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Abstract

Deep neural networks (DNNs) have recently been

achieving state-of-the-art performance on a variety of

pattern-recognition tasks, most notably visual classification

problems. Given that DNNs are now able to classify objects

in images with near-human-level performance, questions

naturally arise as to what differences remain between com-

puter and human vision. A recent study [30] revealed that

changing an image (e.g. of a lion) in a way imperceptible to

humans can cause a DNN to label the image as something

else entirely (e.g. mislabeling a lion a library). Here we

show a related result: it is easy to produce images that are

completely unrecognizable to humans, but that state-of-the-

art DNNs believe to be recognizable objects with 99.99%

confidence (e.g. labeling with certainty that white noise

static is a lion). Specifically, we take convolutional neu-

ral networks trained to perform well on either the ImageNet

or MNIST datasets and then find images with evolutionary

algorithms or gradient ascent that DNNs label with high

confidence as belonging to each dataset class. It is possi-

ble to produce images totally unrecognizable to human eyes

that DNNs believe with near certainty are familiar objects,

which we call “fooling images” (more generally, fooling ex-

amples). Our results shed light on interesting differences

between human vision and current DNNs, and raise ques-

tions about the generality of DNN computer vision.

1. Introduction

Deep neural networks (DNNs) learn hierarchical lay-

ers of representation from sensory input in order to per-

form pattern recognition [2, 14]. Recently, these deep ar-

chitectures have demonstrated impressive, state-of-the-art,

and sometimes human-competitive results on many pattern

recognition tasks, especially vision classification problems

[16, 7, 31, 17]. Given the near-human ability of DNNs to

classify visual objects, questions arise as to what differences

remain between computer and human vision.

Figure 1. Evolved images that are unrecognizable to humans,

but that state-of-the-art DNNs trained on ImageNet believe with

≥ 99.6% certainty to be a familiar object. This result highlights

differences between how DNNs and humans recognize objects.

Images are either directly (top) or indirectly (bottom) encoded.

A recent study revealed a major difference between DNN

and human vision [30]. Changing an image, originally cor-

rectly classified (e.g. as a lion), in a way imperceptible to

human eyes, can cause a DNN to label the image as some-

thing else entirely (e.g. mislabeling a lion a library).

In this paper, we show another way that DNN and human

vision differ: It is easy to produce images that are com-

pletely unrecognizable to humans (Fig. 1), but that state-of-

the-art DNNs believe to be recognizable objects with over

99% confidence (e.g. labeling with certainty that TV static
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Figure 2. Although state-of-the-art deep neural networks can increasingly recognize natural images (left panel), they also are easily

fooled into declaring with near-certainty that unrecognizable images are familiar objects (center). Images that fool DNNs are produced by

evolutionary algorithms (right panel) that optimize images to generate high-confidence DNN predictions for each class in the dataset the

DNN is trained on (here, ImageNet).

is a motorcycle). Specifically, we use evolutionary algo-

rithms or gradient ascent to generate images that are given

high prediction scores by convolutional neural networks

(convnets) [16, 18]. These DNN models have been shown

to perform well on both the ImageNet [10] and MNIST [19]

datasets. We also find that, for MNIST DNNs, it is not easy

to prevent the DNNs from being fooled by retraining them

with fooling images labeled as such. While retrained DNNs

learn to classify the negative examples as fooling images, a

new batch of fooling images can be produced that fool these

new networks, even after many retraining iterations.

Our findings shed light on current differences between

human vision and DNN-based computer vision. They also

raise questions about how DNNs perform in general across

different types of images than the ones they have been

trained and traditionally tested on.

2. Methods

2.1. Deep neural network models

To test whether DNNs might give false positives for

unrecognizable images, we need a DNN trained to near

state-of-the-art performance. We choose the well-known

“AlexNet” architecture from [16], which is a convnet

trained on the 1.3-million-image ILSVRC 2012 ImageNet

dataset [10, 24]. Specifically, we use the already-trained

AlexNet DNN provided by the Caffe software package [15].

It obtains 42.6% top-1 error rate, similar to the 40.7% re-

ported by Krizhevsky 2012 [16]. While the Caffe-provided

DNN has some small differences from Krizhevsky 2012

[16], we do not believe our results would be qualitatively

changed by small architectural and optimization differences

or their resulting small performance improvements. Simi-

larly, while recent papers have improved upon Krizhevsky

2012, those differences are unlikely to change our results.

