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ABSTRACT Human Activity Recognition (HAR) has been attracting significant research attention because

of the increasing availability of environmental and wearable sensors for collecting HAR data. In recent

years, deep learning approaches have demonstrated a great success due to their ability to model complex

systems. However, these models are often evaluated on the same subjects as those used to train the model;

thus, the provided accuracy estimates do not pertain to new subjects. Occasionally, one or a few subjects

are selected for the evaluation, but such estimates highly depend on the subjects selected for the evaluation.

Consequently, this paper examines how well different machine learning architectures make generalizations

based on a new subject(s) by using Leave-One-Subject-Out Cross-Validation (LOSOCV). Changing the

subject used for the evaluation in each fold of the cross-validation, LOSOCV provides subject-independent

estimate of the performance for new subjects. Six feed forward and convolutional neural network (CNN)

architectures as well as four pre-processing scenarios have been considered. Results show that CNN

architecture with two convolutions and one-dimensional filter accompanied by a sliding window and vector

magnitude, generalizes better than other architectures. For the sameCNN, the accuracy improves from 85.1%

when evaluated with LOSOCV to 99.85% when evaluated with the traditional 10-fold cross-validation,

demonstrating the importance of using LOSOCV for the evaluation.

INDEX TERMS Deep neural networks, human activity recognition, model selection, convolutional neural

networks, feed forward neural networks, model evaluation, wearable sensor, leave-one-subject-out.

I. INTRODUCTION

Human activity recognition (HAR) aims to detect, identify,

and interpret human activities employing signals received

from the environment or from wearable sensors [1]. There

is a wide area of HAR applications including health

monitoring [2], ambient assisted living [3], and targeted

advertising [4]. Intraclass variability, interclass similarity, and

null-class dominance make HAR a difficult classification

task [5]–[7]. Intraclass variability refers to variations of the

same activity (e.g., walking) among different people or even

for the same person in different recording sessions, while

interclass similarity indicates similarity between different

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhanpeng Jin .

activities such as jogging and running. As large parts of the

data are not labeled or do not contain relevant activities, null-

class is dominant, which limits how usable the data is for

modelling [7].

There are two main categories of HAR approaches based

on the type of data used for recognition: vision-based and

sensor-based. Vision-based approaches require installation

of cameras; therefore, these systems are limited in terms of

the size and condition of the monitored space and raises

concerns around intrusiveness and privacy. On the other

hand, advances in sensor technology have enabled HAR with

wearable devices and decoupled activity monitoring from the

environment. Many sensors can be applied for HAR includ-

ing accelerometers, gyroscopes, magnetometer, and radio-

frequency identification [8]. Because of their robustness,
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diversity, availability, and wide acceptance among the pop-

ulation, wearable sensors are one of the most common

approaches for HAR applications [9].

To recognize human activities, many Machine Learn-

ing (ML) methods have been applied: for example, Hidden

Markov Models (HMM) [10], Decision Trees [11], Sup-

port Vector Machines (SVM) [12], Conditional Random

Fields [13], and K-Nearest Neighbor (K-NN) [14]. In recent

years, Deep Neural Networks (DNNs) have been quite pop-

ular in machine learning and have had a significant impact

on a variety of application domains [15], including object

recognition [16], natural language processing [17], and

energy management [18]. In HAR, DNNs, especially

Convolutional Neural Networks, have demonstrated great

success [1]. In deep learning architectures, multiple lay-

ers perform non-linear transformations, and input data

are transformed into hierarchical representations, each

one indicating different abstraction levels. In spite of

recent DNNs success in HAR, model selection remains a

challenge.

The model evaluation is essential for comparing results

obtained by different studies as well as for selecting the best

model. Studies typically use a single model or a subject-

specific model. A single model approach develops one model

by using data from all subjects (users) while subject-specific

approach results in one model per subject. In both cases,

the models are assessed by traditional hold-out or k-fold

cross-validation. The drawback of these traditional evalua-

tion methods is that data from the same person is present

in the training as well as in the testing set. Consequently,

the model may struggle to generalize to new (unseen) users

as parameters and hyperparameters were learned on the

same subjects as those used for the evaluation. Although,

the need for personalized models has been recognized [1],

it remains essential to evaluate generalization on new

subjects.

In HAR systems, the sliding window technique has been

widely used to increase accuracy [19]. However, most studies

used the sliding window technique before splitting data into

train and test. This results in parts of data being present in

both train and test datasets, as illustrated in Figure 1. Conse-

quently, the accuracy on the test set is not a true representation

of the model’s ability on unseen samples [19]. In addition

to the need of splitting data into train and test sets before

applying the sliding window technique, the impact of the

slidingwindow on the generalization to unseen subjects needs

to be explored.

Hence, this paper investigates the impact of the ML

model architectures and the sliding window technique on

the accuracy of HAR on previously unseen subjects. Two

types of deep learning models, Feed Forward Neural Net-

works (FFNNs) and Convolutional Neural Networks (CNNs),

are investigated in terms of how well they recognize activi-

ties for new subjects. Evaluation is performed using Leave-

One-Subject-Out Cross Validation (LOSOCV), a modified

k-fold cross-validation with each fold consisting of single

FIGURE 1. Sliding window approach before splitting the dataset into train
and test.

subject data. Experiments show that the CNN architectures

outperform FFNNs and that preprocessing including vector

magnitude and sliding window improves the activity recog-

nition accuracy. Moreover, the variability of the accuracy

among subject-based folds of the cross-validation highlights

the importance of using LOSOCV for the evaluation of HAR

models.

The rest of the paper is organized as follows: Section II

describes the background and Section III reviews related

work. Section IV presents the methodology, Section V

explains the experiments and discusses corresponding results.

