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Deep learning has become a powerful paradigm to analyze the binding sites of regulatory factors including RNA-binding

proteins (RBPs), owing to its strength to learn complex features from possibly multiple sources of raw data. However, the

interpretability of these models, which is crucial to improve our understanding of RBP binding preferences and functions,

has not yet been investigated in significant detail. We have designed a multitask and multimodal deep neural network for

characterizing in vivo RBP targets. The model incorporates not only the sequence but also the region type of the binding

sites as input, which helps the model to boost the prediction performance. To interpret the model, we quantified the con-

tribution of the input features to the predictive score of each RBP. Learning across multiple RBPs at once, we are able to avoid

experimental biases and to identify the RNA sequence motifs and transcript context patterns that are the most important

for the predictions of each individual RBP. Our findings are consistent with known motifs and binding behaviors and can

provide new insights about the regulatory functions of RBPs.

[Supplemental material is available for this article.]

RNA-binding proteins (RBPs) play important roles in all aspects of

post-transcriptional gene regulation including splicing, polyade-

nylation, transport, translation, and degradation of RNA tran-

scripts (Gerstberger et al. 2014). It is therefore not surprising

that misregulation of RBPs as well as mutations in their protein

sequence and/or their RNA targets can result in diseases including

cancer (Cooper et al. 2009; Siddiqui and Borden 2012). Hence, it

is essential to identify RBP binding preferences to understand

their function and reveal their disease promoting mechanisms.

Although we are reaching a consensus annotation of all human

RBPs (Ascano et al. 2012), and recent large-scale efforts have gen-

erated data on the targets of many RBPs (Van Nostrand et al.

2016), the binding preferences of comparatively few of these are

well determined (Wheeler et al. 2018).

Cross-linking and immunoprecipitation followed by se-

quencing (CLIP-seq) protocols have made it possible to character-

ize transcriptome-wide binding sites of RBPs (Hafner et al. 2010;

König et al. 2010; Van Nostrand et al. 2016). Despite providing a

valuable resource, CLIP data need to be regarded with caution.

Compared to alternatives such as RNA-binding and immunopre-

cipitation (RIP), CLIP results in significantly larger numbers of tar-

get sites, indicating possible cross-linking of low-specificity events

or that only fewmRNA copies of a given gene are actually bound in

the same cell (Mukherjee et al. 2011; Plass et al. 2017). On the oth-

er hand, CLIP-seq is sensitive to expression levels, meaning that

binding events on lowly expressed transcripts may not be detect-

ed. Finally, CLIP protocols are variable, and aspects of the protocol

can introduce significant biases, most notably owing to the type

and concentration of RNase that is used (Kishore et al. 2011). To

derive binding sites from CLIP-seq reads, several specialized peak

detection methods have been developed to capture high-fidelity

RBP binding sites from different CLIP protocols (Corcoran et al.

2011).

Motif finding approaches can extract the dominant shared se-

quence/structure motifs that characterize the binding sites, rang-

ing from those based on sequence only (Georgiev et al. 2010;

Bailey 2011) to more recent ones that also take aspects of RNA

structure into account (Kazan et al. 2010; Heller et al. 2017;

Munteanu et al. 2018). These approaches aim at deriving short, op-

timal continuous sequence/structure motifs based on, for exam-

ple, an information theoretic objective function. Alternatively,

binding sites can also be analyzed by classification approaches,

for instance, to distinguish between bound and unbound sites.

Models with this aim use large numbers of binding sites (and pos-

sibly their flanking regions), typically for one RBP in one cell type

at a time. The trainedmodel can then be used to revealmissing tar-

gets of the RBP in the specific cell type, or to identify putative tar-

get sites that are bound in other cell types without available in vivo

binding data (Maticzka et al. 2014; Stražar et al. 2016). However,

interpreting these classifiers, for example, to derive consensusmo-

tifs as in motif finding, is usually not straightforward.

The rise of deep learninghas spurred the development of deep

neural networks (DNNs) to predict TF or RBP binding sites.

Alipanahi et al. 2015 first showed that convolutional neural net-

works (CNNs) can learn TF/RBP binding sites with high accuracy

compared to state-of-the-art methods, using only the DNA/RNA

sequences as input. Since then, several convolutional and recur-

rent neural network models for genomics data have improved pre-

diction accuracy (Quang and Xie 2016; Ben-Bassat et al. 2018). For

example, iDeep (Pan and Shen 2017) leverages a multimodal DNN

to integrate different sources of data to infer RBP binding sites. A

study concurrent to ours additionally included relative distances

of binding sites to various positional landmarks such as splice sites,

using spline transformations (Avsec et al. 2018).

Corresponding author: uwe.ohler@mdc-berlin.de
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.247494.118.

© 2020 Ghanbari and Ohler This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue publi-
cation date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six
months, it is available under a Creative Commons License (Attribution-
NonCommercial 4.0 International), as described at http://creativecommons.
org/licenses/by-nc/4.0/.

Method

214 Genome Research 30:214–226 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/20; www.genome.org
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

mailto:uwe.ohler@mdc-berlin.de
http://www.genome.org/cgi/doi/10.1101/gr.247494.118
http://www.genome.org/cgi/doi/10.1101/gr.247494.118
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


Although these deep networks

show great promise to push the accuracy

of predictions, it is generally unclear

what the models base these predictions

on. Using CNNs with sequence as input

makes it possible to inspect the kernels

or convolutional filters in the first DNN

layers. One can extract the weights of

these kernels or aggregate input subse-

quences that maximally activate the

kernels and visualize them as position

weight matrices (PWMs) (Alipanahi et

al. 2015; Pan and Shen 2017; Avsec

et al. 2018). These patterns give general

insight about low-level representations

that the model has learned, but they do

not provide information about the deci-

sion itself, especially for DNNs withmul-

tiple layers. This challenging problem

of explaining predictions has become

an active field of study, and severalmeth-

ods have been developed over the last

couple of years (Lanchantin et al. 2017;

Shrikumar et al. 2017; Sundararajan

et al. 2017).