We chose AlexNet because it is widely known and a trained

DNN similar to it is publicly available. In this paper, we

refer to this model as “ImageNet DNN”.

To test that our results hold for other DNN architectures

and datasets, we also conduct experiments with the Caffe-

provided LeNet model [18] trained on the MNIST dataset

[19]. The Caffe version has a minor difference from the

original architecture in [18] in that its neural activation func-

tions are rectified linear units (ReLUs) [22] instead of sig-

moids. This model obtains 0.94% error rate, similar to the

0.8% of LeNet-5 [18]. We refer to this model as “MNIST

DNN”.

2.2. Generating images with evolution

The novel images we test DNNs on are produced by evo-

lutionary algorithms (EAs) [12]. EAs are optimization al-

gorithms inspired by Darwinian evolution. They contain

a population of “organisms” (here, images) that alternately

face selection (keeping the best) and then random pertur-

bation (mutation and/or crossover). Which organisms are

selected depends on the fitness function, which in these ex-

periments is the highest prediction value a DNN makes for

that image belonging to a class (Fig. 2).

Traditional EAs optimize solutions to perform well on

one objective, or on all of a small set of objectives [12] (e.g.

evolving images to match a single ImageNet class). We

instead use a new algorithm called the multi-dimensional

archive of phenotypic elites MAP-Elites [6], which enables

us to simultaneously evolve a population that contains in-

dividuals that score well on many classes (e.g. all 1000

ImageNet classes). Our results are unaffected by using

the more computationally efficient MAP-Elites over single-

target evolution (data not shown). MAP-Elites works by

keeping the best individual found so far for each objective.

Each iteration, it chooses a random organism from the pop-

ulation, mutates it randomly, and replaces the current cham-

pion for any objective if the new individual has higher fit-



ness on that objective. Here, fitness is determined by show-

ing the image to the DNN; if the image generates a higher

prediction score for any class than has been seen before, the

newly generated individual becomes the champion in the

archive for that class.

We test EAs with two different encodings [29, 5], mean-

ing how an image is represented as a genome. The first

has a direct encoding, which has one grayscale integer for

each of 28× 28 pixels for MNIST, and three integers (H, S,

V) for each of 256 × 256 pixels for ImageNet. Each pixel

value is initialized with uniform random noise within the

[0, 255] range. Those numbers are independently mutated;

first by determining which numbers are mutated, via a rate

that starts at 0.1 (each number has a 10% chance of being

chosen to be mutated) and drops by half every 1000 gener-

ations. The numbers chosen to be mutated are then altered

via the polynomial mutation operator [8] with a fixed muta-

tion strength of 15. The second EA has an indirect encod-

ing, which is more likely to produce regular images, mean-

ing images that contain compressible patterns (e.g. symme-

try and repetition) [20]. Indirectly encoded images tend to

be regular because elements in the genome can affect mul-

tiple parts of the image [28]. Specifically, the indirect en-

coding here is a compositional pattern-producing network

(CPPN), which can evolve complex, regular images that re-

semble natural and man-made objects [25, 28, 1].

Importantly, images evolved with CPPNs can be recog-

nized by DNNs (Fig. 3), providing an existence proof that

a CPPN-encoded EA can produce images that both humans

and DNNs can recognize. These images were produced on

PicBreeder.org [25], a site where users serve as the fitness

function in an evolutionary algorithm by selecting images

they like, which become the parents of the next generation.

CPPNs are similar to artificial neural networks (ANNs).

A CPPN takes in the (x, y) position of a pixel as input, and

outputs a grayscale value (MNIST) or tuple of HSV color

values (ImageNet) for that pixel. Like a neural network,

the function the CPPN computes depends on the number

of neurons in the CPPN, how they are connected, and the

weights between neurons. Each CPPN node can be one of

a set of activation functions (here: sine, sigmoid, Gaussian

and linear), which can provide geometric regularities to the

image. For example, passing the x input into a Gaussian

function will provide left-right symmetry, and passing the

y input into a sine function provides top-bottom repetition.

Evolution determines the topology, weights, and activation

functions of each CPPN network in the population.