Finally, Section VI concludes the paper.

II. BACKGROUND

This section first provides an overview of Artificial Neural

Network, in particular, Feed Forward Neural Networks and

Convolutional Neural Networks in terms of structure and

function.

A. FEED FORWARD NEURAL NETWORK

Artificial Neural Networks (ANNs)mimic the human brain to

solve nonlinear problems. Similar to the human mind, ANNs

learn to perform a task from examples without a need to be

explicitly programmed.

The Feed Forward Neural Network (FFNN) is a type of

ANN consisting of layers, namely, input, hidden, and output.

In this network, information moves in one direction, from the

input layer through the hidden layer(s) to the output layer. The

input nodes receive the signals while the nodes in the output

layer represent network outputs, in classification problems

the outputs are different classes. During training, samples

are passed forward through the network and the output of

each hidden neuron j in the first hidden layer is calculated

as follows:

yj = f (

N
∑

i=1

(hi ∗ wij) + bj) (1)

where hi are neuron inputs, wij are the synaptic weights con-

necting the i− th neuron in the input layer to the j− th neuron

in the hidden layer, bj is a j − th neuron bias, and N is the

number of input neurons. Finally, f is the activation function,

which is usually modeled as a Relu or Sigmoid function.
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FIGURE 2. Convolutional neural networks architecture.

The outputs of the neurons in the next layer are calculated

in the same way. At the output layer, the error is determined

using the calculated neuron output and the expected/desired

output, and the error is employed to update the weights using

the backpropagation approach.

The performance of FFNN is affected by the network

architecture and parameters including the number of lay-

ers, the number of neurons, and learning rates. Although

approaches for determining the network architecture and

parameters have being investigated [20], there are still no

general rules, and the selection is usually based on the trial-

and-error method [21], [22].

B. CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNNs) are a type of deep

neural networks designed for data with a known grid-like

topology. As the name indicates, these networks employ the

convolution operation. CNNs have been usedwidely in image

recognition [23] due to their ability capture the topology of

images [24]. Then, due to its surceases with images, CNNs

have been employed in other areas, such as HAR [25], and

hand gesture recognition [26].

The CNN architecture consists of different layers such

as input, convolution, pulling, fully connected and output.

Figure 2 illustrates an example of a CNN architecture con-

sisting of one input, convolution, pooling layer, two fully

connected layers, and an output layer. The convolution layer

obtains feature maps by means of element-wise multiplica-

tion of filters (kernels) and input data or output from the

previous layer. After the convolution layer, the pooling layer

works on each feature map to reduce the spacial size by

down-sampling therefore reducing CNN computation. All the

nodes in the fully connected layers are connected to all the

nodes in the next layer, similarly to FFNN. Finally, at the

output layer, activation functions are used to obtain outputs;

for classification problems, Softmax is a common activation

function [27]. After the calculation of error, the weights in

the fully connected layers and learnable filters in the con-

volution layers are updated by applying a backpropagation

approach and optimization algorithms such as the gradient

descent.

III. RELATED WORK

This section first reviews human activity recognition works

and then discusses the approaches for evaluating HAR

models.

A. HAR APPROACHES

This section reviews recent works on a sensor-basedHAR and

focuses on the studies that used the MHEALTH dataset [28],

[29] because this dataset allows us to compare results with

literature.

Nguyen et al. [30] introduced a Feature-based and

Attribute-based (FE-AT) learning approach to tackle the

shortage of the labeled data in HAR datasets. They used a

random oversampling approach with the goal to create a more

balanced training dataset and attribute-based learning that

would tackle the insufficient data problem. FE-AT variants

based on three classifiers, SVM, K-NN, and Random Forest,

were applied to three public datasets, MHEALTH, DailyAnd-

Sport, and RealDisp. As they are specifically interested in

new activities, only a small number of samples from the target

activity is used for the training. Experiments showed that

FE-AT with Random Forest outperformed other approaches

for new activity recognition.

Mehmood et al. [31] evaluated seven supervised learning

algorithms in terms of HAR accuracy and classified activities

included in the MHEALTH dataset into three groups, namely

Ambulation, Transportation, and Exercise/fitness. Four activ-

ities, at least one from each group, were selected for eval-

uation: Waist Bends Forward, Standing Still, Cycling, and

Jump Front and Back. Results showed that the Fuzzy Rule

method with 99.79% accuracy outperformed Random Forest

(99.7%), MultiLayer Perceptron Neural Network (98.96%),

Decision Tree (98.58%), K-NN (95.95%), SVM (89.1%), and

Naïve Bayes (53.18%) for these activities.

Chowdhury et al. [32] proposed a posterior-adapted class-

based weighted fusion to integrate multiple accelerometers

data for HAR. They first evaluated SVM, Random Forest,

Binary Decision Tree, DNN, and Adaboost algorithms on

PAMAP2 andMHEALTH dataset and selected SVM because

of its high accuracy for further sensor fusion experiments.

The proposed fusion approach with SVM outperformed the

model-based and class-based weighted fusion approaches

on both datasets, PAMAP2 and MHEALTH. Moreover,

they investigated different accelerometer sensors configu-

rations in terms of the number of sensors and body loca-

tions. With the proposed approach, the combinations of sen-

sors Ankle+Wrist, Chest+Wrist, and Ankle+Chest+Wrist

achieved higher accuracy than a single sensor on any location.

