
962 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 7, NO. 6, DECEMBER 2018

Deep Neural Networks for Linear Sum Assignment Problems
Mengyuan Lee, Yuanhao Xiong, Guanding Yu , and Geoffrey Ye Li

Abstract—Many resource allocation issues in wireless
communications can be modeled as assignment problems and
can be solved online with global information. However, tradi-
tional methods for assignment problems take a lot of time to
find the optimal solutions. In this letter, we solve the assignment
problem using machine learning approach. Specifically, the linear
sum assignment problems (LSAPs) are solved by the deep neural
networks (DNNs). Since LSAP is a combinatorial optimization
problem, it is first decomposed into several sub-assignment prob-
lems. Each of them is a classification problem and can be solved
effectively with DNNs. Two kinds of DNNs, feed-forward neu-
ral network and convolutional neural network, are implemented
to deal with the sub-assignment problems, respectively. Based
on computer simulation, DNNs can effectively solve LSAPs with
great time efficiency and only slight loss of accuracy.

Index Terms—Linear sum assignment problem, deep neural
network, machine learning, resource allocation.

I. INTRODUCTION

MANY resource allocation issues in wireless
communications can be regarded as assignment

problems, which allocate a number of items (e.g., jobs) to
a number of machines (or workers) in the best possible
way to minimize or maximize certain utility functions.
As a special case of assignment problems, the linear sum
assignment problem (LSAP) is a classical combinatorial
optimization problem and can be widely found in many
wireless communication systems, such as mode selection for
device-to-device communications [1], joint resource allocation
in multiple-input multiple-output (MIMO) systems [2], and
unlicensed channel allocation for LTE systems [3].

There have already existed many algorithms for LSAPs.
In 1950s, Kuhn has proposed the Hungarian algorithm by
combining the graph theory and the duality of linear pro-
gramming [4], which is one of the first algorithms for
LSAPs. Bertsekas has proposed a massively parallelizable
algorithm called auction algorithm [5], which is one of the
fastest algorithms to find the optimal solution to LSAPs.
Ramakrishnan et al. [6] have modified the Karmarkar inte-
rior point algorithm for the linear programming problem and

Manuscript received March 24, 2018; revised May 2, 2018; accepted
May 29, 2018. Date of publication June 4, 2018; date of current ver-
sion December 14, 2018. This work was supported by the Natural Science
Foundation of China under Grant 61671407 and Grant 61725104. The asso-
ciate editor coordinating the review of this paper and approving it for
publication was X. Chu. (Corresponding author: Guanding Yu.)

M. Lee, Y. Xiong, and G. Yu are with the College of Information Science
and Electronic Engineering, Zhejiang University, Hangzhou 310027,
China (e-mail: mengyuan_lee@zju.edu.cn; xiongyh@zju.edu.cn;
yuguanding@zju.edu.cn).

G. Y. Li is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
liye@ece.gatech.edu).

Digital Object Identifier 10.1109/LWC.2018.2843359

developed the approximate dual projective algorithm. Due to
the dynamic nature and the expansionary size of many appli-
cations, heuristic algorithms that can achieve near-optimal
solutions under tight time constraints have also been devel-
oped, such as the greedy randomized adaptive algorithm [7]
and the deep greedy switching algorithm [8].

On the other hand, machine learning (ML) has currently
emerged as a promising technique for different fields with
striking performance and success. Several recent studies have
applied the ML approach to solve mathematical optimization
problems. In [9], deep neural networks (DNNs) are trained to
learn the input/output relations of a wireless resource manage-
ment problem with continuous variables. In [10], collaborative
DNNs (C-DNNs) have been developed to deal with the link
scheduling optimization problem, which can be recast as
decentralized classification problem.

Inspired by that, we apply the ML technique to solve
LSAPs in this letter. Specifically, we try to utilize DNNs
to derive a simpler but general learning based optimization
approach for LSAPs. We fist decompose LSAP into several
sub-assignment problems. With this decomposition process,
LSAP can be transformed into several classification sub-
problems. Then we adopt supervised learning scheme to work
out each sub-assignment problem by treating the nonlinear
mapping of the input/output relation as a black box. We make
use of two different network architectures: feed-forward neu-
ral network (FNN) and convolutional neural network (CNN).
Finally, we implement a low-complexity heuristic algorithm to
combine the outputs of each sub-assignment problem together.
Furthermore, we apply our approach to some instances to eval-
uate the performance. The results suggest that DNNs are able
to solve LSAPs with great time efficiency and only slight loss
of accuracy. The ML approach can help solve LSAPs online
without incurring much complexity since the time-consuming
training process can be implemented offline.

We organize the rest of this letter as follows. We will intro-
duce LSAP and the decomposition process in Section II. The
learning based approach will be developed in Section III.
Section IV presents instance test and performance analysis.
Finally, we conclude this letter in Section V.

II. LSAP AND DECOMPOSITION PROCESS

In this section, we will first introduce LSAP and then
propose the decomposition procedure.

A. LSAP

Generally, LSAP deals with the problem of how to assign
n jobs to n people in an optimal way. It can be formulated as
a 0-1 linear program, as following

min
n∑

i=1

n∑

j=1

cij xij , (1)

2162-2345 c© 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1354-2557


LEE et al.: DNNs FOR LSAPs 963

subject to

n∑

i=1

xij = 1, j = 1, . . . ,n, (1a)

n∑

j=1

xij = 1, i = 1, . . . ,n, (1b)

xij ∈ {0, 1}, i , j = 1, . . . ,n, (1c)

where cij is the cost of assigning job i to person j, and xij
is the decision indicator, i.e., xij = 1 means job i is assigned
to person j, and xij = 0 otherwise. Many resource allocation
problems in wireless communications are similar or equivalent
to problem (1) [1]–[3].

