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ABSTRACT 

Recent advances in neural network modelling have 

enabled major strides in computer vision and other 

artificial intelligence applications. Human-level visual 

recognition abilities are coming within reach of artificial 

systems. Artificial neural networks are inspired by the 

brain and their computations could be implemented in 

biological neurons. Convolutional feedforward networks, 

which now dominate computer vision, take further 

inspiration from the architecture of the primate visual 

hierarchy. However, the current models are designed 

with engineering goals and not to model brain 

computations. Nevertheless, initial studies comparing 

internal representations between these models and 

primate brains find surprisingly similar representational 

spaces. With human-level performance no longer out of 

reach, we are entering an exciting new era, in which we 

will be able to build neurobiologically faithful feedforward 

and recurrent computational models of how biological 

brains perform high-level feats of intelligence, including 

vision. 
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INTRODUCTION 

 

The brain is a deep and complex recurrent neural 

network. However, the computational models of brain 

information processing that have dominated 

computational neuroscience, in vision and beyond, are 

largely shallow architectures performing simple 

computations. Unsurprisingly, complex tasks such as 

visual object recognition have remained beyond the 

reach of computational neuroscience. In this paper, I 

argue that recent advances in neural network models 

(LeCun et al. 2015) will usher in a new era of 

computational neuroscience, in which we will engage 

real-world tasks that require rich knowledge and 

complex computations.  

 

Neural networks are an old idea, so what is new now? 

Indeed, the history of neural networks is roughly 

coextensive with that of modern computing machines. 

John von Neumann and Alan Turing, whose ideas 

shaped modern computing technology, both explored 

network models inspired by the brain. 

 

An early mathematical model of a single neuron was 

suggested by McCulloch & Pitts (1943). Their binary 

threshold unit computed a weighted sum of a number of 

inputs, and imposed a binary threshold, implementing a 

linear discriminant. Responding to a pattern of 

continuous inputs with a single binary output, the 

threshold unit provided an intuitive bridge between the 

biological hardware of a spiking neuron and 

categorisation, a hallmark of cognition. 

 

Discriminating categories that are not linearly separable 

in the input requires an intervening layer of nonlinear 

transformations between the input and the output units. 

It took a while until the field found ways to automatically 

train such multi-layer networks with input-output pairs. 

The most influential solution to this problem is the 

backpropagation algorithm, a gradient-descent method 

that makes iterative small adjustments to the weights so 

as to reduce the errors of the outputs (Werbos 1981; 

Rumelhart et al. 1986).  

 

Backpropagation led to a second wave of interest in 

neural networks in cognitive science and artificial 

intelligence (AI) in the 1980s. In cognitive science, 

neural network models of toy problems boosted the 

theoretical notion of parallel distributed processing 

(Rumelhart & McClelland 1988). However, 

backpropagation models did not work well on complex 

real-world problems such as vision. Less brain-inspired 

models, using hand-engineered representations and 

machine learning techniques including support vector 

machines, appeared to provide better engineering 

solutions for computer vision and AI. As a consequence, 

neural networks fell out of favour in the 1990s. 

 

Despite a period of disenchantment among the wider 

brain and computer science communities, neural 

network research has an unbroken history (Schmidhuber 

2014) in both theoretical neuroscience and computer 

science. It was pursued throughout the 1990s and 2000s 
1 
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by a smaller community of scientists who didn’t relent 

because they realised that the difficulties encountered 

were not fundamental limitations of the approach, but 

merely high hurdles to be overcome through a 

combination of better learning algorithms, better 

regularisation, and larger training sets – with 

computations boosted by better computer hardware. 

Their efforts have been fruitful. 

 

How previous attempts to understand complex brain 

information processing fell short 

The cognitive and brain sciences have gone through a 

sequence of transformations, with different fields 

dominating each period. Cognitive psychology attempted 

to illuminate behaviourism’s black box with theories of 

information processing. However, it lacked fully explicit 

computational models. Cognitive science made 

information processing theory fully explicit, but lacked 

constraints from neurophysiological data. This made it 

difficult to adjudicate between alternative models 

consistent with behavioural data. Connectionism within 

cognitive science offered a neurobiologically plausible 

computational framework. However, neural network 

technology was not sufficiently advanced to take on real-

world tasks such as object recognition from 

photographs. As a result, neural networks did not initially 

live up to their promise as AI systems and in cognitive 

science, modelling was restricted to toy problems. 

Cognitive neuroscience brought neurophysiological data 

into investigations of complex brain information 

processing. However, our hands full with the challenges 

of analysing the new and unprecedentedly rich brain 

imaging data, our theoretical sophistication initially 

slipped, back to the stage of cognitive psychology, and 

we began (perhaps reasonably) by mapping box-and-

arrow models onto brain regions. Computational 

neuroscience uses computational models to predict 

neurophysiological and behavioural data. However, at 

this level of rigour we have not been able to engage 

complex real-world computational challenges and 

higher-level brain representations. Now deep neural 

networks provide a framework for engaging complex 

cognitive tasks and predicting both brain and 

behavioural responses.  

 
 

 

 

In the last few years, neural networks have finally come 

into their own. They are currently conquering several 

domains of AI, including the hard problem of computer 

vision. 

 

Computer vision competitions like ImageNet (Deng et al. 

2009) use secret test sets of images, providing rigorous 

evaluations of performance. In 2012, the ImageNet 

classification competition was won by a large margin by 

a neural net model built by Krizhesvsky et al. (2012), 

whose deep convolutional architecture enabled a leap in 

performance. Human performance levels, although still 

superior, suddenly did not seem entirely unattainable for 

computer vision any longer – at least in restricted 

domains like visual object classification. Krizhesvsky et 

al. (2012) marked the beginning of the dominance of 

neural networks in computer vision. In the last three 

years, error rates have dropped further roughly matching 

human performance in the restricted domain of visual 

object classification. Neural nets have also recently been 

very successful in other domains, including speech 

recognition (Sak et al. 2014) and machine translation 

(Sutskever et al. 2014). 

 

AI has entered an era in which systems directly inspired 

by the brain dominate practical applications. The time 

has come to bring this brain-inspired technology back to 

the brain. We are now in a position to integrate neural 

network theory with empirical systems neuroscience and 

to build models that engage the complexities of real-

world tasks, use neurobiologically plausible 

computational mechanisms, and predict 

neurophysiological and behavioural data. 

 

The theoretical and engineering developments are 

progressing at an unprecedented pace. Many of the 

insights currently gained in engineering are likely to be 

relevant for brain theory. Recent methods for comparing 

internal representations in neural population codes 

between models and brains enable us to test models as 

theories of brain information processing (Dumoulin & 

Wandell 2008; Kay et al. 2008; Kriegeskorte et al. 

2008a,b, 2013; Kriegeskorte 2011; Mitchell et al. 2008; 

Nili et al. 2014). 

 

This paper serves to introduce a broad audience of 

vision and brain scientists to the computational literature 

on neural networks, including some of the recent 

advances of this modelling framework in engineering, 

and to review the first few studies using such models to 

explain brain data. What emerges is a new framework 

for bringing computational neuroscience to high-level 

cortical representations and complex real-world tasks. 
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The following Primer section introduces the basics of 

neural network models, including their learning 

algorithms and universal representational capacity. The 

section Feedforward neural networks for visual object 

recognition describes the specific large-scale object 

recognition networks that currently dominate computer 

vision and discusses what they share and do not share 

with biological vision systems. The section Early studies 

testing deep neural nets as models of biological brain 

representations reviews the first few studies that have 

begun to empirically compare internal representations 

between artificial neural nets and biological brains. The 

section Recurrent neural nets for vision describes 

networks using recurrent computation. Recurrence is an 

essential component of biological brains, might 

implement inference on generative models of the 

formation of the input image, and represents a major 

frontier for computational neuroscience. Finally, the 

Conclusions section considers critical arguments, 

upcoming challenges, and the way ahead toward 

empirically justified models of complex biological brain 

information processing. 

 

 

A PRIMER ON NEURAL NETWORKS 

 

A unit computes a weighted sum of its inputs and 

activates according to a nonlinear function. 

We will refer to model “neurons” as units, in order to 

maintain a distinction between the biological reality and 

the highly abstracted models. The perhaps simplest 

model unit is a linear unit, which outputs a linear 

combination of its inputs (Fig. 1a). Such units, combined 

to form networks, can never transcend linear 

combinations of the inputs. This is illustrated in Fig. 2b, 

which shows how an output unit linearly combining 

intermediate-layer linear-unit activations is just adding 

up ramp functions, and thus computing a ramp function. 

A multi-layer network of linear units is equivalent to 

single-layer network whose weights matrix W’ is the 

product of the weights matrices W i of the multi-layer 

network. Nonlinear units are essential because their 

outputs provide building blocks (Fig. 2c) whose linear 

combination one level up enables us to approximate any 

desired mapping from inputs to outputs, as we will see in 

the next section. 