Zdravevski et al. [33] evaluated six different classifiers,

namely K-NN, Logistic Regression, Naive Bayes, Random

Forest, Extremely Randomized Trees, and SVM in terms

of accuracy on five different datasets, DaLiAc, MHEALTH,

FSP, SBHAR, and SBHARPT. In the first step, they per-

formed feature extraction with a variety of techniques; for

MHEALTH dataset, this resulted in 3232 features. Next,
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to reduce the number of features, they used feature impor-

tance, drift sensitivity, and diversified forward-backward fea-

ture selection. With the MHEALTH dataset, this resulted in

99.8% accuracy.

Subasi et al. [34] investigated a user-dependent human

activity classification where an individual model is trained

for each subject and evaluated on the same subject. Eight

classifiers were evaluated: K-NN, ANN, SVM, C4.5, CART,

Random Forest, and Rotation Forest on the MHEALTH

dataset. The results show that SVM and Random For-

est methods achieved the same accuracy (99.89%); how-

ever, this approach requires an individual model for each

user.

Said et al. [35] proposed Deep Autoencoder with Low

Rank Dictionary Learning (DALRD) to extract features

from noisy sensor signals. Authors evaluated the proposed

DALRD on two datasets and compared it to five other feature

extraction techniques: Principle Component Analysis (PCA),

Linear Discriminant Analysis, Robust PCA, Deep Autoen-

coder (DA), and Supervised Regularization-based Robust

Subspace (SRRS). To examine the model robustness, they

introduced different levels of random noise into the dataset.

SRRS achieved the best accuracy, 98.1% on the MHEALTH

dataset, with clean data, but DALRD performed better than

the other approaches with noisy data.

Uddin and Hassan [36] presented a deep CNN for activity

recognition from body sensors. Gaussian kernel-based PCA

and Z-score normalization have been used in the preprocess-

ing phase. For the MHEALTH dataset, the mean accuracy of

the proposed CNN for all subjects was 93.9%,what was supe-

rior to Deep Belief Network (90.01%) and ANN (87.99%).

Ha et al. [37] also proposed a CNN for activity recognition

with the MHEALTH dataset. To capture spacial and temporal

dependencies among sensors, they used a 2D convolution

kernel and a 2D pooling kernel. In their experiments, the pro-

posed CNN with 2D kernels achieved better accuracy than

CNN with a 1D kernel. CNN-pff [38] architecture is also

based on CNN with a 2D kernel: it employs partial and

full weight sharing to learn modality-specific as well as

common (modality-independent) characteristics across

modalities. In their experiments CNN-pff outperformed other

models including HMM, SVM, Hidden conditional random

fields, 1D CNN, and 2D CNN.

Finally, differences between our work and the reviewed

studies can be categorized as follows:

• Nguyen et al. [30] and Chowdhury et al. [32] used

LOSOCV (10 Fold) and the MHEALTH dataset.

Nguyen et al. used oversampling method for making

the dataset balanced and Chowdhury et al. considered

only on eight different activities. Although we did apply

LOSOCV (10 Fold) evaluation, we did not use oversam-

pling and we are considering all 12 activities. Moreover,

we used CNN and evaluated accuracy variability among

different subjects.

• Mehmood et al. [31], Zdravevski et al. [33],

Said et al. [35], and Ha et al., [37] used hold-out

validation and Ha et al. [38] applied a hybrid of

leave-one-subject-out and hold-out validation methods.

In contrast, our work uses the Leave-One-Subject-Out

and Cross-Validation (10 Fold) approach.

• Subasi et al. [34] and Uddin and Hassan, [36] presented

user-dependent (each user separately) models. On the

other hand, our study considers a subject-independent

model and evaluates it on the new users.
In contrast to the reviewed works, our study examines the

impact of model selection and the sliding window technique

on the model’s ability to generalize on unseen subjects.

B. HAR EVALUATION

The recent research in the HAR field utilized different

approaches to validate their models making it difficult to

compare among studies even when they use the same dataset.

We can classify these validation methods into four main

categories.

1) HOLD OUT VALIDATION ( [31], [33], [35], [37])

The dataset containing readings from all subjects is split

randomly into train and test datasets. The main shortcoming

of this approach is that the same person’s data are in both,

train and test; therefore, the results do not indicate how the

model will perform on new users. Moreover, if the data are

split again, the results of the model probably will change.

Hold out validation can be carried out individually for each

subject where it has an additional disadvantage of needed a

separate model for each user.

2) K-FOLD CROSS-VALIDATION ( [36])

The dataset (from one person or all people) is split into k

parts; one part is reserved for evaluation and the remaining

parts are used for training. The process is repeated k times,

each time using a different part for evaluation. Although the

results from this approach are more reliable than the results

from the hold out approach, it does not evaluate accuracy for

new subjects.

3) LEAVE-SUBJECT(S)-OUT HOLD OUT (LSOHO) ( [38])

This is a variant of hold out validation, where one or more

subjects are considered for the validation and other subjects

for training the model. Although this approach evaluates on

new subjects, the disadvantage is that the accuracy depends

on the subject(s) selected for the evaluation.

4) LEAVE-SUBJECT(S)-OUT CROSS-VALIDATION

(LSOCV) ( [30], [32])

This is a variant of the k-fold cross-validation approach

but with folds consisting of subjects. Similarly to LSOHO,

LSOCV evaluates accuracy on new subjects, but LSOCV

gives more realistic accuracy estimates, as it uses different

subjects for evaluations in different folds. Moreover, LSOCV

in the model selection phase should lead to more robust

models. When each subject is one-fold, LSOCV becomes

Leave-One-Subject-Out Cross-Validation (LOSOCV).

VOLUME 8, 2020 133985



D. Gholamiangonabadi et al.: Deep Neural Networks for Human Activity Recognition With Wearable Sensors

TABLE 1. Preprocessing methods for each scenario.

