly prevent classifiers learned from independent

small image patches (such as SVM) from reaching competitive

performance.

Fig. 14 visually compares the detection results by the three

models on two example frames from the video. The predictions

on the road surface are drawn over the camera images.

The blocks represent the predictions on the small patches

in the strips, and the colours of those blocks correspond to

the confidence of detecting lane boundaries (red for positive

detections). Sub-plots (a–c) show the results of RNN, CNN

and SVM respectively. The effectiveness of the detectors can

be readily assessed by visual inspection, which is consistent
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 14. Detecting lane boundaries with/without structural information. The sub-plots correspond to results of the following models, (column a): RNN
network, (column b): CNN network (similar structure as the RNN network, but replacing recurrent neurons with standard feedforward ones), and (column
c): SVM. The colours in the small blocks indicates a detector’s confidence that the block belongs to a lane boundary – red is for high confidence and green
for low (This figure should be viewed with colours on a computer screen). The amount of structural information considered in the models has the following
order: SVM (c) < CNN (b) < RNN (a). SVM (c) predicts on individual blocks and is largely affected by the lack of context. A row of blocks makes a strip.
CNN (b) predicts on the individual strips, and its confidence is affected by virtual boundaries containing little visual cues. RNN (c) accounts for the structure
within a sequence of strips, and captures boundaries more successfully. In sub-plot (a1) we use circle marks to indicate areas of virtual boundary: boundary
without apparent visual cues.

with the quantitative comparison shown by the ROC curves.

Testing the Rule-Learning of RNN: To further clarify how

the recurrent network helps recognise the structures, we have

generated a dataset consisting of sequences of graphical pat-

terns with different meaning. The goal is to let a learning

model automatically identify the cues via the graphics, and

infer the rules by which the cues influence the subsequent

predictions. Example images are shown in Fig. 15 (a) and (b),

where the patterns and rules of interpreting the images are also

explained in the figure. Two neural networks are constructed

in the similar way as in the previous experiments. The RNN

has 16 kernels sized 5 × 5, a 2-to-1 maxpooling layer, 64

recurrent cells and 4 output predictions. The number of output

predictions, 4, is different from the previous RNN, because the

each sample in the dataset has four sequences (see Fig. 15).

As above, the CNN is constructed similarly as the RNN, with

the recurrent cells being replaced by feedforward neurons.

The performance of the two neural networks is compared

by the ROC curve in Fig. 16. Two examples of the predictions

made by the networks are displayed in Fig. 15 (c) and (d). It

can be interpreted from the plots that RNN has made accurate

predictions, which shows that the network has learned the rules

about how the sequences of graphical pattern determine the

(a) (b)

(c) (d)

Figure 15. Synthetic data: different graphical cues and the meaning. Each
image contains 4 rows. Each row is a sequence of 25 small boxes (10× 10
pixels). A sequence is interpreted from left to right and one box after another.
Initially, an empty box means a negative status. The pattern “–” in a box
turns on positive status. The positive status keeps on until a pattern “|” is
encountered. Subplots (a) and (b) show two examples of the data. The original
image is shown on the top, and the ground-truth status is overlain on the
image and shown on the bottom. (Dark red means positive and dark blue
means negative, where the spectrum in-between, like the greenish colours,
represents less confident predictions. The images are best seen on a computer
screen in colours.) Subplots (c) and (d) show the predictions made by the
CNN and the RNN networks on the two data samples. The results of CNN
and RNN are on the top and bottom, respectively.
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Figure 16. ROC curves of two neural networks (CNN and RNN) on the
synthetic data.

(a)

(b)

Figure 17. Example RNN Predictions on Unbounded Sequences. (a) and (b)
are two examples of the sequences of length 50. As in the training data, 4
parallel sequences make one sample. Without a stop pattern “|”, the desirable
result is predict the entire sequences as positive status. However, only a few
(1–3) “–” patterns are given in the beginning of each sequence as cues. The
purpose of this test is to check whether and how well RNN has learned to use
its internal memory to realise and generalise the rule, and continue producing
positive predictions after it has seen the cues.

status. On the other hand, CNN predicts based on independent

strips (a column of 4 blocks in the images). When the visual

cues are present, CNN can make correct predictions. But the

network is confused by the empty patterns, because the empty

patterns have no consistent labels if seen separately. In this

experiment, we do not include the classifiers on individual

small blocks, such as SVM. The described deficiency of CNN

applies to such models as well.

As shown in Fig. 17, when a “–” pattern is observed,

positive status is to be assigned to the block and subsequent

blocks, until a “|” pattern is encountered. We examine how

the RNN utilises its internal memory to realise this rule. The

testing conditions are different from those of the training time.

Sequences of 50 empty blocks are generated, then 1 to 3

blocks in the beginning are filled with “–” patterns (with zero,

one or more empty blocks between the “–” blocks, see Fig.