 

A unit in a neural net uses its input weights w to 

compute a weighted sum z of its input activities x and 

passes the result through a (typically monotonic) 

nonlinear function f to generate the unit’s activation y 

(Fig. 1a). In early models, the nonlinearity was simply a 

threshold (McCulloch & Pitts 1943; Rosenblatt 1958; 

Minsky & Papert 1972), making each unit a binary linear 

discriminant. For a single threshold unit, the perceptron 

learning algorithm provides a method for iteratively 

adjusting the weights (starting with zeros or random 

weights) so as to get as many training input-output pairs 

as possible right. However, hard thresholding entails 

that, for a given pair of an input pattern and a desired 

output pattern, small changes to the weights will often 

make no difference to the output. This makes it difficult 

to learn the weights for a multi-layer network by gradient 

descent, where small adjustments to the weights are 

made so as to iteratively reduce the errors. If the hard 

threshold is replaced by a soft threshold that varies 

continuously, such as a sigmoid function, gradient 

descent can be used for learning. 

 

What is meant by “neural network”? 

The term “neural network” originally refers to a network 

of biological neurons. More broadly, the term evokes a 

particular paradigm for understanding brain function, in 

which neurons are the essential computational units and 

computation is explained in terms of network 

interactions. Note that this leaves aside many biological 

complexities, including functional contributions of 

neurochemical diffusion processes, glia cells, and 

hemodynamics (Moore & Cao 2008). Although neurons 

are biological entities, the term “neural network” has 

come to be used as a shorthand for artificial neural 

network, a class of models of parallel information 

processing that is inspired by biological neural networks, 

but commits to several further major simplifications. 

Although spiking models have an important place in the 

computational literature, the models discussed here are 

nonspiking and do not capture dendritic computation, 

other processes within each neuron (e.g. Gallistel & King 

2011), and distinct contributions from different types of 

neuron. The spatial structure of a neuron is typically 

abstracted from and its spiking output modelled as a real 

number analogous to the spike rate. The rate is 

modelled as a weighted sum of incoming “activations” 

passed through a static nonlinearity. Despite and 

because of these simplifications, the neural network 

paradigm provides one of the most important paths 

toward understanding brain information processing. It 

appears likely that this approach will take a central role 

in any comprehensive future brain theory. Opinions 

diverge as to whether more biologically detailed models 

will ultimately be needed. However, neural networks as 

used in engineering are certainly neurobiologically 

plausible and their success in artificial intelligence 

suggests that their abstractions may be desirable, 

enabling us to explain at least some complex feats of 

brain information processing. 

 

Networks with nonlinear hidden units are universal 

function approximators. 

The particular shape of the nonlinear activation function 

does not matter to the class of input-output functions 

that can be represented. Feedforward networks with at 
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least one layer of “hidden” units intervening between 

input and output layers are universal function 

approximators, in the sense that, given a sufficient 

number of hidden units, they can approximate any 

function of the inputs in the output units. Continuous 

functions can be approximated with arbitrary precision 

by adding a sufficient number of hidden units and 

suitably setting the weights (Schäfer & Zimmermann 

2007; Hornik 1991; Cybenko 1989). Fig. 2c illustrates 

this for two-dimensional inputs: Adding up a sufficient 

number of sigmoid ramps, which can have any 

orientation, slope, and position, we can approximate any 

continuous function of the input. 

 

To gain an intuition on why combining sigmoids (or any 

step-like functions) of the input enables a network to 

approximate any function, imagine we set the weights of 

a set of units so that they compute sigmoids whose 

plateaus (close to 1) overlap only in a particular region of 

the input space. If we now sum the outputs of these 

units in a unit with a high threshold, that unit can indicate 

(by an output close to 1) that we are in a certain region 

of the input space. If we build indicators in this fashion 

for all regions within the input space that require a 

different output, we can map any input to any required 

output approximately. The precision of this approximate 

mapping can always be improved by using more units to 

define more separate regions with indicators. Note that if 

the activation function is continuous (as it usually is), 

then the function represented by the network is also 

continuous. The network would use two hidden layers to 

represent what is essentially a lookup table of the 

training input-output pairs. (However, it would have the 

nice feature of interpolating for novel intermediate 

inputs.) 

 

The universal approximation theorem (Schäfer & 

Zimmermann 2007; Hornik 1991; Cybenko 1989) of 

feedforward nets goes beyond this intuitive explanation 

and shows that a single hidden layer is sufficient to 

approximate any continuous function and that the 

activation function need not resemble a step function. 

 

A feedforward net is composed of a sequence of layers 

of units, with each unit sending its output only to units in 

higher layers (Fig 1b, c). The units and connections of a 

feedforward net, thus, correspond to the nodes and 

edges, respectively, of a directed acyclic graph. In 

computer vision systems, units often receive inputs only 

from the immediately preceding layer and inputs in lower 

layers are usually restricted to local receptive fields, 

inspired by the visual hierarchy. 

 

Modern models use a variety of nonlinear activation 

functions, including sigmoid (e.g. logistic or hyperbolic 

tangent) and rectified linear ones (Fig. 1a). A rectified 

linear unit outputs the linear combination it computes, if 

it is positive, and 0 otherwise. Rectified linear units 

simplify the gradient-descent learning of the weights, 

enabling more rapid training, and work very well in 

computer vision and other domains. 

 

 
 
Figure 1: Artificial neural networks: basic units and architectures. 

A typical model unit (a, left) computes a linear combination z of its 

inputs xi using weights wi and adding a bias b. The output y of the unit 

is a function of z, known as the activation function (a, right). Popular 

activation functions include linear (gray), theshold (black), sigmoid 

(hyperbolic tangent shown here, blue), and rectified linear (red) 

functions. A network is referred to as feedforward (b, c) when its 

directed connections do not form cycles and as recurrent (d) when 

they do form cycles. A shallow feedforward net (b) has zero or one 

hidden layers. Nonlinear activation functions in hidden units enable a 

shallow feedfoward net to approximate any continuous function (with 

the precision depending on the number of hidden units). A deep 

feedforward net (c) has more than one hidden layer. Recurrent nets 

generate ongoing dynamics, lend themselves to the processing of 

temporal sequences of inputs, and can approximate any dynamical 

system (given a sufficient number of units). 

 

Why deep? 

A feedforward net is called deep when it has more than 

one hidden layer. This technical definition 

notwithstanding, the term “deep” is also used in a 

graded sense. A deep net, thus, is a net with many 

layers and one net can be deeper than another. Deep 

learning refers to the strategy of using architectures with 

many hidden layers to tackle difficult problems, including 

vision. 

 

This raises the question of why depth matters. We saw 

above that even shallow networks with a single layer of 

nonlinear hidden units are universal function 

approximators. Shallow networks are closely related to 

support vector machines, which can likewise learn 

arbitrary nonlinear functions, can be more efficiently 

trained than neural networks, and have been very 

successful tools of machine learning. 

 

The reason depth matters is that deep nets can 

represent many complex functions more concisely (i.e. 

with fewer units and weights) than shallow nets and 

support vector machines (Bengio 2009). 
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Figure 2: Networks with nonlinear hidden units can approximate 

arbitrary nonlinear functions.  (a) Feedforward neural net with a 

single hidden layer. (b) Activation of the pink and blue hidden units as 

a function of the input pattern (x1, x2) when the hidden units have linear 

activation functions. Each output unit (y2) will compute a weighted 

combination of the ramp-shaped (i.e. linear) activations of the hidden 

units. The output, thus, remains a linear combination of the input 

pattern. A linear hidden layer is not useful because the resulting 

network is equivalent to a linear network without a hidden layer 

intervening between input and output. (c) Activation of the pink and 

blue hidden units when these have sigmoid activation functions. 

Arbitrary continuous functions can be approximated in the output units 

(y2) by weighted combinations of a sufficient number of nonlinear 

hidden-unit outputs (y1). 

 

Consider a shallow network (i.e. a net with a single 

hidden layer) that computes some function. We can 

create a deeper network with the same number of units 

by distributing the units of the single hidden layer across 

multiple hidden layers in the new net. The deep net 

could have the same connectivity from the input to the 

hidden units and from the hidden units to the output. It 

can thus compute any function the shallow net can 

compute. However, the reverse is not true. The deep net 

is permitted additional non-zero weights from any given 

layer to higher layers. This enables reuse of the results 

of previous computations and extends the deep net’s 

expressive power. For many possible functions that the 

deep net might compute, it can be shown that a shallow 

net would need a much larger number of units (Bengio 

2009). 

 

It is instructive to consider the analogy to modern 

computing hardware. The von Neumann architecture is 

a fundamentally sequential model of computation that 

enables the reuse of results of previous computations. In 

special cases, where many computations can be 

performed independently, parallel hardware can speed 

up the process. However, whereas independent 

computations can be performed either in parallel or 

sequentially, dependent computations can only be 

performed sequentially. The option to reuse previous 

results therefore extends the set of computable functions 

(if the total number of units is fixed). 

 

In essence, a shallow network is a universal function 

approximator because it can piece together the target 

function like a lookup table. However, many functions 

can be more concisely represented using a deeper net, 

taking advantage of redundancies and exploiting the 

inherent structure of the target function. Although every 

problem is different and the field is still learning when 

exactly depth helps, the practical success of deep 

learning in AI suggests that many real-world problems, 

including vision, may be more efficiently solved with 

deep architectures. Interestingly, the visual hierarchy of 

biological brains is also a deep architecture. 

 

Recurrent neural networks are universal 

approximators of dynamical systems. 

Feedforward nets compute static functions. An 

architecture with more interesting dynamics is a 

recurrent net, whose units can be connected in cycles. 

This is more similar to biological neuronal networks, in 

which lateral and feedback connections are ubiquitous. 