In this work, we propose amultitask

and multimodal DNN model, Deep RBP binding preference

(DeepRiPe), set up with the aim to characterize RBP binding pref-

erences. DeepRiPe uses a modular structure to learn informative

features from DNA sequence and transcript region types, because

many RBPs have preferences for binding to specific regions of a

transcript. We frame RBP site prediction as multitask learning

problem, that is, predicting binding sites for several RBPs simulta-

neously. This enables the model to use shared information among

tasks and helps it to focus on the distinctive features of each RBP.

In turn, because several RBPsmay possess similar binding patterns,

sharing information among their predictors may help the model

when training data are limited. We evaluate DeepRiPe on a large

compendium of PAR-CLIP and eCLIP data sets and use integrated

gradients (IG) to study the impact of different model choices on

the interpretation of the model (Sundararajan et al. 2017).

Finally, we quantify the potential of DeepRiPe to study the impact

of sequence variants on binding events.

Results

DeepRiPe

DeepRiPe consists of a sequencemodule that extracts features from

the RNA sequence and a regionmodule that extracts features from

transcript locations. The features of these modules are then

merged and fed to a multitask module to predict the binding sites

ofmultiple RBPs simultaneously. Figure 1 shows a simplified archi-

tecture of the model. The sequence and region modules both con-

sist of convolutional neural networks (CNNs) (Goodfellow et al.

2016). CNNs use a weight-sharing strategy, and they are highly

successful to locate motifs, for example, in a sequence, indepen-

dent of their position within the sequence. The multitask module

contains a CNN or recurrent neural network (RNN) (Goodfellow

et al. 2016). RNNs have a “memory” that allows information to

persist so that they can learn dependencies in sequential data

(for more details about the model structure, see Methods).

Initial model development and testing made use of extensive

PAR-CLIP data sets for 59 RBPs from different publications, which

were profiled with the same flag-tagged construct in the HEK293

cell line. These libraries were compiled, quality controlled, and

processed with the same pipeline, including PARalyzer (Corcoran

et al. 2011) for peak calling and the human GRCh37/hg19 release

as reference, in a recent study (Mukherjee et al. 2019). To prepare

the input data, we obtained 50-bp nonoverlapping genome bins

and assigned a label vector with k entries corresponding to all

RBPs of interest (Methods). The input for the sequence module is

the one-hot encoded RNA sequence froma 150-bpwindow; the in-

put for the region module is the vector of one-hot encoded region

features from a 250-bp window, both centered on each 50-bp bin.

Whereas sequence features denote the nucleotide (A,C,G,U), re-

gion features denote each position within mRNA as being in a 3′

UTR, 5′ UTR, CDS, or intron region and otherwise N, meaning

no information. The flanking regions can give insight about the

context of binding sites, and by using single-nucleotide resolution,

we can capturewhether binding sites occur at boundaries of region

types (e.g., exon/intron junctions, cleavage sites) near cross-linked

sites. To account for the drastic differences in the number of called

peaks (ranging from approximately 1000 to 1,000,000 sites)

(Supplemental Fig. S1A), DeepRiPe consists of three networks

with identical architectures (Fig. 1), each of which is trained on a

subset of CLIP data sets with comparable binding site numbers,

which we refer to model-high, model-mid, and model-low

(Methods). We used 20% and 10% of the bins for validation and

test of the model, respectively, and the rest of the bins for training

the model. All downstream analyses in this study are based on the

independent test data.

Performance of DeepRiPe

Themain goal of our study is to establish interpretable classifiers as

a first step towardmodels that can quantify the impact of sequence

variation on post-transcriptional gene regulation. To start, we

Figure 1. A simplified graphic illustration of the model. The model consists of a sequence module that
extracts features from the RNA sequence and a region module that extracts features from genomic loca-
tions. The features of these modules are then merged and fed to a multitask module to predict the bind-
ing sites of multiple RBPs simultaneously.
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established the baseline performance of DeepRiPe using receiver-

operating characteristics (ROC) and precision-recall (PR) curves.

Figure 2A shows the ROC and PR curves, as well as the correspond-

ing area under the ROC (AUROC) and average precision (AP) val-

ues, for a subset of 15 RBPs that we investigate in more detail

below. The AUROC and AP values for all RBPs are provided in

Supplemental Table S1. Although all AUROC values are above

0.7, the AP scores show a wide range. The detailed distribution of

prediction scores for three RBPs shows that cases with high

AUROC and AP scores (MBNL1 and QKI) show a clear difference

between positive and negative samples, whereas there is little dis-

crimination between positives and negatives for RBPs with lower

scores (CPSF) (Fig. 2B).

Variation in classification performance can result from the

different quality of individual CLIP data sets, which may on the

one hand miss genuine binding sites (false negatives), and may

on the other hand contain substantial amounts of false positive,

low-affinity cross-linked sites. Furthermore, RBPs may belong to

complexes in which not all proteins directly bind to RNA in a se-

quence-specific manner. To investigate this, we ranked candidate

binding sites of each RBP (positive CLIP samples of test data) based

on the prediction score and extracted the 6-mers from the bottom

10% as well as the top 10% of the sites (Fig. 2C). Although the top

6-mers in the high-ranking sites are in linewith the corresponding

RBP motif(s), this is not necessarily the case for low ranking sites,

especially for RBPs with low scores. As an example, the high-rank-

ing binding sites for CPSF6 (AP of 0.26) contain mostly AAUAAA

and UGUA elements, that is, the polyadenylation signal and up-

stream motif recognized by the CFIm complex that CPSF6 is part

of (Martin et al. 2012). Low ranking CPSF6 sites are enriched in

U-rich elements that have been previously reported as CLIP arti-

facts (Krakau et al. 2017). This indicates that the RBP data used

in our study vary in terms of the fraction of sequence-specific sites

in them, indicating a potentially high rate of false positives in

some of the (PAR-)CLIP data sets or, alternatively, specification

of sites by features not accounted for in our DNNs. The aim of

our study is therefore not to achieve the best performance accord-

ing to some metric; simply striving for classification performance

can be highly misleading if the data are subject to considerable

biases.

We also observed that using GRU instead of CNN for themul-

titask module of DeepRiPe does not significantly improve the per-

formance scores (Supplemental Fig. S2), most likely because of the

lack of data for training GRU with more parameters compared to

CNN.