17). The sequences are unbounded, i.e. without the stop signs

“|”, and the entire sequence should be predicted as positive

status. Fig. 17 shows two examples of such sequences and

the predicted probabilities by RNN. We have tested RNN

repeatedly on 1000 examples and the statistics is shown in

Fig. 18. The result shows that a string of positive predictions

C1:S0 C2:S0 C2:S1 C2:S4 C2:S8 C3:S0 C3:S1 C3:S4 C3:S8
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Figure 18. Statistics of RNN Predictions on Unbounded Sequences. Box-plots
show the positive predictions for length-50 sequences, where a sequence is
initiated with 1 to 3 “–” patterns, but without the stopping “|” pattern (unlike
Fig. 15). Each box-plot corresponds to an experiment setting. “C” (for “cue”),
means the number the “–” pattern repeats. “S” (for “skip”) means the empty
boxes between consequtive “–” patterns. Since the “–” pattern opens a string of
positive status when training the network, more “–” patterns gives the network
stronger evidence to continue outputing positive predictions for more steps.
The trend can be seen by comparing the box-plots of “C{1,2,3}:S0”. With a
few empty boxes between the “–” patterns, most sequences are completely
predicted all positive, e.g. see C{2,3}:S{1,4}.

is produced when a signal “–” is observed. When more than

one “–” block is present, in most cases, the network predicts

positive for the entire sequence (50 blocks, while the net is

trained using only 25-block sequences). In the training data,

there can be 0 to 3 empty blocks between the “–” patterns.

The network may indeed mis-predict for some steps when

significantly more, e.g. 8, empty blocks are present between

the “–” patterns. Nonetheless, RNN shows its capability of

generalisation, which indicates that the rule we designed for

this test has been learned effectively. The observed behavior

is consistent with what to expect from well trained RNN on

challenging sequence prediction tasks; see [28], [29].

Working with Higher Level Lane Modelling: We have

shown that the proposed detection framework can learn and

detect the visual structure of the lanes, without resorting to

explicit lane modelling such as [6], [7], [8]. However, although

lane modelling is no longer mandatory, prior knowledge about

the lanes can still be useful when available. The proposed

network can be integrated as the base detector in an explicit

lane modelling framework. As an example, we report our

implementation and test results of the lane detection system

in [6] in this subsection.

The lane modelling system relies on the positions of the

potential lane boundaries returned by the base detector. Robust

geometric modelling is then carried out to sort out the bound-

aries and correspondingly the lanes. The geometric models are

constructed similarly as those in [6]: random sample consensus

(RANSAC, [39]) is employed to select 2 or 3 boundaries in

an image, and each boundary is a straight line with 2 control

points or a quadratic curve with 3 control points. All model

parameters are generated by a stochastic program. The number

of control points in each boundary is randomly selected, and

the control points are sampled from the candidate positions
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Figure 19. Lane modelling [6] using different base detectors. The figure shows the effects of the base detectors on the resultant lane models. The proposals
accepted by RANSAC are compared with labelled lane boundaries. The subplots show the statistics of the mean deviations obtained from individual frames
belonging to the same five traffic video sequences as in Fig. 10. (See the text and the footnote for details on how the deviation is computed). Each subplot
displays two sets of results produced by 50 and 200 RANSAC iterations, respectively. While sometimes SVM results can be as good or even better than those
of RNN, the range of SVM results is much wider than that of RNN results.

provided by the based detector. The proposals are assessed by

the number of candidate positions that can be taken as inliers

of a boundary. After a certain amount of RANSAC operations,

the best proposal is accepted as the lane model of the image.

In our experiment, we evaluate the accepted lane models by

comparing the boundaries with those of labelled lanes. The

distances from the positions on the labelled boundaries to the

nearest boundaries in the lane model are measured in pixels.

We tested SVM, CNN and RNN as the base detectors and

performed the experiment on the real-life traffic images. For

each frame, we i) take all pixels that are annotated as lane

boundaries, ii) compute the distances from the pixels to the

curves of the resultant model (the distance from a pixel to

the nearest curve) and iii) record the average distance from

boundary pixels to the curves as the model error of this frame.

Fig. 19 compares the statistics of the model errors obtained

from individual frames belonging to five video sequences4.

The results show that employing better base detectors leads to

superior recognition performance.

VI. CONCLUSION

We propose to adapt the framework of deep neural networks

to learn the structures for visual analytics. Two new types

of deep neural networks have been developed accounting for

structures in images, and have been applied to recognising

lanes in traffic scenes.

4It is noteworthy that the criterion for performance discussed here for
Fig. 19 is different from that is shown by Fig. 13. The comparison is between
the annotation and the point-wise detection as shown in Fig. 13, and between
the annotation and modelled lane boundary curves as shown in Fig. 19.

A multi-task deep convolutional neural network has been

constructed, which allows sharing features learning between

multiple prediction tasks. We demonstrate that the model

serves satisfactorily as traffic lane mark detector. Furthermore,

a recurrent neuron layer has been adopted on top of the

convolutional feature extraction. The recurrent neurons serve

as memory cells for the network and enable the network to

learn structures in a sequence of predictions. Based on the

recurrent neural network, we have designed a lane boundary

detector, which can work with or without higher level models

of traffic lanes. When being integrated within a model-based

lane detection system, the RNN base detector improves the

overall performance of the system.

Both the CNN and the RNN detectors have been shown ef-

fective in detecting lanes in practical traffic scenes outperform-

ing conventional detectors. In practical cases, the induction

made by the RNN detector may link lane boundaries across

obstacles such as vehicles. Such detections can be superseded

by vehicle and other obstacle detection modules in a system,

and the system can be aware of both the obstacle and the

hidden lane boundary.

It is worth noting that the framework proposed in this work

is not limited to the detection of lanes. It can be adapted to

other visual perception tasks.
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