Note that the notion of separate hidden layers is 

meaningless in a recurrent net because each hidden unit 

can interact with each other hidden unit. Recurrent nets 

are therefore often depicted as a single interconnected 

set of hidden units, with separate sets of input and 

output units (Fig. 1d). A layered architecture is a special 

case of a recurrent network in which certain connections 

are missing (i.e. their weights fixed at 0). 

 

In visual neuroscience, the theoretical concept of the 

visual hierarchy is based on a division of the 

connections into feedforward, lateral, and feedback, and 

on the fact that some neurons are separated from the 

input by a larger number of synapses and tend to 

represent more complex features of the input. Although 

these criteria may not support a perfectly unambiguous 

assignment of ranks that would define a hierarchy for the 

primate visual system (Hilgetag et al. 2000), the 

hierarchical model continues to be a useful 

simplification. 

 

Whereas a feedfoward network computes a static 

function mapping inputs to outputs, a recurrent network 

produces dynamics: a temporal evolution of states that 

can be influenced by a temporal evolution of input 

patterns. The internal state of a recurrent net lends it a 

memory and enables it to dynamically compress the 

recent stimulus history and efficiently detect temporal 

patterns. Whereas feedforward nets are universal 

function approximators, recurrent nets are universal 

approximators of dynamical systems (Schäfer & 

Zimmermann 2007). A variety of particular models have 

been explored by simulation and analytically. 
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In an echo-state network (Jaeger 2001, see also Maass 

et al. 2002, for a similar model with spiking dynamics), 

for example, the sequence of input patterns is fed into a 

set of hidden units that are sparsely and randomly 

connected. The wave of activity associated with each 

input pattern will reverberate among the hidden units for 

a while until it comes to be dominated by the effects of 

subsequent input patterns. Like concentric waves on the 

surface of a pond that enable us to infer an event at their 

center sometime in the past, the activity of the hidden 

units encodes information about the recent stimulus 

history. In echo-state networks, the weights among the 

hidden units are not trained (although their random 

setting requires some care to ensure that the memories 

do not fade too quickly). Supervised learning is used to 

train a set of readout units to detect temporal patterns in 

the input. 

 

Echo-state networks rely on random weights among the 

hidden units for their recurrent dynamics. Alternatively, 

the dynamics of a recurrent net can be explicitly learned 

through supervision, so as to optimise a recurrent net to 

produce, classify, or predict certain temporal patterns 

(Graves & Schmidhuber 2009, Sutskever et al. 2014). 

 

Representations can be learned by gradient descent 

using the backpropagation algorithm. 

The universality theorems assure us of the 

representational power of neural networks with sufficient 

numbers of units. However, they do not tell us how to set 

the weights of the connections, so as to represent a 

particular function with a feedforward net, or a particular 

dynamical system with a recurrent net. Learning poses a 

high-dimensional and difficult optimisation problem. 

Models that can solve real-world problems will have 

large numbers of units and even larger numbers of 

weights. Global optimisation techniques are not 

available for this nonconvex problem. The space of 

weight settings is so vast that simple, e.g. evolutionary, 

search algorithms can only cover a vanishingly small 

subset of the possibilities and typically do not yield 

working solutions, except for small models restricted to 

toy problems. 

 

The high dimensionality of the weight space makes 

global optimisation intractible. However, the space 

contains many equivalent solutions (consider, for 

example, exchanging all incoming and outgoing weights 

between two neurons). Moreover, the total error (i.e., the 

sum of squared deviations between actual and desired 

outputs) is a locally smooth function of the weights. 

 

The current training method of choice is gradient 

descent, the iterative reduction of the errors through 

small adjustments to the weights. 

 

The basic idea of gradient-descent learning is to start 

with a random initialisation of the weights and to 

determine, for each weight, how much a slight change to 

it will reduce the error. The weight is then adjusted in 

proportion to the effect on the error. This method 

ensures that we move in the direction in weight space, 

along which the error descends most steeply. 

 

The gradient, i.e. how much the error changes with an 

adjustment of a weight, is the derivative of the error with 

respect to the weight. These derivatives can be 

computed easily for the weights connecting to the output 

layer of a feedforward net. For connections driving the 

preceding layers, an efficient way to compute the error 

derivatives is to propagate them backward through the 

network. This gives the method its name 

backpropagation (Werbos 1981; Rumelhart et al. 1986).  

 

Gradient descent sees only the local neighborhood in 

weight space and is not guaranteed to find globally 

optimal solutions. It can nevertheless find solutions that 

work very well in practice. The high dimensionality of the 

weight space is a curse in that it makes global 

optimisation difficult. However, it is a blessing in that it 

helps local optimisation find good solutions: with so 

many directions to move in, gradient descent is unlikely 

to get stuck in local minima, where the error increases in 

all directions and no further progress is possible. 

 

Intriguingly, the same approach can be used to train 

recurrent networks. The error derivatives are then 

computed by backpropagation through time. To 

understand this we can construe a recurrent network as 

the feedforward network obtained by replicating the 

recurrent net along the dimension of time (for a 

sufficiently large number of time steps). A recurrent net 

is equivalent to a feedforward net with an infinite number 

of layers, each connected to the next by the same 

weights matrix (the recurrent net’s weights matrix). 

 

By backpropagation through time, a recurrent net can 

learn weights that enable it to store short-term memories 

in its dynamics and relate temporally separated events, 

so as to achieve the desired classifications or 

predictions. However, propagating error derivatives 

backward through time far enough for the net to learn to 

exploit long-lag dependencies is hampered by the 

problem that the gradients tend to vanish or explode 

(Hochreiter 1991; Hochreiter et al. 2001). The problem 

occurs because a given weight’s error derivative is the 

product of multiple terms, corresponding to weights and 

derivatives of the activation functions encountered along 

the path of backpropagation. One solution to this 

problem is offered by the long short-term memory 

(LSTM) architecture (Hochreiter & Schmidhuber, 1997), 

in which special gated units can store short-term 
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memories for extended periods. The error derivatives 

backpropagated through these units remain stable, 

enabling backpropagation to learn long-lag 

dependencies. Such networks, amazingly, can learn to 

remember information that will be relevant many time 

steps later in a sequential prediction or control task. 

Backpropagation adjusts the weights to ingrain a 

dynamics that selectively stores (in the activation state) 

information needed later to perform the task. 

 

Vanishing and exploding gradients also pose a problem 

in training deep feedforward nets with backpropagation. 

The problem occurs because a given weight’s error 

derivative is the product of weights and derivatives of the 

activation function encountered along the path of 

backpropagation. The choice of nonlinear activation 

function can make a difference with regard to this 

problem. In addition, the details of the gradient descent 

algorithm, regularisation, and weight initialisation all 

matter to making supervised learning by 

backpropagation work well. 

 

Representations can also be learned with 

unsupervised techniques. 

In supervised learning, the training data comprise both 

input patterns and the associated desired outputs. An 

explicit supervision signal of this type is often 

unavailable in the real world. Biological organisms do 

not in general have access to explicit supervision. In 

engineering, similarly, we often have a large number of 

unlabeled and only a smaller number of labeled input 

patterns (e.g. images from the web). Unsupervised 

learning does not require labels for a network to learn a 

representation that is optimised for natural input patterns 

and potentially useful for a variety of tasks. Natural 

images, for example, form a very small subset of all 

possible images. This enables unsupervised learning to 

find compressed representations for natural images. 

 

An instructive example of unsupervised learning is 

provided by autoencoders (Hinton & Salakhutdinov 

2006). An autoencoder is a feedforward neural network 

with a central “code layer” that has fewer units than the 

input. The network is trained with backpropagation to 

reconstruct its input in the output layer (which matches 

the input layer in its number of units). Although the 

learning algorithm is backpropagation and uses a 

supervision signal, the technique is unsupervised 

because it requires no separate supervision information 

(i.e. no labels) but only the set of input patterns. If all 

layers, including the code layer, had the same 

dimensionality as the input, the net could just pass the 

input through its layers. Since the code layer has fewer 

units, however, it forms an informational bottleneck. In 

order to reconstruct the input, the net must learn to 

retain sufficient information about the input in its small 

code layer. An autoencoder therefore learns a 

compressed representation in its code layer. This 

representation will be specialised for the distribution of 

input patterns that the autoencoder has been trained 

with. 

 

The layers from the input to the code layer are called the 

encoder. The layers from the code layer to the output 

are called the decoder. If encoder and decoder are 

linear, the network learns the linear subspace spanned 

by the first k principal components (for a code layer of k 

units). With nonlinear neural nets as encoders and 

decoders, nonlinear compressed representations can be 

learned. Nonlinear codes can be substantially more 

efficient when the natural distribution of the input 

patterns is not well represented by a linear subspace. 

Natural images are a case in point. 

 

Unsupervised learning can help pretrain a feedforward 

network when insufficient labeled training data are 

available for purely supervised learning. For example, a 

net for visual recognition can be pretrained layer by layer 

in the autoencoder framework, using a large set of 

unlabeled images. Once the net has learned a 

reasonable representation of natural images, it can more 

easily be trained with backpropagation to predict the 

right image labels. 