As is custom, and was done for the images in Fig. 3,

CPPN networks start with no hidden nodes, and nodes are

added over time, encouraging evolution to first search for

simple, regular images before adding complexity [27]. Our

experiments are implemented in the Sferes evolutionary

computation framework [21]. Our code and parameters are

Figure 3. Evolved, CPPN-encoded images produced with humans

performing selection on PicBreeder.org. Human image breeders

named each object (centered text). Blue bars show the top three

classifications made by a DNN trained on ImageNet (size indi-

cates confidence). Often the first classification relates to the hu-

man breeder’s label, showing that CPPN-encoded evolution can

produce images that humans and DNNs can recognize.

available at http://EvolvingAI.org/fooling.

3. Results

3.1. Evolving irregular images to match MNIST

We first evolve directly encoded images to be confidently

declared by LeNet to be digits 0 thru 9 (recall that LeNet is

trained to recognize digits from the MNIST dataset). Mul-

tiple, independent runs of evolution repeatedly produce im-

ages that MNIST DNNs believe with 99.99% confidence to

be digits, but are unrecognizable as such (Fig. 4). In less

than 50 generations, each run of evolution repeatedly pro-

duces unrecognizable images of each digit type classified by

MNIST DNNs with ≥ 99.99% confidence. By 200 genera-

tions, median confidence is 99.99%. Given the DNN’s near-

certainty, one might expect these images to resemble hand-

written digits. On the contrary, the generated images look

nothing like the handwritten digits in the MNIST dataset.

3.2. Evolving regular images to match MNIST

Because CPPN encodings can evolve recognizable im-

ages (Fig. 3), we tested whether this more capable, regular

encoding might produce more recognizable images than the

irregular white-noise static of the direct encoding. The re-

sult, while containing more strokes and other regularities,

still led to MNIST DNNs labeling unrecognizable images as

digits with 99.99% confidence (Fig. 5) after only a few gen-

erations. By 200 generations, median confidence is 99.99%.

Certain patterns repeatedly evolve in some digit classes

that appear indicative of that digit (Fig. 5). Images classi-

http://EvolvingAI.org/fooling
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Figure 4. Directly encoded, thus irregular, images that MNIST

DNNs believe with 99.99% confidence are digits 0-9. Each col-

umn is a digit class, and each row is the result after 200 generations

of a randomly selected, independent run of evolution.

0 1 2 3 4 5 6 7 8 9

Figure 5. Indirectly encoded, thus regular, images that MNIST

DNNs believe with 99.99% confidence are digits 0-9. The column

and row descriptions are the same as for Fig. 4.

fied as a 1 tend to have vertical bars, while images classi-

fied as a 2 tend to have a horizontal bar in the lower half

of the image. Qualitatively similar discriminative features

are observed in 50 other runs as well (supplementary mate-

rial). This result suggests that the EA exploits specific dis-

criminative features corresponding to the handwritten digits

learned by MNIST DNNs.

3.3. Evolving irregular images to match ImageNet

We hypothesized that MNIST DNNs might be easily

fooled because they are trained on a small dataset that could

allow for overfitting (MNIST has only 60,000 training im-

ages). To test this hypothesis that a larger dataset might

prevent the pathology, we evolved directly encoded images

to be classified confidently by a convolutional DNN [16]

trained on the ImageNet 2012 dataset, which has 1.3 mil-

lion natural images in 1000 classes [9]. Confidence scores

for images were averaged over 10 crops (1 center, 4 corners

and 5 mirrors) of size 227× 227.

The directly encoded EA was less successful at produc-

ing high-confidence images in this case. Even after 20,000

generations, evolution failed to produce high-confidence

images for many categories (Fig. 6, median confidence

21.59%). However, evolution did manage to produce im-

ages for 45 classes that are classified with ≥ 99% confi-

dence to be natural images (Fig. 1). While in some cases

one might discern features of the target class in the image

if told the class, humans without such priming would not

recognize the image as belonging to that class.
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Figure 6. Median confidence scores from 5 runs of directly en-

coded, evolved images for all 1000 ImageNet classes. Though

rare, evolution can produce images that the DNN believes with

over 99% confidence to be in a natural, ImageNet class.