Consequently, in this paper LOSOCV is used because it

gives more realistic estimates of the model performance on

new subjects.

IV. METHODOLOGY

This study explores the impact of machine learning model

and data preprocessing on the system’s ability to generalize

on new subjects. The focus is on deep learning models as

they have shown great success in recent years [1]. As the

sliding window technique is commonly used for HAR due

to its ability to capture temporal behaviours, impact of this

technique as well as the effect of the sliding window size

is examined. Additionally, vector magnitude preprocessing

is considered as it reduces the number of features and, thus,

simplifies the model.

Consequently, this section first discusses data preprocess-

ing including normalization, vector magnitude, and sliding

windows technique, and then describes Feed Froward Neu-

ral Networks and Convolutional Neural Networks for HAR.

Finally, the evaluation methodology is described.

A. DATA PREPROCESSING

This section explains data preprocessing in preparation for

neural network models. Two types of preprocessing are con-

sidered: sliding window and vector magnitude; thus, four

different scenarios are designed, each one involving different

preprocessing steps. Normalization is applied first for all

scenarios, before any other processing. Table 1 shows the

preprocessing steps used for each scenario:

• Scenario-OR: The original features are used directly

without any further preprocessing.

• Scenario-MG: Features are created with the vector mag-

nitude method.

• Scenario-OR+W: The sliding window technique is used

directly on original features.

• Scenario-MG+W: Features are first created with the

vector magnitude method and then, the sliding window

technique is applied.

1) NORMALIZATION

Normalization is applied in order to bring all the features into

a similar range and avoid dominance of large-scale features.

There are different methods for normalization such as Min-

Max and Z-score [39], [40]. In this paper, a Min-Max nor-

malization, which is a common approach in HAR [41], [42],

is used. The Min-Max normalization scales the numbers in

a dataset to [0,1] range, which can significantly improve

the accuracy of the subsequent machine learning models.

The transformation function is presented as equation (2):

X∗

new =

(

XOld − Xmin

Xmax − Xmin

)

(2)

where XOld , Xmax , Xmin are the original, maximum, and min-

imum values of the considered feature, respectively. X∗
new is

the new normalized value of XOld ; it has values in range [0,1].

For normalization, the data is first split into train and test

based on the subjects. Minimum and maximum values for the

train part are extracted and used for normalizing both, train

and test sets. This way, we ensure that the data from the test

set is not used in the normalization process.

2) FEATURE CREATION WITH VECTOR

MAGNITUDE METHOD

The data was gathered from three different wearable sensors,

namely, acceleration, gyroscope, and magnetometer. These

sensors were placed on the chest, left-ankle, and right-lower-

arm and attached by using elastic straps. We calculate the

output magnitude feature for each sensor. For instance, for

acceleration from the chest sensor (Ac), we have:

With sensor-based activity recognition, data are gathered

from sensors such as accelerometer, gyroscope, and magne-

tometer placed on different body parts including ankle, lower

arm, and chest. These sensors provide three-dimensional

readings corresponding to three axes:

[Ac = (Ax ,Ay,Az)] (3)

The vector magnitude method takes advantage of this

multi-dimensional aspect of sensor readings, and for each

sensor creates a single feature representing vector magnitude:

Created Feature 1 : Ac = A2x + A2y + A2z (4)

Therefore, with vector magnitude method, equation (4),

each sensor is represented with one feature reducing the

number of features in 3:1 ratio.

3) SLIDING WINDOWS APPROACH

Data from HAR sensors are time series data, and, therefore,

there is a dependency between the prior and current values.

To capture these temporal dependencies, a well-designed

feature generation mechanism is required; in HAR tasks,

the sliding window technique illustrated in 3 is commonly

applied for this purpose. In the figure, R1, R2, and so on are

readings, each one consisting of several features obtained at

the same time step. If the sliding window size is w, the first

sample consists of first w readings. Next, the windows slides

for s steps, and the next sample consists of readings s + 1 to

s+w+ 1. The Figure 3 illustrates scenario with w = 10 and

s = 1.

B. DEEP LEARNING MODELS

This section describes different deep learning architectures

for HAR used in this study. The two main categories of

networks are considered: FFNN and CNN. For each category,
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FIGURE 3. Sliding windows approach: Window size = 10 and step = 1.

FIGURE 4. FFNN-4H for preprocessing scenario-MG+W and window
w = 10.

different topologies are examined in order to determine the

impact of architectures on activity recognition accuracy on

new subjects.

1) FEED FORWARD NEURAL NETWORK (FFNN)

To compare different architectures, two FFNN variants are

considered. Specifically, we are interested to find out how

the network size impacts accuracy. In all architectures the

number of inputs equals the number of features and the

number of outputs corresponds to the number of classes.

The two architectures are as follows:
• FFNN-4H: This FFNN architecture consists of 4 hidden

layers, with 128 neurons in each hidden layer. Figure 4

shows the architecture with the sliding windows w = 10

and preprocessing Scenario-MG+W; thus, with 7 fea-

tures, the input is 7*10.

• FFNN-6H: This FFNN architecture consists of 6 hidden

layers. The first four hidden layers have 128 neurons

each, and layers 5 and 6 have 64 and 32 neurons, respec-

tively.
Each FFNN is used with each of the four preprocessing

scenarios, and, for sliding window scenarios, different sliding

window sizes have been evaluated.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)

As with FFNN, two CNN architectures have been con-

sidered. For both, the input is a matrix of dimension

Number Of Features×Window Size. As with FFNN, the out-

puts correspond to the classes. The two CNN architectures

are:
• CNN-1C: This CNN consists of one convolution layer

with 64 feature maps, one max-pooling layer (32), and

one fully connected layer with 32 neurons.