 

 

FEEDFORWARD NEURAL NETWORKS 

FOR VISUAL OBJECT RECOGNITION 

 

Computer vision has recently come to be dominated by 

a particular type of deep neural network: the deep 

feedforward convolutional net. These networks now 

robustly outperform the previous state of the art, which 

consisted in hand-engineered visual features (e.g. Lowe 

1999) forming the input to shallow machine learning 

classifiers, such as support vector machines. 

Interestingly, some of the earlier systems inserted an 

intermediate representation, often acquired by 

unsupervised learning, between the hand-engineered 

features and the supervised classifier. This might have 

helped address the need for a deeper architecture. 

 

The deep convolutional nets dominating computer vision 

today share a number of architectural features, some of 

which are loosely inspired by biological vision systems 

(Hubel & Wiesel 1968). 

• Deep hierarchy: These networks typically have 5 to 

10 layers, comparable to the number of stages along 

the primate ventral visual stream (Fig. 3). They 

process information through a hierarchy of 

representations, gradually transforming a visual 

representation, whose spatial layout matches the 
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image, to a semantic representation that enables the 

recognition of object categories. 

• Convolution: Early layers contain local feature 

detectors. Each detector is replicated all over the two 

dimensional image, forming a feature map. This 

amounts to a convolution of the image with each local 

feature pattern, followed by a static nonlinearity. The 

convolutional architecture is motivated by the insight 

that a feature that is useful in one position is likely to 

also be useful in another position and resembles 

biological vision, where local features are also 

replicated across the visual field (though not quite 

uniformly as in convolutional nets). The resulting 

receptive fields (RFs) of the units are localised in the 

visual field and increase in size along the hierarchy. 

The restriction of the connections to a local region and 

the replicati.on of the connection weights across 

spatial positions (same weight pattern at all locations 

for a given feature) greatly reduces the number of 

independent weights that need to be learned (LeCun 

1989). 

• Local pooling and subsampling: In between the 

convolutional layers, local pooling layers are inserted. 

Pooling combines the outputs of a local set of units in 

the previous layers by taking the maximum or the 

average. This confers a local tolerance to spatial shifts 

of the features, making the representation robust to 

small image shifts and small distortions of the 

configuration of image features (Fukushima 1980). 

Max-pooling is also used in neuroscientific vision 

models like HMAX (Riesenhuber & Poggio 1999; 

Serre et al. 2007) to implement local tolerances. 

Pooling is often combined with subsampling of the 

spatial locations. The reduction in the number of 

distinct spatial locations represented frees up 

resources for an increase along the hierarchy in the 

number of distinct features computed at each location. 

 
Figure 3: Deep convolutional feedforward architecture for object 

recogition. The figure shows the architecture used by Krizhesvsky et 

al. (2012). The information flows from the input pixel image (left, 224 

pixels by 224 pixels, 3 colour channels) through 7 hidden layers to the 

category output (right, 1000 category detector units). The large boxes 

represent stacks of feature maps. For layer 2, for example, the lower 

large box represents 128 feature maps of size 27 (horizontal image 

positions) by 27 (vertical image positions). Note that the dimensions of 

the boxes are not drawn to scale. The small boxes represent the 

feature templates that are convolved with a given layer’s 

representation. Because convolution and maxpooling operate at 

strides greater than 1 pixel, the spatial extent of the feature maps 

decreases along the sequence of representations (224, 55, 27, 13, 13, 

13, 1, 1, 1). Upper and lower large boxes represent the division of 

labour between 2 graphics processing units. 

 

 
Figure 4: Deep supervised learning produces feature selectivities 

qualitatively consistent with neuroscientific theory. In order to 

understand representations in deep neural networks, we can visualise 

what image elements drive a given unit in a deep net. For 20 example 

units (4 units from each of the layers), the images shown visualise 

what caused the response in the context of a particular image that 

strongly drove the unit. The visualisation technique used here involves 

two steps. First an input image strongly driving the unit is selected. 

Then the feedforward computation driving the unit is inverted to 

generate the image element responsible. Convolutions along the 

feedforward pass are inverted by deconvolution (using the transposes 

of the convolution matrices). Maxpooling operations are inverted by 

storing which connection to the pooling unit was maximally active in 

the feedforward pass. Note that a unit deep in a network does not 

perform a simple template matching operation on the image and 

therefore cannot be fully characterised by any visual template. 

However, performing the above visualisation for many images that 

strongly drive a unit (not shown) can help us understand a unit’s 

selectivity and tolerances. The deconvolutional visualisation technique 

shown was developed by Zeiler & Fergus (2013). The deep net is from 

Chatfield et al. (2014). The analysis was performed by Güçlü & van 

Gerven (2015). Figure adapted from Güçlü & van Gerven (2015). 

 

In the highest layers, units have global RFs, receiving 

inputs from all units of the previous layer. The final layer 

typically contains one unit per category and implements 

a softmax (normalised exponential), which strongly 

reduces all but the very highest responses and ensures 

that the outputs add up to 1. When the crossentropy 

error is used in training, the output can be interpreted as 

a probability distribution over the categories. 

 

The networks can be trained to recognize the category 

of the input image using backpropagation (LeCun et al. 

1989, LeCun & Bengio 1995). When a network is trained 

to categorize natural images, the learning process 

discovers features that are qualitatively similar to those 

found in biological visual systems (Figure 4). The early 

layers develop Gabor-like features, similar to those that 

characterize V1 neurons. Similar features are 

discovered by unsupervised techniques such as sparse 

representational learning (Olshausen & Field 1997), 

suggesting that they provide a good starting point for 

vision, whether the goal is sparse representation or 
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categorization. Subsequent stages contain units that are 

selective for slightly more complex features, including 

curve segments. Higher layers contain units that are 

selective for parts of objects and for entire objects, such 

as faces and bodies of humans and animals, and 

inanimate objects such as cars and buildings. 

 

To understand what has been learned automatically, the 

field is beginning to devise methods for visualising units’ 

receptive fields and selectivities (Zeiler & Fergus 2013; 

Girshick et al. 2014; Simonyan et al. 2014; Tsai & Cox 

2015; Zhou et al. 2015). Fig. 4 shows such 

visualisations, which support the idea that units learn 

selectivities to natural image features whose visual 

complexity increases along the hierarchy. However, 

there are two important caveats to such visualisations: 

First, because of the multiple nonlinear transforms 

across layers, a unit cannot be accurately characterised 

by an image template. If the high-level responses could 

be computed by template matching, there would be no 

need for a deep hierarchy. The visualisations merely 

show what drives the response in the context of a 

particular image. Many images driving a unit need to be 

considered to get an idea of its selectivity (for multiple 

templates for each of a larger number of units, see Zeiler 

& Fergus 2013). Second, the units visualised in Fig. 4 

have been selected because they confirm a theoretical 

bias for interpretable selectivities. Units like those shown 

may be the exception rather than the rule, and it is 

unclear whether they are essential to the network’s 

functionality. For example, meaningful selectivities could 

reside in linear combinations of units rather than single 

units, with weak distributed activities encoding essential 

information.  

 

The representational hierarchy appears to gradually 

transform a space-based visual to a shape-based and 

semantic representation. The network acquires complex 

knowledge about the kinds of shapes associated with 

each category. In this context, shape refers to 

luminance- and color-defined features of various levels 

of complexity. High-level units appear to learn 

representations of shapes occurring in natural images, 

such as faces, human bodies, animals, natural scenes, 

buildings, and cars. The selectivities learned are not 

restricted to the categories detected by the output layer, 

but may include selectivities to parts of these objects or 

even to context elements. For example, the network by 

Krizhesvsky et al. (2012) contains units that appear to 

be selective for text (Yosinski et al. 2015) and faces, 

although text and faces were not among the trained 

categories. Presumably, those responses help detect 

the categories represented in the output layer, because 

they are statistically related to the categories to be 

detected. For example, part-selective features may 

serve as stepping stones toward detection of entire 

objects (Jozwik et al. 2015). A verbal functional 

interpretation of a unit, e.g. as an eye or a face detector, 

may help our intuitive understanding and capture 

something important. However, such verbal 

interpretations may overstate the degree of 

categoricality and localisation, and understate the 

statistical and distributed nature of these 

representations. 

 

An influential example of a deep convolutional neural net 

for computer vision is the system built by Krizhesvsky et 

al. (2012). The architecture (Fig 3) comprises five 

convolutional and three fully connected layers. The 

authors found that reducing the number of convolutional 

layers hurt performance, illustrating the need for a deep 

architecture. The system uses rectified linear units, max-

pooling, and local normalisation. The network was 

trained by backpropagation to recognise which of 1,000 

object categories was shown in the input image. The 

training set comprised 1.2 million category-labelled 

images from the ImageNet set. This set was expanded 

by a factor of 2048, by adding translated and horizontally 

reflected versions of the images. The training cycled 90 

times through the resulting image set. 

 

The training relied on dropout regularisation (Hinton et 

al. 2012), where each unit is “dropped” with a probability 

of 0.5 on each trial. On a given learning trial, thus, a 

random set of about half of the units is used in both the 

forward pass computing the output and the 

backpropagation pass adjusting the weights. This 

method prevents complex co-adaptations of the units 

during learning, forcing each unit to make a useful 

contribution in the context of many different “teams” of 

other units. The network has a total of 650,000 units and 

60 million parameters. The convolutional layers are 

defined by their small local weight templates, which 

constitute less than 5% of the parameters in total. Over 

95% of the parameters define the upper three fully 

connected layers. Dropout was applied to the first two 

fully connected layers, each of which has many millions 

of incoming connections. Experiments showed that 

dropout was necessary to prevent overfitting. 

