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ABSTRACT

Vocoding of speech is a standard part of statistical paramet-
ric speech synthesis systems. It imposes an upper bound of
the naturalness that can be achieved possible. Hybrid sys-
tems using parametric models to guide the selection of nat-
ural speech units can combine the benefits of robust statis-
tical models with the high level of naturalness of waveform
concatenation. Existing hybrid systems use Hidden Markov
Models (HMMs) as the statistical model. This paper demon-
strates that the superiority of Deep Neural Network (DNN)
acoustic models over HMMs in conventional statistical para-
metric speech synthesis also carries over to hybrid synthesis.
We compare various DNN and HMM hybrid configurations,
guiding the selection of waveform units in either the vocoder
parameter domain, or in the domain of embeddings (bottle-
neck features).

Index Terms— speech synthesis, hybrid synthesis, deep
neural networks, embedding, unit selection

1. INTRODUCTION

Statistical parametric speech synthesis (SPSS) systems were
originally proposed in order to offer more flexibility (e.g.,
adaptability to target speech) than is possible with unit se-
lection synthesis. However during the process of extracting
and modelling speech parameters, followed by resynthesis,
the naturalness of the speech is substantially reduced. As a
consequence, these systems are consistently rated as less nat-
ural than unit selection, as we see in the results of many Bliz-
zard Challenges [1, 2, 3, 4].

During previous investigations, some of the hypothesised
explanations for the reduced quality of SPSS systems have
been formally tested [5, 6, 7, 8]. The finding that across-
linguistic-context averaging was harmful motivated us to
build an HMM system which performed no such averaging
[9]. In [6, 7, 8], we also identified the parametrisation step
(i.e., vocoding) as introducing large degradations in quality,
even before any modelling has taken place.
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In order to increase the quality of speech above the ceil-
ing imposed by vocoding, we conducted the current investiga-
tion. Our starting point is a prototypical unit selection system
(Festival’s Multisyn engine), in which very little processing of
the speech waveforms is performed. We present an investiga-
tion into the effectiveness of hybrid synthesis (unit selection
guided by SPSS) within the Multisyn framework.

2. PRIOR WORK

2.1. Unit selection

Unit selection synthesis is usually described as an optimisa-
tion problem: to find the sequence of units (diphones, in Mul-
tisyn) that minimises the sum of target costs and join costs
[10], which involves trading off how well a candidate unit
meets a required specification against how well it concate-
nates with neighbouring units. By defining the join cost to be
zero for units that are contiguous in the database, unit selec-
tion effectively uses relatively large units of variable size.

Standard unit selection systems typically use mismatches
between the linguistic specifications of the target and candi-
date units to compute a target cost. Distances between acous-
tic features are used to compute join cost [11, 12, 13].

Whilst speech within contiguous regions found in the
database is effectively ‘perfectly natural’, unit selection
speech generally suffers from concatenation artefacts. A
variety of hybrid synthesis systems have been proposed to
solve this problem by employing statistical models to predict
the acoustic properties of speech, and then selecting units
from the database that match [14, 15, 16].

2.2. Hybrid synthesis

Hybrid synthesis systems thus use statistical models (usually
by generating speech parameter trajectories) as the basis of
the target cost function [15, 16, 14]. An extension of this ap-
proach is ‘multiform’ synthesis in which some types of units
are generated via vocoding, whilst others are retrieved from
the speech database [17, 18, 19, 20, 21] although this is out-
side of the scope of our current investigation. Hybrid systems
have performed very well in Blizzard Challenges [1, 2, 3, 4].



HMMs are the preferred statistical models in hybrid sys-
tems’ target cost function, despite recent but compelling evi-
dence that DNNs are superior to the regression tree employed
in HMM systems [22, 23, 24]. One exception is the investi-
gation in [21], where a bidirectional recurrent neural network
(RNN) provides a prosodic target. However the authors in
[21] did not use this system to synthesise exclusively from
the speech database and instead used this in a multiform setup
combined with modelled prosody.

In [9], context embeddings (which can also be called ‘bot-
tleneck features’ when they are derived using a hidden layer
of a feed-forward neural network [22]) were used to select
HMM rich-context models (models which are trained only on
samples where the linguistic contexts exactly match) in order
to select better models for synthesis in the inevitable event
that contexts seen at synthesis-time were not observed in the
training data [25]. This outperformed conventional HMM
synthesis, which provides a motivation to use these context
embeddings to select units in a hybrid system. We use dis-
tance in embedding space (or distance in speech parameter
space in some cases) to measure the mismatch between the
target and a candidate unit.

3. MULTISYN

Multisyn is a general purpose unit selection framework en-
abling simple implementation of unit selection synthesis
within the Festival toolkit [26, 27, 12]. Festival’s Multisyn
is used as one of the baselines for the Blizzard Challenge,
and forms the basis of our hybrid unit selection systems. The
unit size used in all systems reported here is the diphone. Al-
though gains have been demonstrated using other sized units
[14], this is outside the scope of the current investigation.