• CNN-2C: This CNN includes two convolution layers,

each with 64 feature maps, two max-pooling layers

(32, 32), and two fully connected layers with 64 and

32 neurons, respectively. As illustrated in Figure 5,

the sequence of layers are: Convolution, Max-pooling,

Convolution, Max-pooling, followed by the two fully

connected layers.
Both, CNN-1C and CNN-2C, can be used with one dimen-

sional kernels (1D); we refer to them as CNN-1C-1D and

CNN-2C-1D. In these methods, the kernel moves in one

direction.

Moreover, when siding window technique is used in

the preprocessing step, the CNN input is two-dimensional,

and, therefore, two dimensional kernels (2D) can be used.

We refer to the two CNN with 2D kernel as CNN-1C-2D and

CNN-2C-2D. In these methods, the kernel moves in both

directions, up and down.

The four combinations can be summarized as:
• CNN-1C-1D: CNN-1C architecture with 1D kernels.

This can be used for all preprocessing scenarios.

• CNN-1C-2D: CNN-1C architecture with 2D kernels.

This can be used only for scenarios with the sliding win-

dow: OR+WandMG+W. It cannot be used without the

sliding window (OR andMG) because in those scenarios

input data has only one dimension.

• CNN-2C-1D: CNN-2C architecture with 1D kernels.

This can be used for all scenarios.

• CNN-2C-2D: CNN-2C architecture with 2D kernels.

As CNN-1C-2D, this can be used only for the sliding

window scenarios OR+W and MG+W.

C. EVALUATION

As discussed in Section III, traditional approaches for evalu-

ating machine learningmodels, hold out validation and k-fold

cross validation, assess the model on new samples, but sam-

ples from the same subject are in both, training and test sets.

As this study is concerned with accuracy of the HAR models

on new subjects, Leave-One-Subject-Out Cross-Validation

(LOSOCV) is used. In LOSOCV, one subject is reserved for

the evaluation and the model is trained on remaining subjects.

The process is repeated each time with a different subject

reserved for the evaluation and results are averaged over all

folds (subjects).

Similar to LOSOCV, Leave-Subject(s)-Out Hold Out

(LSOHO), also evaluates models on new subjects, but

LSOHO error estimates are affected by the selection of the

subjects for the test set. As it will be illustrated in exper-

iments, LSOHO largely varies across the subjects, which

demonstrates the necessity of LOSOCV for the evaluation.

To calculate the performance metrics of LOSOCV, a con-

fusion matrix is used. A confusion matrix consists of True

Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN). TP and TN determine the number of

samples correctly identified as positive and negative, respec-

tively. FP and FN refer to the number of samples incorrectly

identified as positive and negative, respectively.

Accuracy evaluates the proportion of the samples cor-

rectly classified. It is a well-suited metric for the clas-

sification evaluation when the dataset is balanced or

VOLUME 8, 2020 133987



D. Gholamiangonabadi et al.: Deep Neural Networks for Human Activity Recognition With Wearable Sensors

FIGURE 5. CNN-2C architecture used.

approximately balanced. Consequently, in addition to accu-

racy, this study uses precision, recall, and F1 score. These

metrics are calculated as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

F1 Score = 2 ∗
Precision ∗ Recall

Precision+ Recall
(8)

Precision quantifies the number of positive class predic-

tions that actually belong to the positive class. Recall quan-

tifies the number of positive class predictions made out of

all positive examples in the dataset. Finally, F1 score is the

harmonic mean of the precision and recall.

V. DATA AND RESULTS

This section first introduces the dataset and experiments and

the presents the results followed by the discussion of the

findings are.

A. DATA AND EXPERIMENTS

1) DATA

The experiments were carried out with the MHEALTH

(Mobile Health) dataset. This dataset includes recordings

of body motions and vital signs for ten individuals while

preforming various activities. Recorded movement data is

accompanied with twelve activity labels such as ‘Standing

still,’ ‘Sitting and relaxing,’ ‘Lying down,’ ‘Walking,’ and

so on. Accelerometer, gyroscope, and magnetometer sensors

on subject’s chest, right wrist, and left ankle measured the

movement experienced by various body parts, namely, accel-

eration, rate of turn, and magnetic field orientation. An addi-

tional sensor on the chest recorded ECG signals which can be

used for heart monitoring, but these data are not used here for

HAR as they do not directly relate to human motions.

At each reading time step, each of the three sensors,

accelerometer, gyroscope and magnetometer, records three

values corresponding to three axes. All three sensors are

mounted on an ankle and an arm, and only an accelerometer

TABLE 2. Number of input features for each scenario.

is mounted on the chest; this makes a total of 21 readings for

each time step.

2) EXPERIMENTS

As discussed in Section IV, four scenarios (OR,MG, OR+W,

MG+W) and six models (FFNN-4H, FFNN-6H, CNN-1C-

1D, CNN-1C-2D, CNN-2C-1D, CNN-2C-2D) are consid-

ered. The number of input features for each of the considered

scenarios is illustrated in Table 2. Columns ’Number of Initial

Features’ and ’Number of Input Features for ML’ indicates

the number of features before and after applying the sliding a

window technique.

As can be seen from the table, with the two scenarios that

include the sliding window technique, OR+W and MG+W,

different window sizes are considered. For Scenario-OR+W,

considered window sizes are 5, 10, and 15 and for Scenario-

MG+W, window sizes are 10, 20, and 50. The sliding win-

dow sizes are larger for Scenario-MG+W than for OR+W

because in MG+W there are only 7 features in contrast to

21 in OR+W. It is expected that fewer features will need

larger windows to adequately capture movement patterns.