Interpretation of DeepRiPe

The results so far emphasize the need for an interpretable classifier

to better understand what the driving input features are behind a

good or poor performance. To this end, we applied methods that

provide model interpretability to determine which sequence and

region type patterns are informative for predicting RBP binding

sites (Methods). For each RBP and any given input sequence,

we compute an attribution map that indicates the individual

nucleotides that were most important for classification of the in-

put sequence as the target site for this

RBP. Attribution maps for several RBPs,

for positive samples of the test data

with the highest prediction scores, illus-

trate that the model is able to learn and

highlight important sequence motifs

(Fig. 3; Supplemental Fig. S3). Despite

drastic variability in the size of the data

sets and the proportion of high-scoring

peaks, these motifs in fact agree with

the knownmotifs. For each RBP, 10 attri-

butionmaps corresponding to the inputs

with the highest prediction scores (when

higher than 0.5) can be found as

Supplemental Files and the GitHub re-

pository of the model.

Looking at specific RBPs inmore de-

tail highlights a crucial advantage of

DNNs for regulatory sequence interpreta-

tion: The models are able to locate both

simple and complex patterns in the in-

put, such as one to several occurrences

of onemotif and compositemotifs, with-

out additional prior knowledge. As exam-

ples for simple patterns, we observe the

well-established UGUAHAUA binding

motif in attribution maps corresponding

to PUM2. LINE-1 ORF1p is a protein en-

coded by the transcripts of LINE-1 retro-

transposable elements and responsible

for its retrotransposition; attribution

maps of its target sequences delineate

with high precision its GAUC target mo-

tif (Mandal et al. 2013).

B

A

C

Figure 2. Performance of DeepRiPe. (A) ROC and precision-recall curves for several RBPs. The corre-
sponding AUROC and AP scores are shown in parentheses. (B) Prediction score distributions for positive
and negative samples for MBNL1, QKI, and CPSF6. (C) The 6-mer counts at the top and bottom 10% of
the positive samples for MBNL1, QKI, and CPSF6, ranked based on their prediction scores.

Ghanbari and Ohler

216 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247494.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247494.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247494.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247494.118/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


MBNL1 and QKI are splicing factors with reported YGCU/

GCUU (Lambert et al. 2014) and ACUAAY (Hafner et al. 2010)

bindingmotifs, respectively, and their attributionmaps reveal sev-

eral occurrences of the motifs in the mRNAs. ELAVL2, ELAVL3,

and ELAVL4 are RBPs that regulate mRNA stability and translation

through the 3′ UTR and bind to U-rich elements (Keene 2001). The

patterns observed in their attributionmaps are consistentwith this

knowledge. ELAVL1 additionally binds to pre-mRNAs in the nucle-

us and thus to additional region types, and it also showed similar

preference for U- and AU-rich patterns (Keene 2001). Depending

on the input sequence, we are also able to identify variable num-

bers of the core U-rich pentamer.

The model is also able to locate combinations of motifs. For

example, we observe RNA polyadenylation/cleavage-related se-

quence elements—namely, AAUAAA and U/GU-rich elements lo-

cated in preferred distances to the actual site of cleavage

(Darmon and Lutz 2012)—in the attribution maps of cleavage

and polyadenylation specificity factors

(CPSFs) and cleavage stimulatory factors

(CSTFs), respectively. Additionally, the

previously reported motif UGUA is ob-

served in attribution maps of CPSF6,

which is involved in 3′-end cleavage of

RNA transcripts (Brown and Gilmartin

2003; Yang et al. 2011).

Composite motifs may reflect mul-

tiple binding modes of one protein, sites

of interacting proteins, genomic land-

marks such as start codons, or sites that

are related to a process but engaged at dif-

ferent times. If the resolution of CLIP ex-

periment is sufficient, our method is able

to discriminate among some of these

possibilities. As an example, Supplemen-

tal Figure S4 shows several attribution

maps of CPSF6 targets, in which the posi-

tion of actual (PAR-CLIP) peaks along the

input sequences are marked. We can ob-

serve that UGUA motif is always located

inside the peak, but this is not the case

for the AAUAAA motif. This rules out

that the AAUAAA motif is involved in

direct interactions. In fact, CPSF1, the

largest subunit of CPSF, binds to the

AAUAAA polyadenylation signal, where-

as UGUA is the target of the CPSF5/6

complex that interacts with UGUA up-

stream of poly(A) sites (Brown and Gil-

martin 2003; Yang et al. 2011).

Altogether, patterns observed in at-

tribution maps were consistent with pre-

viously reported motifs, in spite of not

optimizing an objective function that

directly quantifies the presence of com-

mon, strong motifs as in traditional mo-

tif finding. It also adds confidence

that the model has learned genuine se-

quence features. Notably, the DNN en-

ables us to see the actual occurrence of

the motif in the sequence, and it is in-

trinsically able to identify complex motif

patterns, such as combinations ofmotifs.

This characteristic inherent flexibility of the DNN is a clear advan-

tage over classical regulatory sequence analysis, with its rich

literature of highly specific approaches for complex motif

configurations.

Consensus motifs

To obtain consensus representations for each RBP, we aggregated

the patterns in attribution maps from all positive samples (the

whole input sequence) with prediction scores larger than 0.5.

We reasoned that high confidence binding sites most probably

contain the target motifs, but those with low probability may

result from spurious binding. To do so, we first identified the top

motif of length 6 in each attribution map and then clustered

and aligned the motifs to obtain consensus motifs (Fig. 3;

Supplemental Fig. S3; Methods). In line with patterns observed

in individual attribution maps, the consensus patterns obtained

Figure 3. Interpretation of the model using attribution maps obtained from the IG method. For each
RBP, the sequence logos corresponding to the attribution maps of three true binding sites with the high-
est DeepRiPe prediction scores are shown. Consensus motifs, obtained from attribution maps of all true
binding sites of the RBPwith prediction scores larger than 0.5, are shown beside the attributionmaps. The
ratio of the number of binding sites used to obtain the consensus motif to the number of all true binding
sites is written below the corresponding consensus motif. The observed patterns in both the attribution
maps and the consensus motifs resemble the known motif(s) for the specific RBPs: PUM2 (UGUAHAUA),
QKI (ACUAAY), MBNL1 (YGCU/GCUU), CPSF6 (AAUAAA and UGUA), and CSTF2 and CSTF2T (AAUAAA
and U/GU-rich).
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from high confidence attribution maps are also consistent with

previously reported motifs.