 

The training was performed over the course of six days 

on a single workstation with two graphics processing 

units (GPUs), which parallelise and greatly accelerate 

the computations. The system was tested on a held-out 

set of images in the ImageNet Large-Scale Visual 

Recognition Challenge 2012, a computer vision 

competition. It won the competition, beating the second 

best system by a large margin and marking the 

beginning of the dominance of neural nets in computer 

vision. Since then a number of convolutional neural 

networks using similar architectures have further 
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improved upon its performance (e.g. Zeiler & Fergus 

2013; Chatfield et al. 2014). 

 

The deep convolutional neural nets of computer vision 

perform limited aspects of vision, such as category-level 

recognition. However, the range of visual tasks tackled 

is quickly expanding and deep nets do represent a 

quantum leap compared to the earlier computer vision 

systems. Deep convolutional nets are not designed to 

closely parallel biological vision systems. However, their 

essential functional mechanisms are inspired by 

biological brains and could plausibly be implemented 

with biological neurons. This new technology provides 

an exciting framework for more biologically faithful brain-

computational models that perform complex feats of 

intelligence beyond the current reach of computational 

neuroscience. 

 

Adversarial examples can reveal idiosyncrasies of 

neural network architectures 

Fooling vision can help us learn about its mechanisms. 

This goes for biological as well as artificial vision. 

Researchers are exploring how artificial neural nets 

represent images by trying to fool them (Szegedy et al. 

2014; Nguyen et al. 2015; Goodfellow et al. 2015). They 

use optimisation techniques to design images that are 

incorrectly classified. An adversarial example is an 

image from category X (e.g. a bus or a noise image) that 

has been designed to be misclassified by a particular 

network as belonging to category Y (e.g. an ostrich). 

This can be achieved by taking a natural image from 

category X and adjusting the pixels so as to fool the net. 

The backpropagation algorithm, which usually serves to 

find small adjustments to the weights that reduce the 

error for an image, can be used to find small 

adjustments to the image that create an error. For the 

convolutional neural nets currently used in computer 

vision, adversarial examples can be created by very 

slight changes to the image that clearly do not render it a 

valid example of a different category. An adversarial 

example can look indistinguishable from the original 

image to humans. This has been taken as evidence of 

the limitations of current neural net architectures as 

vision systems and as models of human vision. 

 

An adversarial example created to fool an artificial 

neural net will not usually fool a human observer. 

However, it is not known whether adversarial examples 

can be created for human visual systems as well. 

Constructing adversarial examples requires 

computational optimisation based on full knowledge of 

the particular network to be fooled. We cannot currently 

match this process with psychophysical and 

neurophysiological techniques to fool biological vision. 

An intriguing possibility, thus, is that biological visual 

systems, too, are susceptible to adversarial examples. 

These could exploit idiosyncrasies of a particular brain, 

such that an adversarial example created to fool one 

person will not fool another person. The purpose of 

vision systems is to work well under natural conditions, 

not to be immune to extremely savvy sabotage that 

requires omniscient access to a network’s internal 

structure and precise stabilisation of the fooling image 

on the system’s retina (or visual sensor array). Human 

vision is famously susceptible to visual illusions of 

various kinds. From a machine learning perspective, it 

appears inevitable that adversarial examples can be 

constructed for any learning system – artificial or natural 

– that must rely on an imperfect inductive bias to 

generalise from a limited set of examples to a high-

dimensional classification function. 

 

What lessons do the adversarial examples hold about 

current neural net models? If an adversarial example 

fooled only the particular instance of a network it was 

constructed for, exploiting that particular net’s 

idiosyncrasies, then they would be easy to dismiss. 

However, adversarial examples generalise across 

networks to some extent. If a new network is created by 

initializing the same architecture with new random 

weights and training it with the same set of labeled 

images, the resulting network will often still be fooled by 

an adversarial example created for the original network. 

Adversarial examples also generalize to slightly altered 

architectures if the same training set is used. If the 

training set is changed, adversarial examples created for 

the original network are not very effective anymore, but 

they may still be misclassified at a higher rate than 

natural images. This suggests that adversarial examples 

exploit network idiosyncrasies resulting largely from the 

training set, but also to some extent from the basic 

computational operations used. One possibility is that 

the linear combination computed by each unit in current 

systems makes them particularly easy to fool 

(Goodfellow et al. 2015). In essence, each unit divides 

its input space by a linear boundary (even if its activation 

rises smoothly as we cross the boundary for sigmoid or 

linearly on the preferred side for rectified linear activation 

functions). By contrast, networks using radial basis 

functions, where each unit has a particular preferred 

pattern in its input space and its response falls off in all 

directions, might be harder to fool. However, they are 

also harder to train – and perhaps for the same reason. 

It will be intriguing to see this puzzle solved as we begin 

to compare the complex representational 

transformations between artificial and biological neural 

nets in greater detail. 
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EARLY STUDIES TESTING DEEP NEURAL 

NETS AS MODELS OF BIOLOGICAL 

BRAIN REPRESENTATIONS 

Several studies have begun to assess deep 

convolutional neural nets as models for biological vision, 

comparing both the internal representational spaces and 

performance levels between models and brains. One 

finding replicated and generalised across several studies 

(Yamins et al. 2014; Khaligh-Razavi & Kriegeskorte 

2014) is that models that perform better at object 

recognition utilise representational spaces that are more 

similar to those of inferior temporal (IT) cortex (Tanaka 

1996) in human and nonhuman primates. This affirms 

the intuition that engineering approaches to computer 

vision can learn from biological vision. 

 

It is not true in general that engineering solutions closely 

follow biological solutions (consider planes, trains, and 

automobiles). In computer vision, in particular, early 

failures to scale neural net models to real-world vision 

fostered a sense that seeking more brain-like solutions 

was fruitless. The recent successes of neural net models 

suggest that brain-inspired architectures for vision are 

extremely powerful. The empirical comparisons between 

representations in computer vision systems and brains 

discussed in this section further suggest that neural net 

models learn representations very similar to those of the 

primate ventral visual pathway. Although it is impossible 

to prove that representations have to be similar to 

biological brains to support successful computer vision, 

several studies comparing many models reported that 

representations more similar to IT perform better at 

object recognition (Yamins et al. 2014, Khaligh-Razavi et 

al. 2014). 

 

The association between performance and 

representational similarity to IT has been shown for a 

large set of automatically generated neural net 

architectures using random features (Yamins et al. 2013; 

2014), for a wide range of popular hand-engineered 

computer vision features and neuroscientific vision 

models (Khaligh-Razavi et al. 2013; 2014), and for the 

layers of a single deep neural network (Khaligh-Razavi 

et al. 2014). At least within the architectures explored so 

far, it appears that performance optimisation leads to 

representational spaces similar to IT. 

 

IT is known to emphasise categorical divisions in its 

representation (Kriegeskorte et al. 2008b). Models that 

perform well at categorisation (which is implemented by 

linear readout) likewise tend to have stronger categorical 

divisions. This partially explains their greater 

representational similarity to IT. However, even the 

within-category representational geometries tend to be 

more similar to IT in the better performing models 

(Khaligh-Razavi et al. 2014). 

 

 
 
Figure 5: Deep neural net explains early visual and inferior 

temporal representations of object images. Representations in 

model and brain were characterised by the dissimilarity matrix of the 

response patterns elicited by a set of real-world object images. (a) As 

we ascend the layers of the Krizhevsky et al. (2012) neural net, the 

representations become monotonically more similar to that of human 

inferior temporal (IT) cortex. When the final representational stages are 

linearly remixed to emphasise the same semantic dimensions as IT, 

the noise ceiling (gray) is reached. Similar results obtain for monkey 

IT. (b) Lower layers of the deep neural net resemble the 

representations in the foveal confluence of early visual areas (V1-3). 

Results reproduced from Khaligh-Razavi & Kriegeskorte (2014).  

 

The best performing models are deep neural nets and 

they are also best at explaining the IT representational 

geometry (Khaligh-Razavi et al. 2014; Cadieu et al. 

2014). Khaligh-Razavi et al. (2014) tested a wide range 

of classical computer vision features, several 

neuroscientifically motivated vision models, including 

VisNet (Wallis & Rolls 1997; Tromans et al. 2011) and 

HMAX (Riesenhuber & Poggio 1999), and the deep 

neural network of Krizhesvsky et al. (2012; Fig. 3). The 

brain representations were estimated from human 

functional magnetic resonance imaging (fMRI) and 

monkey cell recordings (data from Kriegeskorte et al. 

2008b; Kiani et al. 2007).  

 

They compared the internal representational spaces 

between models and brain regions using 

representational similarity analysis (Kriegeskorte et al. 

2008a). For each pair of stimuli, the dissimilarity of the 

two stimuli in the representation is measured. The vector 
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of representational dissimilarities across all stimulus 

pairs can then be compared between a model 

representation and a brain region. 

 

Early layers of the deep neural net had representations 

resembling early visual cortex. Across the layers of the 

net, the representational geometry became 

monotonically less similar to early visual cortex and 

more similar to IT. These results are shown in Fig. 5 for 

human data; IT results were similar for human and 

monkey. 