3.4. Evolving regular images to match ImageNet

Once again, we test whether the CPPN encoding, which

has previously evolved images that both humans and DNNs

recognize similarly (Fig. 3), might produce more recogniz-

able images than the direct encoding. The hypothesis is that

the larger ImageNet dataset and more powerful DNN ar-

chitecture may interact with the CPPN encoding to finally

produce recognizable images.

In five independent runs, evolution produces many im-

ages with DNN confidence scores ≥ 99.99%, but that are

unrecognizable (Fig. 1 bottom). After 5000 generations, the

median confidence score reaches 88.11%, similar to that for

natural images (supplementary material) and significantly

higher than the 21.59% for the direct encoding (Fig. 12,

p < 0.0001 via Mann-Whitney U test), which was given 4-

fold more generations. High-confidence images are found

in most categories (Fig. 7).

Figure 7. Median confidence scores from 5 runs of CPPN-

encoded, evolved images for all 1000 ImageNet classes. Evolution

can produce many images that the DNN believes with over 99%

confidence to belong to ImageNet classes.

While a human not given the class labels for CPPN im-

ages would not label them as belonging to that class, the

generated images do often contain some features of the tar-

get class. For example, in Fig. 1, the starfish image contains

the blue of water and the orange of a starfish, the baseball

has red stitching on a white background, the remote control



Figure 8. Evolving images to match DNN classes produces a

tremendous diversity of images. Shown are images selected to

showcase diversity from 5 evolutionary runs. The diversity sug-

gests that the images are non-random, but that instead evolutions

producing discriminative features of each target class. The mean

DNN confidence scores for these images is 99.12%.

has a grid of buttons, etc. For many of the produced images,

one can begin to identify why the DNN believes the image

is of that class once given the class label. This is because

evolution need only to produce features that are unique to,

or discriminative for, a class, rather than produce an image

that contains all of the typical features of a class.

The pressure to create these discriminative features led

to a surprising amount of diversity in the images pro-

duced (Fig. 8). That diversity is especially noteworthy be-

cause (1) it has been shown that imperceptible changes to an

image can change a DNN’s class label [30], so it could have

been the case that evolution produced very similar, high-

confidence images for all classes, and (2) many of the im-

ages are related to each other phylogenetically, which leads

evolution to produce similar images for closely related cat-

egories (Fig. 9). For example, one image type receives high

confidence scores for three types of lizards, and a different

image type receives high confidence scores for three types

of small, fluffy dogs. Different runs of evolution, however,

produce different image types for these related categories,

revealing that there are different discriminative features per

class that evolution exploits. That suggests that there are

many different ways to fool the same DNN for each class.

Many of the CPPN images feature a pattern repeated

many times. To test whether that repetition improves the

confidence score a DNN gives an image, or whether the

repetition stems solely from the fact that CPPNs tend to pro-

duce regular images [28, 5], we ablated (i.e. removed) some

of the repeated elements to see if the DNN confidence score

Figure 9. Images from the same evolutionary run that fool closely

related classes are similar. Shown are the top images evolution

generated for three classes that belong to the “lizard” parent class,

and for three classes that belong to “toy dog” parent class. The top

and bottom rows show images from independent runs of evolution.

for that image drops. Psychologists use the same ablation

technique to learn which image features humans use to rec-

ognize objects [4]. In many images, ablating extra copies of

the repeated element did lead to a performance drop, albeit

a small one (Fig 10), meaning that the extra copies make

the DNN more confident that the image belongs to the tar-

get class. This result is in line with a previous paper [26]

that produced images to maximize DNN confidence scores

(discussed below in Section 3.9), which also saw the emer-

gence of features (e.g. a fox’s ears) repeated throughout an

image. These results suggest that DNNs tend to learn low-

and middle-level features rather than the global structure of

objects. If DNNs were properly learning global structure,

images should receive lower DNN confidence scores if they

contain repetitions of object subcomponents that rarely ap-

pear in natural images, such as many pairs of fox ears or

endless remote buttons (Fig. 1).

Figure 10. Before: CPPN-encoded images with repeated patterns.

After: Manually removing repeated elements suggests that such

repetition increases confidence scores.