Benefits of the multimodal model

To assess the benefit of the multimodal model that uses both se-

quence and region type as input, and to evaluate the impact of re-

gion type in the performance of the method, we trained the

DeepRiPe model without using region type information as input.

Both sets of models were trained with similar structure and the

same hyperparameters.

The multimodal model using both sequence and region type

outperforms themodel that uses only sequence for nearly all of the

RBPs (Fig. 4A). This indicates the importance of region type for pre-

diction. The model uses region information and assigns higher

scores to the peaks that fall in a specific region. Attribution maps

also revealed that the model uses specific region preferences that

are consistent with current knowledge (Fig. 4B). The network de-

tects not only the specific region type but also the boundaries of

region types near cross-linked sites. For example, functional

ELAVL2 binding sites are predominantly located in the 3′ UTRs,

and CSTF2 binds to the 3′ end of the gene. Regional features could

also provide information about the function of RBPs. For example,

RBPs with regional impact of 3′ UTR (ELAVL2) may be involved in

RNA stability, whereas RBPs bound to the end of the genes (CSTF2)

are likely involved in termination/polyadenylation.

Benefits of multitask learning

To assess the benefit ofmultitask learning, we compared the results

of the model to those obtained by its singletask counterparts, for

which we used the same hyperparameters as for the multitask

model. We evaluated multiple strategies to define singletask train-

ing data. In the first strategy (single models 1), we oversampled

from positive samples of the training and validation data sets for

each RBP to ensure an equal number of positive samples as nega-

tive samples. In the second strategy (singlemodels 2), we used ran-

domnegative samples obtained fromunbound transcripts for each

RBP. We compared the performance (Fig. 5A) and interpretability

(Fig. 5B) of two approaches. Finally, we also subsampled from neg-

ative samples of the training and validation data sets to ensure an

equal number of negative samples as positive samples in these data

sets (single models 3) (Supplemental Fig. S5).

The overall results indicate that for some RBPs, the multitask

learning indeed boosts the performance. Assessing each of the

three DeepRiPe submodels (model-high, model-mid, and model-

low) (Supplemental Fig. S5) shows that RBPs with a low number

of samples benefit the most, which is in line with the promise of

multitask learning.

Although there is consistent but limited performance im-

provement between single- and multitask models, the interpret-

ability of single- and multitask models differed considerably.

Comparison of attribution maps of ELAVL2 (Fig. 5B) revealed

that the singletask models showed reduced importance of the

known motif and were heavily misled by the PAR-CLIP sequence

bias fromRNase T1, which cleaves after guanines and is very prom-

inent in especially early PAR-CLIP data sets (Kishore et al. 2011).

Although the strategy of using binding sites of other RBPs as neg-

ative samples (single models 1) rather than using random nega-

tives from unbound transcript (single models 2) already leads to

a slightly better delineation of the target motif, the multitask

learning approach can reveal the actual motif clearly: When learn-

ing the preferences of multiple RBPs simultaneously, the cleavage

bias does not constitute useful information to discriminate be-

tween target sites of different RBPs, because many PAR-CLIP peaks

will be equally affected by it. Multitask

learning thus puts much less weight on

protocol biases that are shared between

several RBP libraries.

DeepRiPe as a potential tool to study the

effects of sequence variants

WedevelopedDeepRiPe as a tool to iden-

tify and score sequence variants with po-

tential impact on RBP binding. To assess

this aspect specifically, we first used the

trained model to compute and compare

the attribution maps of wild-type and

mutated reporter constructs with known

differences in binding efficiency for two

RBPs.

ELAVL1 binds to the 3′ UTR of the

ERBB2 oncogene mRNA. In a recent

study (Epis et al. 2011), ELAVL1 was

shown to oppose the repression effect

of microRNA miR-331-3p in ERBB2 by

binding to a U-rich element (URE) near

the miRNA target region. Mutation of

the URE results in an experimentally de-

tected shift of ELAVL1 binding to an up-

stream site with reduced binding affinity

and weakens the repressive effect of

ELAVL1 on miR-331-3p. In line with

the reported observation, the attribution

B

A

Figure 4. Assessing the performance of the multimodal model. (A) Scatter plots comparing the
AUROC and AP scores of DeepRiPe and the singlemodal model (themodel using only sequence features).
Each data point represents an RBP and it falls above the diagonal when DeepRiPe outperforms the single-
modal model. (B) Two examples of attribution maps that correspond to region inputs obtained from the
multimodal model using IG method for the positives samples of two RBPs, CSTF2 and ELAVL2.
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maps show the loss of ELAVL1 binding site at the mutated site,

while upstream sites were not affected (Fig. 6).

As a second example, we examined the effect of mutations in

potential QKI binding sites inNUMB pre-mRNA. In a study that in-

vestigated the role of QKI in regulating NUMB alternative splicing

(Zong et al. 2014), two mutant sequences, Mut1 and Mut2, were

generated targeting two potential binding sites of QKI in the re-

gions surrounding the 3′ splice site of intron 12. Although Mut1

contains mutations only in the second binding sites, Mut2 has

mutations in both sites (Fig. 6). Compared to wild-type RNA,

with binding affinity comparable to that of a control RNA that car-

ries a bipartite QKI consensus sequence, Mut1 RNA showed re-

duced QKI binding, but Mut2 RNA lost QKI binding completely.

The attribution map of the wild-type sequence reveals a strong

binding for the second binding site and aweak binding for the first

binding site, the attributionmap of Mut1 has lost the strong bind-

ing but preserves the weak binding, and the attribution map of

Mut2 has lost both binding sites.

Identification of potentially disease-causing sequence variants

A major challenge in human genetics is to reveal the role and im-

pact of single-nucleotide variants (SNVs) that are located in non-

coding regions, especially in the context of congenital disorders

or cancer. For instance, a recent study (Kelley et al. 2018) used

DNNs to predict the influence of genomic variants on gene expres-

sion, by using thousands of epigenetic and transcriptional regula-

tory features. In post-transcriptional gene regulation, variants also

play roles, for instance by altering RBP binding sites. The naive ap-

proach to associate SNVs with alteration of RBP binding sites is to

find mutations that have been mapped to RBP targets obtained

from CLIP experiments. However, the resolution of peaks is

B

A

Figure 5. Assessing the performance of the multitask model. (A) Scatter plots comparing the AUROC and AP scores of DeepRiPe and the singletask mod-
els. Single models 1 and single models 2 are trained on random negative samples from binding sites of other RBPs and unbound transcript, respectively.
Each data point represents an RBP and it falls above the diagonal when DeepRiPe outperforms its singletask counterpart. (B) Comparing the attribution
maps obtained from the multitask and singletask models using the IG method for two positives samples of ELAVL2.