Considering different window sizes results in eight sce-

narios. The six scenarios with the sliding window (OR+W

and MG+W with three different window sizes) are applied

with each of the six DL models, while the non-window sce-

narios (OR and MG) are applied with only four DL models

as they are not applicable for CNNs with 2D as discussed

in subsection IV-B2. This results in the total of 6 × 6 +

2 × 4 = 44 experiments.

All experiments were implemented in Python. For Deep

Neural Networks, the ’scikit-learn’ library was used [43].
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TABLE 3. Accuracy for different scenarios and models.

The experiments were executed on a computer with Ubuntu

OS, AMDRyzen 4.20 GHz processor, 128 GB DIMMRAM,

and four NVIDIA GeForce RTX 2080 Ti 11GB graph-

ics cards. Training the proposed DNNs is computationally

expensive; hence, GPU acceleration was utilized. Neverthe-

less, once the model is trained, it does not need significant

resources, and CPU processing is adequate.

B. RESULTS

The results were assessed based on designed scenarios, meth-

ods, and subjects. Finally, we compare the results for two

validation approaches, namely, 10-Fold Cross-Validation and

LOSOCV.

1) ACCURACY FOR DL MODELS AND SCENARIOS

This subsection compares the results obtained by different

models for each of the scenarios using LOSOCV. Table 3

shows the average accuracy for all cross-validation folds.

The accuracy of the best model for each of the four main

scenarios (OR, MG, OR+W, MG+W) is indicated with bold

values in the table. Note that the numbers here aremuch lower

than in many studies [33]; however, this is not caused by

the model itself, but by the evaluation approach as it will be

demonstrated later in this section.

For scenarios OR andMG, the highest accuracy is obtained

with models CNN-1C-1D and CNN-2C-1D, respectively. For

those two scenarios, the table does not present results for

CNN-1C-2D and CNN-2C-2D because 2D convolution can

only be used when window sliding technique is used, as dis-

cussed in Subsection IV-B2.

For Scenario-OR+W, the best result, 80.7% accuracy, has

been obtained by the CNN-1C-2D model with sliding win-

dow size 5. From the table, it can be observed that as the

window size increases from 5 to 10 and 15, the accuracy of

each model decreases.

For Scenario-MG+W, the best model was CNN-2C-1D,

with 85.1% accuracy. This value was the highest accuracy

for all scenarios and all models; thus, CNN-2C-1D with

vector magnitude and the sliding window size 50 was the best

approach. In Scenario-MG+W, as the window size increases

from 20 to 50, the accuracy improves for all models; however,

the same pattern does not hold when window size increases

from 10 to 20.

CNN-2C-2D results are superior to CNN-2C-1D results

for the Scenario-OR+W; however, for Scenario-MG+W,

the opposite pattern is observed. Moreover, in terms of CNN

architecture comparison (1C vs 2C), for Scenario-OR+W,

CNN-1C (1D or 2D) obtained better results than CNN-2C

(1D or 2D). For Scenario-MG+W, CNN-2C outper-

formed CNN-1C sometimes, but not all window sizes and

models.

As expected, adding the sliding window increases accu-

racy: comparing scenarios OR with OR+W and scenarios

MG with MG+W, it can be observed that for all models

adding the sliding window increases accuracy.

This subsection compared results based not only on accu-

racy but also on other metrics including precision, recall, and

F1 Score. Regardless of the metric used, the best model for

each scenario remained the same.

2) PERFORMANCE ANALYSIS FOR DIFFERENT SUBJECTS

Table 3 identifies the best model for each scenario, and

Table 4 analyzes the performance of the best model on indi-

vidual subjects. The first column includes the scenario and

the best model for that scenario. Rows for subjects 1 to

10 represent the folds of the subject-based cross validation:

for example, for subject 1 row, the model is trained using

subjects 2-10 and evaluated on subject 1. It can be observed

that the accuracy of the same model varies greatly among

subjects illustrating the need to use LOSOCV as opposed to

Leave-Subject(s)-Out Hold Out (LSOHO) in order to cap-

ture variability among subjects. Also, the standard deviation

is different across models, which means that some mod-

els are more consistent than others. This shows that if a

single generic model will be used for all users, the stan-

dard deviation should be considered when selecting the

model.

In terms of accuracy, for Scenario-OR with CNN-1C-1D

model, subjects 4, 3, and 9 have the highest and subjects 6, 8,

and 1 have the lowest accuracy. For Scenario-OR+W with

CNN-1C-2D model, subjects 3, 2, and 5 and 10 have the

highest and subjects 6, 1, and 7 have the lowest accuracy. The

patterns for scenarios MG and MG+W are similar; however,

the sequence of subjects is different. For the Scenario-MG,

the best results are for subjects 10, 3, and 9, and for Scenario-

MG+W, the order is for 9, 3, and 10.

It can be observed that subject 3 appears between the best

results for all models and scenarios. Subjects 9 and 10 are

between the best results for three out of four scenarios. Sub-

ject 6 is between the worst performing for all models and sce-

narios, while subjects 8 and 2 are also often among the worst

(three out of four and two out of four scenarios, respectively).

The similar subjects appearing among the best/worst in terms

of accuracy, irrelevant of the DL model, could be caused by

the similarity/dissimilarity of the target (validation) subject

to those present in the training set. For example, subject

3 being always among the best could be caused by its high

similarity to other subject(s). In contrast, subject 6 may be
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TABLE 4. Subject-level accuracy metrics for each scenario.

more different than the others, therefore resulting in lower

accuracy.