The Multisyn target cost function is a simple weighted
sum of mismatches in selected linguistic features. The default
weights were left unchanged for the baseline system used in
this investigation, but the relative weight of the target cost
compared to the join cost was manually tuned, for consistency
with the hybrid systems to which it was compared.

The join cost for Multisyn is a sum of distances between
12 MFCCs, f0 and energy from the frames either side of the
join [26, 27]. This default join cost was used in all systems.

Before performing the search to minimise the number of
join and target costs required to be computed, it is necessary
to pre-select a shortlist of candidates for each target position.
The default pre-selection method in Multisyn returns candi-
dates with matching diphone identity. In the event that this list
is empty, a back-off scheme is invoked which uses manually-
written phone substitution rules. Again, this default scheme
was left in place, although it may be possible in future to
use distance in embedding or speech parameter spaces in the
backoff procedure.

4. PROPOSED HYBRID TARGET COST

The context embeddings derived from a neural network, or al-
ternatively the actual speech parameters predicted at the out-
put of the network, can be thought of as a non-linear projec-
tion of the input linguistics features. The projection is learned
in a supervised manner, according to whatever optimisation
criterion is used to train the network. It is this supervision
from acoustic information that makes these DNN-derived fea-
tures more powerful than the purely linguistic feature-based
function used as standard in Multisyn. For example, linguis-
tic features that are not predictive of acoustic properties will
be discarded.

The motivation for using a DNN – that, crucially, has been
trained to perform parametric speech synthesis – to provide
the embeddings (rather than some other method), comes from
the universally positive reports of DNN synthesis in recent
literature.

Multisyn operates on diphone units, but the synthesis
DNN we used operates on phone units. To map between
these, we divided each phone into 4 sections. The features
being used for the target cost (either context embeddings from
a DNN [22], or output speech parameters from the neural net-
work or an HMM) are gathered together across all frames
within each of these 4 regions, from which we compute the
mean and variance per section. The variance is floored at 1%
of the global variance per feature (the floor value was chosen
via informal listening). This is done in the same way for both
candidate and target.

The Kullback Leibler divergence (KLD) [28] is computed
for each of the 4 sub-phone regions individually. The use of
KLD in embedding space follows on from our previous work
on ‘rich-context’ modelling [9].

The KLD between distribution f of the features computed
for the frames corresponding to a given section in the test sen-
tence, and distribution g, is:

DKL(f ||g) =
1
2

[log
| Σg |
| Σf |

+ Tr[Σ−1
g Σf ]− d

+(µf − µg)T Σ−1
g (µf − µg)], (1)

where µ and Σ are mean and covariance and d is the dimen-
sionality of the feature vector. The KLD for each of the 4
sections comprising a diphone is summed together to give
the final divergence score. The average of DKL(f ||g) and
DKL(g||f) was used in order to make the measure symmet-
rical.

The SPSS-derived target cost function used in this inves-
tigation is designed to be independent of phoneme duration,
relying on the target cost to select candidates with suitable
durations. However, work on explicit control of duration may
be fruitful in the future.



Table 1. Conditions included in listening test
ID Description
N Natural speech
M Multisyn
LE Multisyn with target cost derived from context embedding

from 2nd layer of 6 layer DNN (as in [9])
HE Multisyn with target cost derived from context embedding

from 5th layer of 6 layer DNN
NP Multisyn with target cost derived from output from

Stacked bottleneck DNN system [22]
HP Multisyn with target cost derived from output from

HTS demo with GV [29]

5. EXPERIMENTS

5.1. Implementation

The systems shown in Table 1 were constructed in order to
test the effectiveness of speech parameter trajectories (from
HMMs or DNNs) and context embedding trajectories (from
DNNs) for computing the target cost. As previously stated,
the only component that differs between systems is the tar-
get cost, and the relative weight between target and join costs
(tuned by informal listening).

Systems LE andHE use 32-dimensional context embed-
ding features generated by a DNN similar to that described in
[22, 30]. These come from the 2nd (lower layer of the DNN,
closer to the linguistic input) or 5th (higher layer of the DNN,
closer to the speech parameters output) layer of a 6 layer feed
forward DNN, respectively. These systems are successors to
the rich context system described in [9] but instead of gener-
ating the speech using a vocoder, they perform unit selection
and concatenation.

System NP uses the speech parameters output from
the final layer of the stacked bottleneck DNN system pre-
sented in [22, 30]. The speech parameters form an 86-
dimensional vector (60th order mel-generalised cepstrum,
25 band-aperiodicities, f0).

System HP was included to represent a conventional
HMM-guided hybrid system. This system uses the parame-
ters generated by HMMs trained using the HTS demo recipe
[29], including GV, to compute the target cost in much the
same way as system NP makes use of the generated speech
parameters from the stacked bottleneck DNN system. The
comparison between these systems HP and NP will tell us
whether the gains offered by DNNs in SPSS carry over to the
hybrid scenario.

Informal listening to the speech generated via vocoding
from the speech parameters of systemsNP andHP was con-
ducted, in order to confirm that these systems generate speech
of the quality expected. This vocoder-generated speech was
not evaluated formally in the listening test reported below.
The relative target cost vs join cost weight for all systems
(M , LE, HE, NP and HP ) was tuned by informal listening
using a few listeners.