Figure 6. Assessing the impact of sequence variants using attribution maps. Sequences of wild-type and mutant constructs, in which mutations are
shown in bold lowercase letters, and their corresponding attribution maps for ELAVL1 and QKI. The potential binding sites are shown in boxes. (WT)
wild-type; (Mut) mutant.
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typically not sufficient to conclude that any mutation will alter

RBP binding. Furthermore, a CLIP experiment of one cell type or

tissue may miss targets in other cell types owing to tissue-specific

gene expression. Here, our interpretable model provides an oppor-

tunity for the identification of mutations that potentially alter the

RBP binding sites.

We therefore analyzed the potential mutational effects of

known pathogenic SNVs obtained from COSMIC (v89) (Forbes

et al. 2015) of three RBPs with known motifs and high DeepRiPe

performance (MBNL1, QKI, and PUM2).

For MBNL1 and QKI, we scored the variants that are residing

in the intronic location, and for PUM2, those that are located in

the 3′ UTRs. For each variant, we obtained the 150-bp DNA se-

quence centered on the annotated site and fed both wild-type

and variant sequences to the network to compare their prediction

scores. When we observed a sufficient difference in scores (> 0.1),

we assessed the effect of the mutation by comparing their corre-

sponding attributionmaps. Figure 7 shows that variants predicted

to alter the binding sites for the specific RBP can do so in different

ways: Variants can disrupt the binding sites, create new potential

targets, or increase/decrease RBP binding in cases in which there

are multiple potential target sites close to each other. Among the

variants with score differences higher than two, 180, 36, and 48

variants are located within CLIP peaks of MBNL1, QKI, and

PUM2, respectively.

Generalization power of DeepRiPe

DeepRiPe as a classification method should be able to distinguish

between bound and unbound sites for a specific RBP regardless

of experimental conditions and therefore to identify putative

binding sites in other cell types for which there are no PAR-CLIP

data. To assert this ability to generalize, we used six data sets of

RBPs that were profiled by both eCLIP and PAR-CLIP in different

cell lines, namely CPSF6, CSTF2T, CSTF2, PUM2, andQKI (two ad-

ditional cell lines) (VanNostrand et al. 2016). For each RBPweused

processed binding sites (intersection between two replicates) pro-

vided by the ENCODE Project (https://www.encodeproject.org)

and predicted binding for them using DeepRiPe trained on PAR-

CLIP. To define comparable input vectors forDeepRiPe, we extend-

ed the middle of each eCLIP peak with 75 bp and 125 bp both up-

stream and downstream for sequence and region modules,

respectively.

We ran the PAR-CLIP trained models on eCLIP targets,

ranked eCLIP peaks for each RBP based on their DeepRiPe predic-

tion score, and counted all possible 6-mers in the top 2000 (high

confidence) and bottom 2000 (low confidence) binding sites.

Figure 8 shows the top 10 6-mers in each set. Although the top

6-mers in high confidence binding sites resemble the motif(s)

for the specific RBP, this is not the case for low confidence binding

sites. As we observed on PAR-CLIP data, low-scoring eCLIP peaks

are therefore likely to represent weak affinity or spurious binding

sites.

Performance and interpretation of DeepRiPe on eCLIP data

DeepRiPe is not limited to PAR-CLIP data sets; although it general-

izes well, it will typically be advantageous to be retrained on data

obtained from other CLIP protocols and cell lines. For example,

we applied our method on eCLIP data generated by the ENCODE

Project (https://www.encodeproject.org) to find relevant sequence

patterns. The eCLIP data consist of target data sets for approxi-

mately 150 RBPs profiled across two cell lines, K562 and HepG2.

As we had done for PAR-CLIP data, we again trained several differ-

ent models (here five) with the same parameters for each cell line

to account for differences in the number of peaks (Methods). The

performance of the models in terms of AUROC and AP are provid-

ed in Supplemental Table S2. For each RBP, 10 attribution maps

corresponding to the inputs with the highest prediction scores

(when higher than 0.5) can be found at Supplemental Files and

the GitHub repository of the model.

Complementing in vivo CLIP data, the ENCODE Project ap-

plied RNA Bind-n-Seq (RBNS), an in vitro method to characterize

RBP binding preferences. Dominguez and colleagues compared

the top k-mers in RBNS and eCLIP data sets for RBPs profiled in

both assays (24 RBPs) (Dominguez et al. 2018) and found agree-

ment between eCLIP peaks and corresponding RBNS motifs for

most cases (17 RBPs). For RBPs with significant agreement between

in vitro and in vivo motifs, we compared the patterns in attribu-

tionmaps to the in vivo and in vitromotifs (Fig. 9). In all those cas-

es, the networks detect the relevant motifs. We next examined the

attributionmaps corresponding to two RBPs (IGF2BP2 and RBP15)

with no agreement between ENCODE in vivo and in vitro motifs

(Supplemental Fig. S6). Although the reported eCLIP motif is

CG-rich for both RBPs, the network detects different motifs that

are similar to the RBNS motif.

On investigating the attributionmaps of other eCLIP-profiled

RBPs, we found additional cases in which the model can detect

complex sequence patterns (Supplemental Fig. S7). Particularly,

the model highlighted 5′ or 3′ splice sites (GGUAG, CAG) in the

attributionmaps of several splicing factors. Although these motifs

are not involved in direct interactions of the RBPs, they can pro-

vide information for the annotation and function of RBPs.

Studying the impact of sequence variants using allele-specific

binding events of RBPs

Allele-specific binding (ASB) of RBPs provides a natural source of

data to assess the ability of DeepRiPe to predict the impact of var-

iants. Having a full compendium of models trained on eCLIP data

allowed us to make use of the results of recent methods that have

been developed specifically to identify ASB events (Bahrami-

Samani and Xing 2019; Yang et al. 2019).