The low-performing band of classes in Fig. 7 (class num-

bers 157-286) are dogs and cats, which are overrepresented

in the ImageNet dataset (i.e. there are many more classes of

cats than classes of cars). One possible explanation for why

images in this band receive low confidence scores is that the

network is tuned to identify many specific types of dogs and

cats. Therefore, it ends up having more units dedicated to

this image type than others. In other words, the size of the

dataset of cats and dogs it has been trained on is larger than



for other categories, meaning it is less overfit, and thus more

difficult to fool. If true, this explanation means that larger

datasets are a way to ameliorate the problem of DNNs be-

ing easily fooled. An alternate, though not mutually exclu-

sive, explanation is that, because there are more cat and dog

classes, the EA had difficulty finding an image that scores

high in a specific dog category (e.g. Japanese spaniel), but

low in any other related categories (e.g. Blenheim spaniel),

which is necessary to produce a high confidence given that

the final DNN layer is softmax. This explanation suggests

that datasets with more classes can help ameliorate fooling.

3.5. Images that fool one DNN generalize to others

The results of the previous section suggest that there are

discriminative features of a class of images that DNNs learn

and evolution exploits. One question is whether different

DNNs learn the same features for each class, or whether

each trained DNN learns different discriminative features.

One way to shed light on that question is to see if im-

ages that fool one DNN also fool another. To test that, we

evolved CPPN-encoded images with one DNN (DNNA)

and then input these images to another DNN (DNNB). We

tested two cases: (1) DNNA and DNNB have identical ar-

chitectures and training, and differ only in their randomized

initializations; and (2) DNNA and DNNB have different

DNN architectures, but are trained on the same dataset. We

performed this test for both MNIST and ImageNet DNNs.

Images were evolved that are given ≥ 99.99% confi-

dence scores by both DNNA and DNNB . Thus, some

general properties of the DNNs are exploited by the CPPN-

encoded EA. However, there are also images specifically

fine-tuned to score high on DNNA, but not on DNNB .

See the supplementary material for more detail and data.

3.6. Training networks to recognize fooling images

One might respond to the result that DNNs are eas-

ily fooled by saying that, while DNNs are easily fooled

when images are optimized to produce high DNN confi-

dence scores, the problem could be solved by simply chang-

ing the training regimen to include negative examples. In

other words, a network could be retrained and told that the

images that previously fooled it should not be considered

members of any of the original classes, but instead should

be recognized as a new “fooling images” class.

We tested that hypothesis with CPPN-encoded images

on both MNIST and ImageNet DNNs. The process is as

follows: We train DNN1 on a dataset (e.g. ImageNet),

then evolve CPPN images that produce a high confidence

score for DNN1 for the n classes in the dataset, then we

take those images and add them to the dataset in a new class

n + 1; then we train DNN2 on this enlarged “+1” dataset;

(optional) we repeat the process, but put the images that

evolved for DNN2 in the n + 1 category (a n + 2 cate-

gory is unnecessary because any images that fool a DNN

are “fooling images” and can thus go in the n+1 category).

Specifically, to represent different types of images, each it-

eration we add to this n + 1 category m images randomly

sampled from both the first and last generations of multiple

runs of evolution that produce high confidence images for

DNNi. Each evolution run on MNIST or ImageNet pro-

duces 20 and 2000 images respectively, with half from the

first generation and half from the last. Error-rates for trained

DNNi are similar to DNN1 (supplementary material).

3.7. Training MNIST DNNs with fooling images

To make the n+1 class have the same number of images

as other MNIST classes, the first iteration we add 6000 im-

ages to the training set (taken from 300 evolutionary runs).

For each additional iteration, we add 1000 new images to

the training set. The immunity of LeNet is not boosted

by retraining it with fooling images as negative examples.

Evolution still produces many unrecognizable images for

DNN2 with confidence scores of 99.99%. Moreover, re-

peating the process for 15 iterations does not help (Fig. 11),

even though DNN15’s overrepresented 11th “fooling im-

age class” contains 25% of the training set images.