 

At the highest layer, the representation did not yet fully 

explain the explainable (non-noise) variance in the IT 

data. However, a representation fitted to IT by linear 

remixing and reweighting of the deep neural net’s 

features (using independent image sets for training and 

validation), fully explained the IT data (Khaligh-Razavi et 

al. 2014). This IT-fitted deep neural net representation 

explained the IT representation substantially and 

significantly better than a similarly IT-fitted combination 

of the conventional computer vision features. 

 

Cadieu et al. (2013; 2014) analysed the internal 

representations of a population of IT cells alongside 

models of early vision, the HMAX model, a hierarchically 

optimised multi-layer model from Yamins et al. (2013; 

2014), and the deep neural nets from Krizhevsky et al. 

(2012) and Zeiler & Fergus (2013). The representations 

performing best at object categorisation (Fig. 6a) were 

the deep net of Zeiler & Fergus (2013) and the biological 

IT representation (monkey neuronal recordings), 

followed closely by the deep net of Krizhevsky et al. 

(2012). The other representations performed at much 

lower levels. The two deep nets explained the IT data 

equally well as did neuronal recordings from an 

independent set of IT neurons (Fig. 6b). 

 

Several further studies have yielded similar results and 

are beginning to characterise to what extent 

representations at different depths can explain the 

representational stages of the ventral stream (Agrawal et 

al. 2014, Güçlü & van Gerven 2014, Khaligh-Razavi et 

al. 2015). 

 

Overall these early attempts to empirically compare 

representations between deep neural net object 

recognition models and inferior temporal cortex suggest 

four conclusions: (1) Only deep neural nets perform 

object recognition at levels comparable to humans. (2) 

Only deep neural nets explain the representational 

geometry of IT. (3) The representation appears to be 

gradually transformed with lower layers resembling the 

earlier stages of the primate ventral stream. (4) The 

high-level deep net representation resembles IT not 

merely in that it emphasises categorical divisions, but 

also in its within-category representational geometry. 

 

 
 

Figure 6: Deep neural networks beat simpler computational 

models at recognition and better explain IT representations. (a) 

Object recognition performance of deep neural networks beats that of 

shallower models and rivals that of a population of IT neurons 

recorded in a monkey. Recognition performance (vertical axis) is 

plotted as a function of readout-model complexity (horizontal axis); 

high performance at low complexity indicates that the categories 

occupy easily separable regions in the representational space. (b) 

Deep neural network representations more closely resemble IT than 

do three simpler models (V1-like, V2-like, and HMAX). The similarity 

between each model and IT (vertical axis) was measured using the 

Spearman’s rank correlation coefficient to compare representational 

dissimilarity matrices. Results reproduced from Cadieu et al. (2014). 

Abbreviations: HMAX, hierarchical model and X (Riesenhuber & 

Poggio 1999, Serre et al. 2007, Tarr 1999); HMO, hierarchical modular 

optimization model (Yamins et al. 2014); IT, inferior temporal cortex. 

 

 

RECURRENT NEURAL NETS FOR VISION 

 

Feedforward nets are useful as models of the initial 

sweep of neuronal signalling through the visual 

hierarchy. They go some way toward explaining vision at 

a glance. However, feedforward nets are unlike the brain 

in terms of their connectivity and dynamics and 

fundamentally limited to the computation of static 

functions. Rather than computing a static function on 

each of a series of image frames, vision takes a time-
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continuous input stream and interprets it through 

ongoing recurrent computations. The current network 

state likely represents the recent stimulus history along 

with predictions of impending events and other 

behaviourally important information. 

 

Recurrent computations probably contribute to the 

automatic rapid interpretation of even static visual 

images (Sugase et al. 1999, Brincat & Connor 2006, 

Freiwald & Tsao 2010, Carlson et al. 2013, Cichy et al. 

2014; Tang et al. 2014a), leading to the emergence of 

representations that clearly distinguish particular objects 

and object categories. Individual faces, for example, 

become more clearly distinguishable in monkey 

neuronal population codes at latencies that exceed the 

100 ms or so it takes the feedforward sweep to reach IT 

(Sugase et al. 1999; Freiwald & Tsao 2010). At the level 

of object categories, similarly, evidence from human 

magnetoencephalography suggests that strong 

categorical divisions arise only at latencies of over 200 

ms after stimulus onset (Carlson et al. 2013, Cichy et al. 

2014). Both category and exemplar representations, 

thus, may rely on recurrent processing to achieve 

invariance to irrelevant variation among images that 

carry the same essential meaning. 

 

The brain might rely on a combination of feedforward 

and recurrent processing to arrive at a representation 

similar to that computed in feedforward convolutional 

nets trained for object recognition. We have seen that a 

recurrent network can be unfolded as a deep 

feedforward network. Conversely, when the numbers of 

units and connections are limited, a desirable function 

computed by a very large feedforward network might 

alternatively be approximated by recurrent computations 

in a smaller network. Recurrent dynamics can expand 

computational power by multiplying the limited physical 

resources for computation along time. 

 

Recurrent neuronal dynamics likely also serve more 

sophisticated computations than those of feedforward 

convolutional networks. Assume a visual neuron’s 

function is to represent the presence of some piece of 

content in the image (a feature, an object part, an 

object). The feedforward sweep alone might not provide 

the full evidence the neuron needs to confidently detect 

the piece of content it represents. The neuron might 

therefore integrate later-arriving lateral and top-down 

signals to converge on its ultimate response. Multiple 

neurons might pass messages recurrently until the 

population converges on a stable interpretation of the 

image. 

 

Recurrent computations might implement the iterative 

fitting to the image of a generative model of image 

formation, with the fitted parameters specifying the 

contents (and causes) of the image (see Sidebar The 

deep mystery of vision: How to integrate generative and 

discriminative models). Assume, for simplicity, that the 

generative model is exactly invertible. This might be 

plausible if the model includes prior world knowledge 

sufficient to disambiguate visual images. Images and 

symbolic descriptions of their contents are then related 

by a one-to-one (bijective) mapping. In principle, the 

inverse of the generative model could be represented by 

a feedforward model (because of universality). However, 

such a model might require too many neurons and 

connections, or its connectivity might be impossible to 

learn from limited training data. Instead of analysing the 

image through feedforward computations, we can 

perform analysis by synthesis (Yuille & Kersten 2006), 

fitting a generative model of image formation to the 

particular image to be recognised. 

 

The inversion of generative models has long been 

explored in both brain science and computer vision (Knill 

et al. 1996; Yuille & Kersten 2006; Prince 2012). The 

inference problem is hard because a vast number of 

combinations of surfaces and lights can explain any 

image. In order to constrain the search space and 

disambiguate the solution, the brain must use massive 

prior knowledge about the world. Inference on a 

generative model might be tractible if it were performed 

on a higher-level representation of the image computed 

by discriminative mechanisms. How the brain combines 

discriminative computations with inference on generative 

models to perceive the world is one of the fundamental 

unsolved problems of brain science. 

 

The Helmholtz machine (Dayan et al. 1995) uses 

analysis by synthesis at the level of learning. A bottom-

up recognition model and a top-down generative model 

are concurrently learned so as to best represent the 

distribution of the inputs in a maximum-likelihood sense. 

The learning can be performed using the wake-sleep 

algorithm (Hinton et al. 1995; Dayan 2000). In the wake 

phase, the recognition model “perceives” training images 

and the generative model learns to better reconstruct 

these images from their internal representations. In the 

sleep phase, the generative model “dreams” of images 

and the recognition model learns to better infer the 

internal representations from the images. By alternating 

wake and sleep phases, the two models co-adapt and 

jointly discover a good representation of the probability 

distribution over images. 

 

A recurrent network could use the feedforward sweep to 

compute an initial rough estimate of the causes and 

subsequent recurrent computations to iteratively reduce 

the prediction error of the generative model and explain 

nonlinear interactions of the parts, such as occlusion. 

The process could use predictive coding (Lee & 

13 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 26, 2015. ; https://doi.org/10.1101/029876doi: bioRxiv preprint 

https://doi.org/10.1101/029876
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mumford 2003; Friston 2010), with recognised parts of 

the image explained away (and subtracted out of) lower-

level representations, such that the parts yet 

unexplained are gradually uncluttered in the low-level 

representation and contextualised in the high-level 

representation as the easier and then the harder bits of 

the image are successively recognised. 

 

The deep mystery of vision: How to integrate 

generative and discriminative models 

 

The current advances in computer vision are largely 

driven by feedforward neural nets. These models are 

discriminative: they discriminate categories among sets 

of images without an explicit model of the image 

formation process. A more principled way to implement 

vision (or any data analysis) is to formulate a model of 

the process that generated the image (the data) and 

then to invert the process, so as to infer the parameters 

of the model from the data (for a textbook on this 

approach in computer vision, see Prince 2012). 

 

For vision, the generative model is an image formation 

(or graphics) model that generates images from some 

high-level representation, e.g. a symbolic description of 

the visual scene. The first challenge is to define such a 

model. The second challenge is to perform inference on 

it, i.e. to find the high-level representation that best 

explains the image, e.g. the maximum a posteriori 

estimate or the full posterior probability distribution over 

all possible high-level representations given the image. 

The idea of an active search for the interpretation that 

best explains the evidence given our prior knowledge 

about the world is captured in Helmholtz’s (1866) 

description of vision as unconscious inference. 