2400 sentences from a male speaker of British English

[31] were used as the training set for the HMMs and DNNs,
and as the unit database in all systems. The text of 20 un-
seen Herald newspaper news sentences were used as a de-
velopment set for tuning the target cost weight of each sys-
tem. An additional 90 unseen Herald news sentences were
then used for the listening test. For DNN synthesis (required
to produce the embeddings or speech parameters of systems
LE, HE and NP ), durations predicted by the HMM system
were used; note that the durations of the final hybrid synthetic
speech are determined by the unmodified natural durations of
the candidate diphone units selected from the database. Be-
fore conducting the listening test, all utterances were volume
normalised according to [32].

5.2. Experimental setup

The listening test followed the MUSHRA paradigm [33],
comprising the systems shown in Table 1, with the same set
up as in [7]. In a MUSHRA test, versions of single sentence
generated under all conditions are presented side-by-side to
the listener, allowing direct comparisons in naturalness to be
made. The listener is required to rate the systems between
0 (completely unnatural) and 100 (completely natural). This
paradigm was originally designed to evaluate audio codecs
and we find that it is effective at prising apart relative dif-
ferences between multiple systems because listeners have
knowledge of the full range of those systems before making
they judgements. SystemN acts as a hidden (i.e., not labelled
in the test) upper anchor. Listeners are instructed that there
is one system that must be given a rating of 100. MUSHRA
usually also includes a lower hidden anchor; it is unclear what
should be used for this in the case of synthetic speech, so no
lower anchor was included in this test (as was also the case in
[7] and [9]).

This test was conducted with 30 listeners, with each lis-
tener rating 30 screens. Each screen presented 6 stimuli at
once: a single sentence under all 6 conditions. The 30 lis-
teners were split into 3 groups of 10 listeners, and each was
presented with a disjoint set of 30 sentences; thus 90 different
sentences were used.

6. RESULTS

Figures 1 and 2 show the listeners responses from the
MUSHRA test, in terms of the absolute values of their scores,
and in terms of the rank order of systems derived from these
scores, respectively. The dashed green lines added to the box
plots show mean values. All tests for significant differences
used Homl-Bonferroni correction due to the large number of
condition pairs to compare.

All conditions are significantly different from each other
in terms of absolute value, except between: M and HP , LE
and HE, LE and NP , HE and NP . Significant differences
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Fig. 1. Boxplot of absolute values from MUSHRA test
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Fig. 2. Boxplot of the rank order from MUSHRA test

are in agreement using a t-test and Wilcoxon signed-rank test
at a p value of 0.01.

All conditions are significantly different from each other
in terms of rank order, except between; M and HP , LE and
HE. These significant differences are in agreement using a
Mann-Whitney U test and a Wilcoxon signed-rank test at a
p value of 0.01. There is a disagreement in statistical sig-
nificance between conditions LE and NP with the Mann-
Whitney U test finding this difference in ranking to be statis-
tically significant whereas the Wilcoxon signed-rank test does
not.

6.1. Comparison to baseline system M

We can see that the ‘trajectory tiling’ approach to unit se-
lection described in [14], and implemented in our systems
LE,HE,HP,NP is generally effective, with all systems
performing at least as well as the baseline, and significantly
better in all cases where a DNN was used as the parametric
model. We were not able to obtain significant improvements
over baseline with HMM-generated speech parameter trajec-
tories (system HP ).

6.2. DNNs vs HMMs

The use of deep neural networks in systems LE, HE and
NP provides significant improvements over both the baseline
(M ) and the HMM-driven hybrid system (HP ). This demon-
strates that the gains found in SPSS systems when moving
from HMMs + regression trees to DNNs transfers over to the
hybrid unit selections paradigm.

7. CONCLUSIONS & FUTURE WORK

We have proposed to use deep neural networks to guide unit
selection systems, and have presented an experimental com-
parison of several different configurations of hybrid unit se-
lection, all implemented within Festival’s Multisyn frame-
work. We found that the use of a DNN to generate features for
use in the target cost was more effective than using an HMM,
be that using the speech parameters generated at the output
of the DNN or using context embeddings from a bottleneck
layer.

In this investigation, only the target cost function was
modified. However, further increases might be obtained in
future work by improving the join cost function [34].

Although we found no significant differences between
the use of speech parameters from a DNN compared to con-
text embeddings, there is perhaps more consistency in listener
judgements for the embedding-based systems (LE,HE) than
the DNN speech parameter-based system (NP ).

The context embedding features discussed here could be
used elsewhere in the unit selection system, by using these
features as a back-off function, replacing manual phone sub-
stitution rules, or to perform the initial pre-selection of units,
instead of the current pre-selection of units by matching di-
phone identity.

Investigating different types of neural network for use in
this hybrid framework is left as future work, but we expect
that any improvement in parametric synthesis would carry
over to the hybrid method for waveform generation. For ex-
ample, mixture density networks (MDNs) might be used to
directly produce a likelihood-based target cost instead of the
KLD-based approach used here. Recurrent neural network
(RNNs), which are more powerful sequence model, might
also be used to generate the target trajectories.
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