3.8. Training ImageNet DNNs with fooling images

The original ILSVRC 2012 training dataset was ex-

tended with a 1001st class, to which we added 9000 images

0

1

1 2 3 4 5 6 7 8 9 Median confidence

99.99

2 97.42

3 99.83

4 72.52

5 97.55

6 99.68

7 76.13

8 99.96

9 99.51

10 99.48

11 98.62

12 99.97

13 99.93

14 99.15

15 99.15

Figure 11. Training MNIST DNNi with images that fooled

MNIST DNN1 through DNNi−1 does not prevent evolution

from finding new fooling images for DNNi. Columns are dig-

its. Rows are DNNi for i = 1...15. Each row shows the 10

final, evolved images from one randomly selected run (of 30) per

iteration. Medians are taken from images from all 30 runs.



that fooled DNN1. That 7-fold increase over the 1300 im-

ages per ImageNet class is to emphasize the fooling images

in training. Without this imbalance, training with negative

examples did not prevent fooling; MNIST retraining did not

benefit from over representing the fooling image class.

Contrary to the result in the previous section, for Ima-

geNet models, evolution was less able to evolve high confi-

dence images for DNN2 than DNN1. The median confi-

dence score significantly decreased from 88.1% for DNN1

to 11.7% for DNN2 (Fig. 12, p < 0.0001 via Mann-

Whitney U test). We suspect that ImageNet DNNs were

better inoculated against being fooled than MNIST DNNs

when trained with negative examples because it is easier to

learn to tell CPPN images apart from natural images than it

is to tell CPPN images from MNIST digits.

Figure 12. Training a new ImageNet DNN (DNN2) with images

that fooled a previous DNN (DNN1) makes it significantly more

difficult for evolution to produce high confidence images.

To see whether this DNN2 had learned features specific

to the CPPN images that fooled DNN1, or whether DNN2

learned features general to all CPPN images, even recog-

nizable ones, we input recognizable CPPN images from

Picbreeder.org to DNN2. DNN2 correctly labeled 45 of

70 (64%, top-1 prediction) PicBreeder images as CPPN im-

ages, despite having never seen CPPN images like them be-

fore. The retrained model thus learned features generic to

CPPN images, helping to explain why producing new im-

ages that fool DNN2 is more difficult.

3.9. Producing fooling images via gradient ascent

A different way to produce high confidence, yet mostly

unrecognizable images is by using gradient ascent in pixel

space [11, 26, 30]. We calculate the gradient of the posterior

probability for a specific class — here, a softmax output unit

of the DNN — with respect to the input image using back-

prop, and then we follow the gradient to increase a chosen

unit’s activation. This technique follows [26], but whereas

we aim to find images that produce high confidence classi-

fications, they sought visually recognizable “class appear-

ance models.” By employing L2-regularization, they pro-

duced images with some recognizable features of classes

(e.g. dog faces, fox ears, and cup handles). However, their

confidence values are not reported, so to determine the de-

gree to which DNNs are fooled by these backpropagated

images, we replicated their work (with some minor changes,

see supplementary material) and found that images can be

made that are also classified by DNNs with 99.99% confi-

dence, despite them being mostly unrecognizable (Fig. 13).

These optimized images reveal a third method of fooling

DNNs that produces qualitatively different examples than

the two evolutionary methods in this paper.

Figure 13. Images found by maximizing the softmax output for

classes via gradient ascent [11, 26]. Optimization begins at the Im-

ageNet mean (plus small Gaussian noise to break symmetry) and

continues until the DNN confidence for the target class reaches

99.99%. Images are shown with the mean subtracted. Adding reg-

ularization makes images more recognizable but results in slightly

lower confidence scores (see supplementary material).

4. Discussion

Our experiments could have led to very different results.

One might have expected evolution to produce very similar,

high confidence images for all classes, given that [30] re-

cently showed that imperceptible changes to an image can

cause a DNN to switch from classifying it as class A to class

B (Fig. 14). Instead, evolution produced a tremendous di-

versity of images (Figs. 1, 8, 10, 15). Alternately, one might

have predicted that evolution would produce recognizable

images for each class given that, at least with the CPPN

encoding, recognizable images have been evolved (Fig. 3).

We note that we did not set out to produce unrecognizable

images that fool DNNs. Instead, we had hoped the resul-

tant images would be recognizable. A different prediction

could have been that evolution would fail to produce high

confidence scores at all because of local optima. It could

also have been the case that unrecognizable images would

have been given mostly low confidences across all classes

instead of a very high confidence for one class.

In fact, none of these outcomes resulted. Instead, evolu-

tion produced high-confidence, yet unrecognizable images.