Comparing scenarios MG and MG+W, we can observe

that for every single subject the Scenario-MG+W works

better than Scenario-MG. The same pattern occurs for sce-

narios OR and OR+W for all the subjects except subject 4.

This indicates that even on the subject level, adding sliding

window in the preprocessing improves the accuracy.

In terms of recall, subject 10 accuracy appears as one of the

best results and subjects 3 and 9 are between the best results

in three out of four scenarios. Subject 8 exhibits the lowest

accuracy for all scenarios.

In terms of precision, subjects 3, 4, 9, and 10 show higher

accuracy than others while subjects 8 and 6 appear the most

often among the lowest accuracy group. Finally, considering

F1 score, subject 3 appears among the best performers for

all scenarios and subject 8 consistently belongs to the low

accuracy group.

FIGURE 6. Subject-level best method: The number of subjects for which
the model is the best.

For all performance metrics, accuracy, precision, recall,

and F1 score, subject 3 is among the group with high accu-

racy for all scenarios. Subjects 6 and 8 appear often in low

accuracy group for all metrics. As already mentioned when

discussing accuracy, metrics variability among subjects is the

result of different levels of similarity.

From table 4, it can be observed that the best model

for each subject is not the same; for example, for subject

1, the best model is CNN-2C-1D, and for subject 2 it is

CNN-1C-2D. Figure 6 shows the number of subjects for

which the model is the best. Considering the accuracy met-

ric, CNN-1C-2D was the best model for 4 subjects and

CNN-2C-1D for 3 subjects. FFNN-6Hwas not the best model

for any subjects; therefore, the figure does not show the

bar for this model. Although the overall best model was

CNN-2C-1D as shown in Table 4, CNN-1C-2D was better

for more subjects as illustrated in Figure 6.

3) THE EFFECT OF THE WINDOW SIZE ON ACCURACY

The window size impacts the accuracy of the DL model as

can be seen from Table 4. Here, we further investigate the

impact of window size. Figure 7 shows the average accuracy

for each model for Scenario-OR+W. It can be observed that

as the window size increases from 5 to 10, the accuracy

for all methods except FFNN-6H decreases. CNN-1C-2D

experiences significant decline from 80.7% to 67% while

FFNN-6H accuracy increases from 70.3% to 74.5%. The

opposite pattern happens when the window size is increased

from 10 to 15: for all methods except FFNN-6H, the accuracy

increases slightly. Nevertheless, the methods’ accuracy with

sliding window 15 is still lower than with sliding window

5 for all methods but FFNN-6H.

While Figure 7 shows the accuracy for Scenario-OR+W,

Figure 8 does the same for Scenario-MG+W. As the window

size increases from 10 to 20, the accuracy for FFNN-4H,

CNN-2C-1D, and CNN-2C-2D decreases and for FNN-6H,

CNN-1C-1D, and CNN-1C-2D increases. As the window

further increases to 50, the accuracy for all models increases.

It is interesting to note that with the increase of the window

size, the differences in accuracy among models reduces. For

example, at window size (10), the best and worst accuracy

133990 VOLUME 8, 2020



D. Gholamiangonabadi et al.: Deep Neural Networks for Human Activity Recognition With Wearable Sensors

FIGURE 7. The impact of the window size on accuracy: Scenario-OR+W.

FIGURE 8. The impact of the window size on accuracy: Scenario-MG+W.

FIGURE 9. Comparison of scenarios OR and MG.

are 82.6% (CNN-2C-1D) and 73.7% (CNN-1C-2D), respec-

tively. But for window size (50), the best and worst accu-

racy are 85.1% (CNN-2C-1D) and 80.9% (CNN-1C-2D),

respectively.

4) PREPROCESSING IMPACT ON ACCURACY

Here preprocessing is investigated with respect to how it

affects accuracy. First, accuracy of scenarios OR and MG

is compared in Figure 9. It can be observed that as fea-

tures are reduced from 21 (Scenario-OR) to 7 (Scenario-

MG), the accuracy of more complex models, FFNN-6H and

CNN-2C-1D, increaseswhile the accuracy of simplermodels,

FFNN-4H and CNN-1C-1D, decreases.

FIGURE 10. Comparison of scenarios OR and OR+W.

FIGURE 11. Comparison of scenarios MG and MG+W.

Next, Figure 10 shows the comparison between scenarios

OR and OR+W based on the accuracy. Because 2D convolu-

tion is not applicable for Scenario-OR, the figure does not

include 2D models: CNN-1C-2D and CNN-2C-2D. It can

be seen that for all models the accuracy increases when the

sliding window technique is used. The difference between the

accuracy of Scenario-OR and Scenario-OR+Wwith window

size 5 is more than ten percent, which illustrates that even

small window size has a significant impact on the accuracy.

Scenarios MG and MG+W are compared in Figure 11.

As for Scenario-MG, 2D convolution is not applicable, 2D

models are not included in this figure. Again, the accuracy

increases when the window sliding technique is used. For

all window sizes, the accuracy of MG+W is more than ten

percent higher than the accuracy of MG, and for window

size 50, the MG+W accuracy is 20% higher than the MG

accuracy.

5) COMPARISON OF K-FOLD CROSS-VALIDATION

AND LOSOCV

As already noted, evaluation with LOSOCV exhibits lower

accuracy than the traditional k-fold cross-validation (CV)
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TABLE 5. Confusion matrix for 10-fold cross-validation and LOSOCV.

where data points from the same subject can be in both

training and test sets. However, LOSOCV gives the estimate

of error for the new subject while k-fold CV gives the estimate

for the subjects present in the training set.

To examine the impact of the evaluation on the perfor-

mance metrics, we compare the k-fold CV and LOSOCV

using the same model and the same preprocessing.