Specifically, BEAPR predicts ASB events using the allele-spe-

cific mRNA expression as null hypothesis, as quantified by eCLIP

input (Yang et al. 2019). For each reported significant BEAPR

SNV, we computed three scores: motif score, model score, and

IG-score. Motif score is defined as the maximum log-odds scores

of 10-bp windows flanking the ASB SNV (both alleles) against

the reported RBP motif (position weight matrix), obtained from

pentamers identified by an RBNS assay of corresponding RBP (if

available) or from the literature. Model score is calculated as the

difference between DeepRiPe prediction scores of RNA sequences

centered on minor and major alleles. IG-score is obtained as the

difference between the sum of the attribution scores in 6-bp win-

dows flankingASB SNValleles. To account for the potential ofmul-

tiple binding sites in the input window of 200 bp, we here used

just the 30-bp sequence centered at the ASB SNV (the remaining

positions are filled with N, meaning equal probability of being

A, C, G, or U).

For RBPs with well-defined distinct, short motifs like RBFOX2

or QKI, ASB events with high motif scores also have high model

scores and IG-scores, indicating that ASB SNPs that impact the

core motif may be causal for the observed ASB (Fig. 10A). For

RBPs like HNRNPL that bind to longer, mono- or dinucleutide
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repeats, the mutation can lead to a weaker or stronger binding ef-

fect depending on its position as well as the length of the repeat.

Here, theDeepRiPe results suggest that it ismore likely that the var-

iant leads to an altered binding affinity when the repeat sequence

is short (i.e., with a lower motif score) compared to when the re-

peat sequence is long (i.e., with the highest motif score), and

this effect can again be visualized using attribution maps (as is

the case for HNRNPL with AC-rich motif) (Fig. 10B).

Discussion

We have developed a multimodal and multitask deep learning ap-

proach to model genuine, specific RBP binding events, and to ex-

tract informative features about RBP binding characteristics from

dozens of high-throughput, noisy CLIP-seq data sets. The model

recovers known sequence motifs and provides insight about RBP

binding preferences. It can also locate the sequence motifs along

Figure 7. Examples of effects of noncoding SNVs on the binding sites of MBNL1, QKI, and PUM2. The attribution maps corresponding to the wild-type
(WT) andmutant (MT) sequences for different noncoding SNVs obtained from the COSMIC database. The COSMIC ID as well as the position of the SNV is
provided for each example.
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the input sample and identify co-occurrences ofmotifs in a flexible

manner. Comparing our approach, which determines the influ-

ence of input features on the output, with interpreting the convo-

lutional layers as in previous studies (Supplemental Figs. S8–S13),

we noticed that the filters in DeepRiPe’s first layer typically repre-

sented only parts of the motifs. The network as a whole can detect

complete motifs or take nonlinear dependencies into account by

assembling multiple filters in the downstream layers, which com-

plicates direct interpretation of these filters. Additionally, some of

these filters may represent motifs in the negative set or the bias in

the data. Therefore, if there is no prior knowledge about the true

motif, it is very hard to decipher complete, biologically relevant

motifs from filters. This issue gets confounded even further in

the case of multitask learning, because individual filters may

now not be specific to one RBP.

We observed considerable variability of success across differ-

ent RBPs, and we were able to relate this to the absence of known

motifs in low-scoring peaks; CLIP-seq experiments can result in

tens of thousands of peaks, and it is highly unlikely that all of these

represent targets with defined functional consequences of bind-

ing. Rather, large numbers of peaks may reflect poor antibody

quality, sequencing artifacts, or interaction patterns of RBPs be-

yond specific sequence/structure target site definitions, such as

helicases. As many peak callers do, ourmodel assumes site-specific

binding, and for libraries for which this assumption holds true, we

aremoving closer to a scenario inwhichwe can nowuse themodel

to judge the quality of experiments, rather than to take noisy data

as “ground truth.”

Singletask and multitask models solve different classification

problems. Although the overall performance of multitask and sin-

gletask reported here appear superficially similar, themultitask for-

mulation of learning allows themodel to focus on the features that

are shared across the tasks. In this way, it is able to ignore possible

protocol-inherent biases, as these will be present in data sets across

different RBPs. We illustrate that this leads to notable differences

in the features that a model uses for its predictions, with the mul-

titaskmodels relyingmore strongly on the presence of knownmo-

tifs compared to the singletask methods. Choosing negative

samples for each RBP from binding sites of other RBPs makes the

prediction task harder, but at the same time it guides the model

to learn specific motifs. Most previous RBP target classification ap-

proaches have been set up as singletask problems, which means

that we cannot directly benchmark against them. In turn, many

singletask models have been evaluated on cross-validated, held-

out data from the same experiment. For some of these, the reported

results will likely be overly optimistic—the models will not gener-

alize well, as we have recently observed anecdotally (Munteanu

et al. 2018).

Extending our current deep network appears promising in

several directions. The method already provides functionality to

locate binding sites, score variants, and derive motifs from attribu-

tion maps. Owing to the (1) multitask learning process, in which

we combine data sources of varying quality and numbers of tar-

gets, (2) the occurrence of sometimes multiple sites per CLIP

peak, and (3) our strategy to derive motifs from well-scoring

(>0.5) inputs regions only, they are rather serving the purpose of

illustrating, summarizing, and comparing results. However, we an-

ticipate that changes to the training approach, including solutions

to the issue of imbalanced data, can allow for a fully fledged motif

finder, in which motifs represent in vivo binding affinities similar

Figure 8. Performance of DeepRiPe on eCLIP data conducted in different cell types. The top 6-mers from both the set of high- and low-confidence bind-
ing sites, based on the prediction scores obtained from DeepRiPe. The top 6-mers from the high confidence binding sites resemble the known motif(s)
for the specific RBPs: PUM2 (UGUAHAUA), QKI (ACUAAY), MBNL1 (YGCU/GCUU), CPSF6 (AAUAAA and UGUA), and CSTF2 and CSTF2T (AAUAAA and
U/GU-rich).