 

Computer vision and biological vision research has 

always spanned the entire gamut from discriminative to 

generative approaches (Knill et al. 1996; Yuille & 

Kersten 2006; Prince 2012). However, the generative 

approach is practically challenging for computer vision 

and theoretically challenging for neuroscience. Most 

computer vision systems, whether using hand-

engineered features or deep learning, therefore still rely 

primarily on discriminative models, learning mostly 

feedforward computations that process images to 

produce the desired outputs (but see Prince 2012). In 

neuroscience, similarly, feedforward models like HMAX 

(Riesenhuber & Poggio 1999) have been influential.  

 

Image formation involves nonlinear processes such as 

occlusion. Whereas the inversion of a linear generative 

model has a closed-form solution that can be 

implemented in a feedforward computation, inverting a 

graphics model is computationally much more 

challenging. Inferring a high-level scene description from 

an image requires consideration (at some level of 

abstraction) of a combinatorial explosion of possible 

configurations of objects and lights. 

 

The deep mystery of vision is exactly how discriminative 

and generative models are integrated into a seamless 

and efficient process of inference. Vision might rely on a 

discriminative feedforward model for rapid recognition at 

a glance and on recurrent dynamics for iterative 

refinement of the inference, for correcting the errors of 

an initial feedforward estimate, or for choosing among a 

set of hypotheses highlighted by the feedforward pass. 

 

Recurrent neural networks can implement dynamic 

inference processes of this type and, given recent 

successes in the domain of language processing, seem 

poised for a fundamental advance in vision research. 

 

 

Recurrent computations might converge on a point 

estimate of the parameters of a generative model of the 

image. Alternatively, they might implement probabilistic 

inference on a generative model, converging on a 

representation of the posterior distribution over the 

generative model’s parameters. 

 

Recurrent message passing can implement belief 

propagation, an algorithm for probabilistic inference on a 

generative model. If the model captured the causal 

process giving rise to images, the recurrent dynamics 

could infer the specific causes (e.g. the objects, their 

properties, and the lighting) of a particular image. This 

process can be implemented in recurrent neural 

networks and might explain how the brain performs 

optimal cue combination, temporal integration, and 

explaining away (Lochmann & Deneve 2011). 

 

Belief propagation is a deterministic algorithm for 

probabilistic inference. Another deterministic proposal is 

based on probabilistic population codes (Ma et al. 2006). 

Alternatively, a neural net might perform probabilistic 

inference by Markov Chain Monte Carlo (MCMC) 

sampling, using neural stochasticity as a random 

generator (Hoyer & Hyvarinen 2003; Fiser et al. 2010; 

Buesing et al. 2011; McClelland 2013; Häfner et al. 

2014). A snapshot of neural population activity, in this 

view, represents a point estimate of the stimulus and a 

temporal sequence of such snapshots represents the 

posterior distribution. For near-instantaneous readout of 

a probabilistic representation several MCMC chains 

could operate in parallel (Savin & Deneve 2014). The 

sampling approach naturally handles the representation 

of joint probability distributions of multiple variables. 

 

These proposals are exciting because they explain how 

the brain might perform formal probabilistic inference 
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with neurons, linking the biological hardware to the high-

level goal of rational information processing. The 

ultimate goal, of course, is not rational inference, but 

successful behaviour (survival and reproduction). We 

should expect the brain to perform probabilistic inference 

only to the extent that it is expedient to do so in the 

larger context of successful behaviour. 

 

It remains to be seen how the probabilistic inference 

proposals of computational neuroscience scale up to the 

real-world challenges of vision. If they do, they might 

play a central role in future brain theory and computer 

vision. The brain clearly handles uncertainty well in 

many contexts (Tenenbaum et al. 2006; Pouget et al. 

2013), so it is helpful to view its inferences as 

approximations, however rough, to rational probabilistic 

inference. 

 

At a larger time scale, vision involves top-down effects 

related to expectation and attentional scrutiny, and 

active exploration of a scene through a sequence of eye 

movements, and through motor manipulations of the 

world. With the recurrent loop expanded to pass through 

the environment, these processes bring limited 

resources (the fovea, conscious attention) to different 

parts of the environment sequentially, selectively 

sampling the most relevant information while 

accumulating evidence toward an overall interpretation. 

Active perception is also being explored in the 

computational literature. For example, Tang et al. 

(2014b) built a model for face recognition that uses a 

convolutional feedforward pass for initialisation and an 

attentional mechanism for selection of a region of 

interest, on which probabilistic inference is performed on 

a generative model, which itself is learned from data. 

 

The challenge ahead is, first, to scale recurrent neural 

net models for vision to real-world tasks and human 

performance levels and, second, to fit and compare their 

representational dynamics to biological brains. 

Recurrent models are already successful in several 

domains of AI, including video-to-text description 

(Venugopalan et al. 2014), speech-to-text recognition 

(Sak et al. 2014), text-to-text language translation 

(Sutskever et al. 2014; Cho et al. 2014), and text-to-

speech synthesis (Fan et al. 2014). In brain science, 

recurrent neural network models will ultimately be 

needed to explain every major function of brain 

information processing, including vision, other 

perceptual processes, cognition, and motor control. 

 

 

CONCLUSIONS 

 

Computational neuroscience has been very successful 

by asking what the brain should compute (Körding 

2007). The normative goals proposed have often led to 

important insights before being replaced by larger goals. 

Should the brain efficiently encode sensory information 

(Barlow 1961)? Or should it infer an accurate 

probabilistic representation of the world (Barlow 2001)? 

The ultimate goal is successful behaviour. 

 

Normative theory has driven advances at the cognitive 

and neuronal levels. Successes of this approach include 

theories of efficient coding (Barlow 1961, Olshausen & 

Field 1997, Simoncelli & Olshausen 2001), probabilistic 

neuronal coding and inference (Hoyer & Hyvärinen 

2003, Fiser et al. 2010, Buesing et al. 2011, McClelland 

2013, Pouget et al. 2013), Bayesian sensorimotor 

control (Körding & Wolpert 2006), and probabilistic 

cognition (Tenenbaum et al. 2006). For low-level 

sensory representations and for low-dimensional 

decision and control processes, normative theories 

prescribe beautiful and computationally simple inference 

procedures, which we know how to implement in 

computers and which might plausibly be implemented in 

biological brains. However, visual recognition and many 

other feats of brain information processing require 

inference using massive amounts of world knowledge. 

Not only are we missing a normative theory that would 

specify the optimal solution, but, until recently, we were 

not even able to implement any functioning solution. 

 

Until recently, computers could not do visual object 

recognition, and image-computable models that could 

predict higher-level representations of novel natural 

images did not exist. Deep neural networks put both the 

task of object recognition and the prediction of high-level 

neural responses within our computational reach. This 

advance opens up a new computational framework for 

modelling high-level vision and other brain functions. 

 

Deep neural net models are optimized for task 

performance. In this sense, the framework addresses 

the issue of what the brain should compute at the most 

comprehensive level: that of successful behaviour. In its 

current instantiation, the deep net framework gives up 

an explicit probabilistic account of inference, in 

exchange for neurally plausible models that have 

sufficient capacity to solve real-world tasks. We will see 

in the future whether explicitly probabilistic neural net 

models can solve the real-world tasks and explain 

biological brains even better. 

 

Replacing one black box by another? 

One criticism of using complex neural networks to model 

brain information processing is that it replaces one 

impenetrably complex network with another. We might 

be able to capture the computations, but we are 

capturing them in a large net, the complexity of which 
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defies conceptual understanding. There are two answers 

to the criticism of impenetrability. 

 

First, it is true that our job is not done when we have a 

model that is predictive of neural responses and 

behaviour. We must still strive to understand---at a 

higher level of description---how exactly the network 

transforms representations across the multiple stages of 

a deep hierarchy (and across time when the network is 

recurrent). However, once we have captured the 

complex biological computations in an artificial neural 

network, we can study its function efficiently in silico---

with full knowledge of its internal dynamics. Synthetic 

neurophysiology, the analysis and visualization of 

artificial network responses to large natural and artificial 

stimulus sets, might help reveal the internal workings of 

these networks (Zeiler & Fergus 2014, Girshick et al. 

2014, Simonyan et al. 2014, Tsai & Cox 2015, Zhou et 

al. 2015, Yosinski et al. 2015). 

 

The second answer to the criticism of the impenetrability 

of neural network models is that we should be prepared 

to deal with mechanisms that elude a concise 

mathematical description and an intuitive understanding. 

After all, intelligence requires large amounts of domain-

specific knowledge, and compressing this knowledge 

into a concise description or mathematical formula might 

not be possible. In other words, our models should be as 

simple as possible, but no simpler. 

 

Similar to computational neuroscience, AI began with 

simple and general algorithms. These algorithms did not 

scale up to real-world applications, however. Real 

intelligence turned out to require incorporating large 

amounts of knowledge. This insight eventually led to the 

rise of machine learning. Computational neuroscience 

must follow in the footsteps of AI and acknowledge that 

most of what the brain does requires ample domain-

specific knowledge learned through experience. 

 

Are deep neural net models similar to biological 

brains? 

The answer to this question is in the eye of the beholder. 

We can focus on the many abstractions from biological 

reality and on design decisions driven by engineering 

considerations and conclude that they are very different. 