For LOSOCV, the overall best model as shown in Table 3

was CNN-2C-1D with the Scenario-MG+W, window

size = 50; thus, this model is used for comparison with

a k-fold CV. Specifically, a 10-fold CV is considered. For

the 10-fold CV, after data preprocessing including vector

magnitude and the sliding window technique, the data are

split randomly into 10 parts. As the split is random, same

subject data may appear in training and test sets. One part is

reserved for testing while remaining parts are used to train the

model. The process is repeated for each fold: the performance

metrics for each fold are shown in Table 6. The average accu-

racy with a 10-fold CV was 99.85%; however, the accuracy

of the same model with LOSOCV was 85.1% (Table 3).

This demonstrates the necessity of using LOSOCV when

the objective is to estimate accuracy of the model for new

subjects.

To further compare the traditional cross-validation (10-fold

CV) with LOSOCV, Table 5 shows the aggregation of 10 con-

fusion matrices from 10 folds for the two approaches. The

accuracy corresponding to this table for a 10-fold CV is

99.85% (the average accuracy in table 6), and for LOSOCV,

it is 85.1% (Table 3). Consequently, misclassification for 10-

fold CV is very low, for most classes zero or close to zero

TABLE 6. Performance metrics for each fold of the 10-fold
cross-validation.

while for LOSOCV, the number of misclassified samples for

some activities (classes) is significantly higher. This higher

LOSOCV misclassification is caused by differences among

subjects in the train and test datasets. Still, for some pairs

of classes, LOSOCV misclassification is zero, demonstrat-

ing that distinction between those classes generalizes well

for new subjects. As the overall accuracy with LOSOCV is

lower than with traditional 10-fold CV, there is a need to

improve performance for new subjects and/or develop HAR

personalization.

With the traditional k-fold CV, the CNN-2C-1D model

with Scenario-MG+W, window size = 50, demonstrated

performance metrics (accuracy, precision, recall, F1 Score,

and confusion matrix) comparable to those reported in lit-

erature [36] ; however, these metrics greatly differ from

LOSOCV which estimates the performance of the model for

new subjects. On the other hand, LOSOCV estimates the
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performance of the model for new subjects and, therefore,

should be used for real-world applications as it is not possible

to include each potential user data in the training set.

C. DISCUSSION

The main objective of this work is to evaluate the impact

of model selection and preprocessing on the ability of

the ML model to classify activities for new users. Conse-

quently, LOSOCV was used for the evaluation. Comparison

of the results obtained with LOSOCV (Table 3) and the

10-fold cross-validation (Table 6) for the same model shows

that the two lead to very different estimates. The accuracy

for the CNN-2C-1D model with Scenario-MG+W (w =

50) was 99.85% when evaluated with traditional 10-fold

cross-validation and only 85.1% with LOSOCV evaluation.

As LOSOCV ensures that different subjects are used for

training and testing, LOSOCV estimates are closer to what

can be expected for new users. Such significant differences

also indicate the need to develop a new model capable of

achieving higher accuracy for new users. A possible way of

achieving this is by personalizing the model and exploring

similarities among users [1].

As expected, using the sliding window technique

increased the accuracy of each model, as illustrated in

Figures 10 and 11. However, increasing the window size

does not necessary lead to increase in accuracy. As shown

in Figure 10, a larger window size may result in accuracy

decrease.

When the number of features is reduced, such as in the case

of vector magnitude shown in Figure 9 where the number of

features is reduced, a more complex model is needed in order

to capture the patterns. It can be observed that reducing fea-

tures from 21 (Scenario-OR) to 7 (Scenario-MG), the accu-

racy of the more complex models (FFNN-6H and CNN-2C)

increases while the accuracy of more simple models

(FFNN-4H and CNN-1C) reduces.

Overall, the experiments demonstrated the importance of

using LOSOCV for estimating the performance of an ML

model for new users and the risks of accuracy overestimates

with traditional k-fold cross-validation. CNN with two con-

volutional layers and 1D filters archived the highest accuracy.

Preprocessing with vector magnitude and sliding window can

improve the performance (Table 3), but selecting the window

size remains a challenge as it is dependent on the model

(Figures 10 and 11). AsCNNs are sensitive to hyperparameter

choice, further hyperparameter tuning has the potential to

improve accuracy.

VI. CONCLUSION

Human activity recognition is becoming a big trend in some

industries, but it is a challenging research area. Deep learning

and pre-processing methods have been successfully used in

recognizing patterns.

This paper presented four different scenarios designed

to improve accuracy for human activity recognition.

Results show that LOSOCV is a rigid criterion for evaluation

models in comparison to Cross-Validation or Hold-Out

approaches. Moreover, the sliding window technique can

improve performance criteria; however, finding the best win-

dow size is a crucial issue. Using only the vector magni-

tude method cannot improve the performance, but using a

hybrid of vector magnitude and sliding window approaches

can improve results considerably. In the MHEATH dataset,

Scenario-MG+W (w = 50) via CNN-2C-1D, we could reach

85.1% accuracy with LOSOCV. On the other hand, the accu-

racy for the same scenario andmethodwith the 10 Fold Cross-

Validation was 99.85%, which means that it is necessary to

work on the design of architectures of methods and tune them

based on LOSOCV.

Training CNNs is computationally expensive and applying

LOSOCV makes the training even more time consuming as

it requires repetition of the process with different subjects in

the test set. Nevertheless, LOSOCV provides more realistic

estimates of the HAR accuracy for new users. The vector

magnitude approach also has a disadvantage of eliminating

the sign of the signal.

Future work will evaluate the presented approaches with

different data sets and explore improving accuracy of HAR

for new users through personalization.
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