Ghanbari and Ohler

222 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.247494.118/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


to in vitro-derived motifs. This holds promise to alleviating some

shortcomings of current approaches for RBP motif discovery that

struggle because of the shortness of the binding motif and the po-

tentially large number of false positives in the input data. In this

context, interpreting DNNs may provide competitive flexibility,

because there is no need to specify parameter like motif length

or configuration. For both classification and prediction, future

work should address how to adequately consider RNA structure

within the framework of deep neural networks to advance the in-

terpretation of noncoding sequence variants.

Methods

Input data

We collected PAR-CLIP data sets for 59 RBPs from different publi-

cations, which were profiled with the same flag-tagged construct

in the HEK293 cell line. These libraries

were quality controlled and processed

with the same pipeline, including

PARalyzer (Corcoran et al. 2011) for

peak calling and the human GRCh37/

hg19 release as reference, in a recent

study (Mukherjee et al. 2019). We based

our models on this consistently pro-

cessed CLIP data, and we chose not to

lift over annotations or completely rean-

alyze this large compendiumonGRCh38

to maintain consistency with previous

results. Slight sequence/assembly varia-

tion for some individual peaks will not

affect the overall results, because our

models are based on thousands of CLIP

peaks and not on detailed investigations

of a small number of individual loci.

We chose RBPs that have between

1000 and 106 peaks and divided them

into three categories: RBPs with >105

peaks, RBPs that have between 15,000

and 105 peaks, and RBPs with <15,000

peaks. We used RBPs in each category

for training and evaluating a separate

DNN, which we refer to as model-high,

model-mid, andmodel-low, respectively.

Supplemental Figure S1 shows the num-

ber of peaks for each RBP (Supplemental

Fig. S1A) as well as the number of shared

binding sites for each pair of RBPs

(Supplemental Fig. S1B).

To prepare the data for input to the

DNN, we first split the genome into 50-

bp nonoverlapping bins and kept only

bins that overlap with the transcriptome.

For each bin, we assigned a label vector

with k entries corresponding to all RBPs

of interest to define the labeled data for

themultitask model. For each bin, the la-

bel of an RBP is 1 if more than half of its

peak region falls within a 50-bp bin, and

0 otherwise. We kept only bins with at

least one binding event. In this way, the

negative samples of one RBP may serve

as positive samples of other RBPs. We

used 20% and 10% of the bins for valida-

tion and testing of the model, respectively, and the rest of the bins

for training the model.

From eCLIP experiments of human RBPs (hg19), we collected

themerged peaks between two replicates for each RBP provided by

the ENCODE Project (https://www.encodeproject.org) and kept

RBPs with more than 1000 reported peaks. We divided RBPs into

five categories for each cell line: RBPs with >104 peaks, RBPs that

have between 7000 and 104 peaks, between 4000 and 7000 peaks,

between 2000 and 4000 peaks, and between 1000 and 2000 peaks.

To prepare the input data for the model, we used a bin size of 100

bp to account for the eCLIP peaks resolutions. Other steps are sim-

ilar to PAR-CLIP.

Model design and training

In this work, we used two types of DNN architectures, convolu-

tional neural networks (CNNs) and recurrent neural networks

(RNNs) (Goodfellow et al. 2016). More specifically, we used

Figure 9. Comparison of motifs obtained from in vitro (RBNS) and in vivo (eCLIP) experiments with
patterns observed in attribution maps. For each RBP, the motifs obtained from RBNS, eCLIP, and the at-
tribution maps, along with attribution maps for the top three inputs with the highest prediction scores,
are shown. The consensus motifs obtained from the attribution maps correspond to all true binding sites
with prediction scores larger than 0.5. For the attribution mapmotifs, the ratio of the number of binding
sites used to obtain consensus motif to the number of all true binding sites is written below the corre-
sponding consensus motif.
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a bidirectional gated recurrent network (GRU) (Chung et al.

2014) to account for possible long-range dependencies of the

features.

The model consists of a sequence module that extracts fea-

tures from the RNA sequence and a region module that extracts

features from genomic locations. The features of these modules

are thenmerged and fed to amultitaskmodule to predict the bind-

ing sites of multiple RBPs simultaneously. Figure 1 shows a simpli-

fied architecture of the model.

The sequence and region modules both have a convolution

layer followed by a rectified linear unit (Relu), a max pool layer,

and a drop out layer with probability of 0.25. We used 90 filters

with length 7 for both convolution layers. The multitask module

takes as input the concatenated features from sequence and region

modules and consists of one CNN (with 100 filters of length 5) or

one bidirectional GRU (with 60 units) and one fully connected lay-

er with 250 hidden units and Relu activations. The output layer

contains k sigmoid neurons to predict the probability of binding,

one for each RBP.

To assess the contribution of different aspects to the success

of the DNNs, we also explored variations of the architecture and

training of the model; in singletask models, in which the model

predicts the binding sites of one RBP, the output layer has only

one neuron. In all applications, we used CNNs in the multitask

module unless stated otherwise. The training was performed

with an Adam optimizer (Kingma and Ba 2014) using a mini-

batch size of 128 for 20 epochs to minimize the mean multitask

binary cross entropy loss function on the training set. To account

for imbalanced data, we used a weighted loss function that gives

higher penalties for misclassifying samples related to the classes

with less samples. The best model was chosen based on the val-

idation loss computed at the end of each epoch. We used early

stopping to prevent the possibility of overfitting during the

training.

Evaluation scores

We evaluated the DeepRiPe model, which was trained using train-

ing and validation sets, on independent test data. Classification

performance was assessed by both the receiver-operating charac-

teristic (ROC) and precision-recall (PR) curves, as well as the area

under the ROC curves (denoted as AUROC). Average precision

(AP) summarizes PR curves and is defined as the precision averaged

across all values of recall. AP is more conservative compared to the

area under the PR curve, because the latter uses linear interpolation

and can be too optimistic. AP is more appropriate than AUROC in

the case of imbalanced datawithmore negative samples, because it

does not take into account the number of true negatives.