Alternatively, we can focus on the original biological 

inspiration and on the fact that biological neurons can 

perform the operations of model units, and conclude that 

they are similar. 

 

Abstraction from biological detail is desirable and is in 

fact a feature of all models of computational 

neuroscience. A model is not meant to be identical to its 

object, but rather to explain it at an abstract level of 

description. Merely pointing out a difference to biological 

brains, therefore, does not constitute a legitimate 

challenge. For example, the fact that real neurons spike 

does not pose a challenge to a rate-coding model. It just 

means that biological brains can be described at a finer 

level of detail that the model does not address. If spiking 

were a computational requirement (e.g., Buesing et al. 

2011) and a spiking model outperformed the best rate-

coding model at its own game of predicting spike rates, 

or at predicting behaviour, however, then this model 

would present a challenge to the rate-coding approach. 

 

Many features of the particular type of deep 

convolutional feedforward network currently dominating 

computer vision deserve to be challenged in the context 

of modelling biological vision (see Sidebar Adversarial 

examples can reveal idiosyncrasies of neural networks). 

The features that deserve to be challenged first are the 

higher-level computational mechanisms, such as the 

lack of bypass connections in the feedforward 

architecture, the lack of feedback and local recurrent 

connections, the linear--nonlinear nature of the units, the 

rectified linear activation function, and the max-pooling 

operation. To challenge one of these features, we must 

demonstrate that measured neuronal responses or 

behavioural performance can be more accurately 

predicted using a model that does not have the feature. 

 

The neural network literature is complex and spans the 

gamut from theoretical neuroscience to computer 

science. This literature includes feedforward and 

recurrent, discriminative and generative, deterministic 

and stochastic, nonspiking and spiking models. It 

provides the building blocks for tomorrow’s more 

comprehensive theories of information processing in the 

brain. Now that these models are beginning to scale up 

to real-world tasks and human performance levels in 

engineering, we can begin to use this modelling 

framework in brain science to tackle the complex 

processes of perception, cognition, and motor control. 

 

The way ahead 

We will use modern neural network technology with the 

goal of approximating the internal dynamics and 

computational function of large portions of biological 

brains, such as their visual systems. An important goal is 

to build models with layers that correspond one-to-one 

to visual areas, and with receptive fields, nonlinear 

response properties, and representational geometries 

that match those of the corresponding primate visual 

areas. The requirement that the system perform a 

meaningful task such as object recognition provides a 

major functional constraint. 

 

Task training of neural networks with millions of labelled 

images currently provides much stronger constraints 

than neurophysiological data do on the space of 
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candidate models. Indeed, the recent successes at 

predicting brain representations of novel natural images 

are largely driven by task training (Yamins et al. 2014, 

Khaligh-Razavi & Kriegeskorte 2014, Cadieu et al. 

2014). However, advances in massively parallel brain-

activity measurement promise to provide stronger brain-

based constraints on the model space in the future. 

Rather than minimizing a purely task-based loss 

function, as commonly done in engineering, modelling 

biological brains will ultimately require novel learning 

algorithms that drive connectivity patterns, internal 

representations, and task performance into alignment 

with brain and behavioural measurements. 

 

AI, machine learning, and the cognitive and brain 

sciences have deep common roots. At the cognitive 

level, these fields have recently converged through 

Bayesian models of inference and learning (Tenenbaum 

et al. 2006). Similar to deep networks, Bayesian 

nonparametric techniques (Ghahramani 2013) can 

incorporate large amounts of world knowledge. These 

models have the advantage of explicitly probabilistic 

inference and learning. Explaining how such inference 

processes might be implementated in biological neural 

networks is one of the major challenges ahead.  

 

Neural networks have a long history in AI, in cognitive 

science, in machine learning, and in computational 

neuroscience. They provide a common modelling 

framework to link these fields. The current vindication in 

engineering of early intuitions about the power of brain-

like deep parallel computation reinvigorates the 

convergence of these disciplines. If we can build models 

that perform complex feats of intelligence (AI) and 

explain neuronal dynamics (computational 

neuroscience) and behaviour (cognitive science), then -- 

for the tasks tackled -- we will understand how the brain 

works. 

 

 

SUMMARY POINTS 

 

1. Neural networks are brain-inspired computational 

models that now dominate computer vision and 

other artificial intelligence applications. 

2. Neural networks are networks of interconnected 

units computing nonlinear functions of their input. 

Units typically compute linear combinations of their 

inputs followed by a static nonlinearity. 

3. Feedforward neural networks are universal function 

approximators. 

4. Recurrent neural networks are universal 

approximators of dynamical systems. 

5. Deep neural networks stack multiple layers of 

nonlinear transformations and can concisely 

represent complex functions like those needed for 

vision. 

6. Convolutional neural nets constrain the input 

connections of units in early layers to local receptive 

fields, with weight templates replicated across 

spatial positions, reducing the number of parameters 

that need to be learned. 

7. Deep convolutional feedforward networks for object 

recognition are not biologically detailed and rely on 

nonlinearities and learning algorithms that may 

fundamentally differ from those of biological brains. 

Nevertheless they learn internal representations that 

are highly similar to representations in human and 

nonhuman primate inferior temporal cortex. 

8. Neural networks now scale to real-world artificial 

intelligence tasks, providing an exciting 

technological framework for building more 

biologically faithful models of complex feats of brain 

information processing. 

 

 

FUTURE ISSUES 

 

1. Building systems that engage complex real-world 

tasks and simultaneously model biological brain 

activity patterns and behavioural performance 

(including the overall level of performance, errors, 

and reaction times or detailed motor trajectories). 

2. Increasing biological fidelity in terms of architectural 

parameters, nonlinear representational 

transformations, and learning algorithms. 

3. Building networks whose layers match the areas of 

the visual hierarchy in their representational 

geometries. 

4. Predicting behavioural responses to particular 

stimuli, including similarity judgments and reaction 

times in discrimination tasks, from neural network 

representations. 

5. Developing supervised learning techniques that 

drive neural networks into alignment with measured 

brain activity and behavioural data. 

6. Building recurrent neural network models whose 

representational dynamics resemble those of 

biological brains. 

7. Building neural network models, in which 

feedforward and recurrent computations interact to 

implement probabilistic inference on generative 

models of image formation. 

8. Tackling more complex visual functions including 

categorisation and identification of unique entities, 

attentional shifts and eye movements that actively 

explore the scene, visual search, image 

segmentation, more complex semantic 

interpretations, and sensory-motor integration. 
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TERMS 

 

1. Unit: model abstraction of a neuron, typically 

computing a weighted sum of incoming signals, 

followed by a static nonlinear transformation. 

2. Feedforward network: network whose connections 

form a directed acyclic graph, precluding recurrent 

information flow. 

3. Recurrent network: network with recurrent 

information flow, which produces dynamics and 

lends itself naturally to the perception and 

generation of spatiotemporal patterns. 

4. Convolutional network: network where a layer’s 

preactivation (before the nonlinearity) implements 

convolutions of the previous layer with a number of 

weight templates.  

5. Deep neural network: network with more than one 

hidden layer between input and output layers; more 

loosely, network with many hidden layers. 

6. Deep learning: machine learning of complex 

representations in a deep neural network, typically 

using stochastic gradient descent by error 

backpropagation. 

7. Universal function approximator: model family that 

can approximate any function mapping input 

patterns to output patterns (with arbitrary precision 

when allowed enough parameters) 

8. Universal approximator of dynamical systems: a 

model family generating dynamics that can 

approximate any dynamical system (with arbitrary 

precision when allowed enough parameters)  

9. Maxpooling: summary operation implementing 

invariances by retaining only the maxima of sets of 

detectors differing in irrelevant properties (e.g. local 

position). 

10. Normalisation: operation (e.g. division) applied to a 

set of activations so as to hold fixed a summary 

statistic (e.g. the sum). 

11. Dropout: regularisation method for neural network 

training with each unit omitted from the architecture 

with probability 0.5 on each training trial. 

12. Graphics processing unit (GPU): specialised 

computer hardware developed for graphics 

computations that greatly accelerates matrix-matrix 

multiplications and is essential for efficient deep 

learning. 

13. Supervised learning: learning process requiring input 

patterns along with additional information about the 

desired representation or the outputs (e.g. category 

labels). 

14. Unsupervised learning: learning process that 

requires only a set of input patterns and captures 

aspects of the probability distribution of the inputs. 

15. Backpropagation (and backpropagation through 

time): supervised neural-net learning algorithm that 

backpropagates error derivatives with respect to the 

weights through the connectivity to iteratively 

minimise errors. 

16. Generative model: model of the process that 

generated the data (e.g. the image), to be inverted in 

data analysis (e.g. visual recognition). 

17. Discriminative model: model extracting information 

of interest from the data (e.g. the image) without 

explicitly representing the process that generated 

the data 

18. Receptive field modelling: predictive modelling of the 

response to arbitrary sensory inputs of neurons (or 

measured channels of brain activity). 

19. Representational similarity analysis: method for 

testing computational models of brain information 

processing through statistical comparisons of 

representational distance matrices that characterise 

population-code representations. 

20. Synthetic neurophysiology: computational analysis 

of responses and dynamics of artificial neural nets 

aimed to gain a higher-level understanding of their 

computational mechanisms. 
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