Why? Our leading hypothesis centers around the difference

between discriminative models and generative models. Dis-



Figure 14. Interpreting our results and related research. (1) [30]

found that an imperceptible change to a correctly classified natural

image (blue dot) can result in an image (square) that a DNN classi-

fies as an entirely different class (crossing the decision boundary).

The difference between the original image and the modified one

is imperceptible to human eyes. (2) It is possible to find high-

confidence images (pentagon) using our directly encoded EA or

gradient ascent optimization starting from a random or blank im-

age (I0) [11, 13, 26]. These images have blurry, discriminative

features of the represented classes, but do not look like images in

the training set. (3) We found that indirectly encoded EAs can find

high-confidence, regular images (triangles) that have discrimina-

tive features for a class, but are still far from the training set.

criminative models — or models that learn p(y|X) for a

label vector y and input example X — like the models in

this study, create decision boundaries that partition data into

classification regions. In a high-dimensional input space,

the area a discriminative model allocates to a class may be

much larger than the area occupied by training examples for

that class (see lower 80% of Fig. 14). Synthetic images far

from the decision boundary and deep into a classification re-

gion may produce high confidence predictions even though

they are far from the natural images in the class. This per-

spective is confirmed and further investigated by a related

study [13] that shows large regions of high confidence ex-

ist in certain discriminative models due to a combination of

their locally linear nature and high-dimensional input space.

In contrast, a generative model that represents the com-

plete joint density p(y,X) would enable computing not

only p(y|X), but also p(X). Such models may be more dif-

ficult to fool because fooling images could be recognized by

their low marginal probability p(X), and the DNN’s confi-

dence in a label prediction for such images could be dis-

counted when p(X) is low. Unfortunately, current genera-

tive models do not scale well [3] to the high-dimensionality

of datasets like ImageNet, so testing to what extent they

may be fooled must wait for advances in generative models.

In this paper we focus on the fact that there exist images

that DNNs declare with near-certainty to be of a class, but

are unrecognizable as such. However, it is also interesting

that some generated images are recognizable as members of

their target class once the class label is known. Fig. 15 jux-

taposes examples with natural images from the target class.

Baseball Matchstick Ping-pong ball Sunglasses

Figure 15. Some evolved images do resemble their target class. In

each pair, an evolved, CPPN-encoded image (left) is shown with a

training set image from the target class (right).

Other examples include the chain-link fence, computer key-

board, digital clock, bagel, strawberry, ski mask, spotlight,

and monarch butterfly of Fig. 8. To test whether these im-

ages might be accepted as art, we submitted them to a se-

lective art competition at the University of Wyoming Art

Museum, where they were accepted and displayed (supple-

mentary material). A companion paper explores how these

successes suggest combining DNNs with evolutionary algo-

rithms to make open-ended, creative search algorithms [23].

The CPPN EA presented can also be considered a novel

technique to visualize the features learned by DNNs. The

diversity of patterns generated for the same class over dif-

ferent runs (Fig. 9) indicates the diversity of features learned

for that class. Such feature-visualization tools help re-

searchers understand what DNNs have learned and whether

features can be transferred to other tasks [32].

One interesting implication of the fact that DNNs are

easily fooled is that such false positives could be exploited

wherever DNNs are deployed for recognizing images or

other types of data. For example, one can imagine a security

camera that relies on face or voice recognition being com-

promised. Swapping white-noise for a face, fingerprints, or

a voice might be especially pernicious since other humans

nearby might not recognize that someone is attempting to

compromise the system. Another area of concern could

be image-based search engine rankings: background pat-

terns that a visitor does not notice could fool a DNN-driven

search engine into thinking a page is about an altogether

different topic. The fact that DNNs are increasingly used in

a wide variety of industries, including safety-critical ones

such as driverless cars, raises the possibility of costly ex-

ploits via techniques that generate fooling images.

5. Conclusion

We have demonstrated that discriminative DNN models

are easily fooled in that they classify many unrecognizable

images with near-certainty as members of a recognizable

class. Two different ways of encoding evolutionary algo-

rithms produce two qualitatively different types of unrec-

ognizable “fooling images”, and gradient ascent produces

a third. That DNNs see these objects as near-perfect ex-

amples of recognizable images sheds light on remaining

differences between the way DNNs and humans recognize

objects, raising questions about the true generalization ca-

pabilities of DNNs and the potential for costly exploits of

solutions that use DNNs.
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