Interpretation

Although obtaining accurate predictions of RBP/TF binding sites is

important, it is at least equally important to understand why the

model makes these predictions and which parts of the input con-

tribute themost to the output. The gradient (partial derivatives) of

an output neuron with respect to its input indicates how the out-

put value changes with respect to a small change in inputs. This is

the basic concept used in gradient-based attributionmethods that

assign an attribution value to each input feature of the network, in-

dicating how much that feature contributes to the output. Here,

the target neuron of interest is the output neuron associated

with the corresponding RBP class for a given sample, and an attri-

butionmethod can specify which nucleotides of the sample input

sequence and/orwhich region part were responsible for the output

of the RBP. In this study, we used an attributionmethod called in-

tegrated gradients (IG) (Sundararajan et al. 2017). IG computes the

average gradients of the output as the input varies along a linear

path from a baseline or reference to the input, to avoid the satura-

tion problem that occurs when computing gradients only at the

input. The baseline is defined based on the application and often

B

A

Figure 10. Assessing the ability of DeepRiPe to predict the impact of variants using ASB events. (A) Relationships between different scores of ASB events
for different RBPs. Asmotif score increases for ASB events, we observe a larger difference between themodel prediction scores (model score) and attribution
values (IG-score) corresponding to sequences with minor andmajor alleles. (B) Examples of attributionmaps corresponding to ASB events of HNRNPL with
a different length of AC-rich motif in their flanking regions.
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chosen to be zero. We used zero and 0.25 for the baselines of se-

quence and region inputs, respectively.

Calculating all the attribution values corresponding to all po-

sitions of one input sample leads to an “attribution map” of the

sample. By visualizing the attribution map as sequence logos (for

sequence) or barplots (for region), we can observe the influence

of each position on the prediction. The height of sequence logos

or bar plots indicates the importance of that position in the predic-

tion. Positions with large positive attribution values can be inter-

preted as features that were informative for the prediction of the

RBP. Visualization of the attribution maps of each input sample

for a specific RBP not only reveals the potential target motif or mo-

tifs of the RBP, but it can also be used to locate the potential bind-

ing sites of the RBP on a new sequence or to assess the effect of

genetic variants on RBP binding site.

To assess the effect of sequence variants, the wild-type and

mutant sequences are used as the input for the sequence module.

For the region module, we used N for each position in the input,

meaning equal probability of being in any region. Then we com-

pared the attribution maps corresponding to the wild type and

the mutant.

Consensus motifs

To obtain the consensusmotifs for each RBP, we aggregated the re-

sults of all the attribution maps corresponding to all the binding

sites with prediction scores larger than 0.5. First, we searched for

the top k motifs in each attribution map to obtain a list of all po-

tential motifs for each RBP. To find the topmotifs for each attribu-

tionmap, we averaged the scores in sliding windows of the desired

length, picked the window with the highest score, removed

its neighborhood, and searched again for the next motif. We con-

verted all the negative attribution scores of the obtained windows

to zero and normalized them. Subsequently, we used UMAP

(McInnes et al. 2018) to embed the top motifs obtained from the

attribution maps and clustered the embedded motifs using

DBSCAN clustering. Next, we aggregated motifs in each cluster

by averaging over corresponding nonembedded motifs and

aligned them to find the consensus motifs.

Software availability

The code for DeepRiPe is available in the Supplemental Code and

from https://github.com/ohlerlab/DeepRiPe.
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Stražar M, ŽitnikM, Zupan B, Ule J, Curk T. 2016. Orthogonal matrix factor-
ization enables integrative analysis of multiple RNA binding proteins.
Bioinformatics 32: 1527–1535. doi:10.1093/bioinformatics/btw003

Sundararajan M, Taly A, Yan Q. 2017. Axiomatic attribution for deep net-
works. In Proceedings of the 34th international conference on machine learn-
ing, Proceedings of Machine Learning Research (ed. Precup D, Teh YW),
Vol. 70, pp. 3319–3328.

Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY,
Sundararaman B, Blue SM, Nguyen TB, Surka C, Elkins K, et al. 2016.
Robust transcriptome-wide discovery of RNA-binding protein binding
sites with enhanced CLIP (eCLIP). Nat Methods 13: 508–514. doi:10
.1038/nmeth.3810

Wheeler EC, Van Nostrand EL, Yeo GW. 2018. Advances and challenges in
the detection of transcriptome-wide protein–RNA interactions. Wiley
Interdiscip Rev RNA 9: e1436. doi:10.1002/wrna.1436

Yang Q, Coseno M, Gilmartin GM, Doublié S. 2011. Crystal structure of a
human cleavage factor CFIm25/CFIm68/RNA complex provides an in-
sight into poly(A) site recognition and RNA looping. Structure 19:

368–377. doi:10.1016/j.str.2010.12.021
Yang EW, Bahn JH, Hsiao EY, Tan BX, Sun Y, Fu T, Zhou B, VanNostrand EL,

Pratt GA, Freese P, et al. 2019. Allele-specific binding of RNA-binding
proteins reveals functional genetic variants in the RNA. Nat Commun
10: 1338. doi:10.1038/s41467-019-09292-w

Zong F, Fu X, WeiWJ, Luo YG, Heiner M, Cao LJ, Fang Z, Fang R, Lu D, Ji H,
et al. 2014. The RNA-binding protein QKI suppresses cancer-associated
aberrant splicing. PLoS Genet 10: e1004289. doi:10.1371/journal.pgen
.1004289

Received December 18, 2018; accepted in revised form January 7, 2020.

Ghanbari and Ohler

226 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.247494.118Access the most recent version at doi:
2020 30: 214-226 originally published online January 28, 2020Genome Res. 

  
Mahsa Ghanbari and Uwe Ohler
  
preferences
Deep neural networks for interpreting RNA-binding protein target

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2020/02/07/gr.247494.118.DC1

  
References

  
 http://genome.cshlp.org/content/30/2/214.full.html#ref-list-1

This article cites 42 articles, 3 of which can be accessed free at:

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by-nc/4.0/described at 
a Creative Commons License (Attribution-NonCommercial 4.0 International), as 

). After six months, it is available underhttp://genome.cshlp.org/site/misc/terms.xhtml
first six months after the full-issue publication date (see 
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 https://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

© 2020 Ghanbari and Ohler; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.247494.118
http://genome.cshlp.org/content/suppl/2020/02/07/gr.247494.118.DC1
http://genome.cshlp.org/content/30/2/214.full.html#ref-list-1
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.247494.118&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.247494.118.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=56437&adclick=true&url=https%3A%2F%2Fwww.gencove.com%2F
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