Using cost matrix C = {cij } as input and decision matrix
X = {xij } as output is the most natural way to implement
DNNs for LSAPs. In this way, we need to construct a DNN
with n2 input nodes and n2 output nodes, which leads to a
very huge network with the growth of n. In addition, LSAP is
neither classification nor regression problem, and no existing
loss functions can be directly applied to it. Therefore, we pro-
pose to decompose the problem into several sub-assignment
problems in the following, which can recast problem (1) to
classification sub-problems and scale down the size of the
DNNs at the same time.

B. Problem Decomposition

The basic idea of the decomposition is described as fol-
lows. The original problem is a global decision making process
with the cost matrix C as the input and the decision matrix X as
the output. We decompose the problem into n sub-assignment
problems. The j-th one solves an assignment problem on how
to assign one of n jobs to people j, i.e., the cost matrix C is
known and the decision vector for person j, Xj , is to be worked
out. Constraints (1a) and (1c) remain the same in each sub-
assignment problem, guaranteeing that Xj is a vector with 1
one and n − 1 zeros. Therefore, Xj is a one-hot vector, which
is the same as the output of the classification problems. By
this decomposition process, we transform the original problem
in (1) into n classification sub-problems, which can be solved
consequently by DNNs.

The decomposition process mentioned above only concerns
with constraints (1a) and (1c). However, constraint (1b) is
not taken into consideration, which guarantees that one job
can only be assigned to one people. When we deal with the
n sub-assignment problems separately, there may exist some
collisions that one job may be assigned to different people
simultaneously. Fortunately, we adopt a supervised learning
approach where the training samples do not have any col-
lision. Hence, by reproducing these solutions, the collision
probability is very low and will eventually disappear when
the accuracy approaches 100%. This motivates us to develop
a low-complexity heuristic algorithm instead of dedicating to
find the optimal algorithm for such a low collision probabil-
ity. In particular, we use the greedy collision-avoidance rule.
If job i is assigned to persons j1 and j2 simultaneously, we
assign job i to person j1 when cij1 < cij2 . More simula-
tion verifications on the effectiveness of the proposed greedy
collision-avoidance rule will be presented in Section IV.

Fig. 1. System model.

III. DEEP LEARNING BASED APPROACH

In the above, we have introduced LSAP and its decom-
position that recasts original LSAP into several classification
sub-problems. In this section, we will introduce the deep
learning based method for LSAP.

A. System Architecture

The architecture of the learning based approach for LSAP
is illustrated in Fig. 1. For each LSAP with size n, we
first decompose it into n sub-assignment problems as men-
tioned in Section II. Then, we use learning models which are
trained offline to solve each sub-assignment problem. Finally,
we implement the greedy collision-avoidance rule to get the
inferred output for LSAP.

In the following, we will focus on how to get good trained
models for each sub-assignment problem.

B. Data Generation

As we adopt a supervised learning scheme, the first thing
for model training is to get the labels or solutions of the train-
ing data. First, we generate the cost matrix C (m) following a
specific distribution, where m is the index of training samples.
Then we use the Hungarian algorithm to get the optimal deci-
sion matrix X (m) for each C (m). For the j-th sub-assignment
problem, we use the tuple {C (m),X (m)

j } as the m-th train-
ing sample. By repeating the above process, we can generate
the entire data set. Furthermore, all tuples in the data set can
be split randomly into the training and the validation sets.
The validation set plays an important role in model selection
and over-fitting avoidance. Generally, 70-90% of the tuples
are assigned into the training set. In the same way, we can
generate testing samples as well.

C. Network Architecture

After the dataset is prepared well, we need to choose spe-
cific network architectures of DNNs. Generally, deep FNNs
and deep CNNs are two widely used DNN architectures for
time-independent problems. FNNs are the baseline architec-
tures and can be employed to all kinds of problems. CNNs,
on the other hand, are more complicated and have good
performance in computer vision and natural language process-
ing. In our problem, the cost matrix C is an n × n matrix,
which resembles an image with n × n pixels. The CNN proves
to be efficient to deal with the image classification problem.
Therefore, we use it in our work to extract and learn the
features of the cost matrix C for classification.



964 IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 7, NO. 6, DECEMBER 2018

Fig. 2. DNN structure for j-th sub-assignment problem.

Fig. 3. Data generation and training process.

As shown in Fig. 2, for the j-th sub-assignment problem,
the input of the DNNs is vec(C), i.e., the vectorization of C,
and the output of the network is the decision vector Xj . And
the numbers of layers and neurons in each layer need to be
chosen according to values of n.

D. Training Stage

We use the entire training set to update the weights of DNNs
as depicted in Fig. 3. As mentioned above, Xj is one-hot and
we can utilize the cross entropy as the loss function of the
proposed DNNs. To further improve the training performance,
we use L2 regularization to limit the complexity of the network
and avoid over-fitting as well. Hence the loss function for the
j-th sub-assignment problem can be expressed as

Lj = − 1
M

M∑

m=1

n∑

i=1

X (m)
ij log y(m)

ij +
λ

2M

∑

w∈Ωj

w2,∀j , (2)

where y(m)
ij is the inferred output for the j-th sub-assignment

problem, M is the batch size, Ωj is the set of all weights in
DNNs for the j-th sub-assignment problem, and λ is the regu-
larization parameter, which is set to be 0.01%. Meanwhile, we
adopt the adaptive moment estimation (Adam) algorithm as the
optimization algorithm, which is based on adaptive estimates
of lower-order moments [11]. Furthermore, we implement the
moving average technique to get more robust models and set
the decay rate to be 0.99. Finally, learning rate and batch
size are another two critical parameters for training stage. On
the one hand, large batch size decelerates the convergence,
whereas small one may lead to unstable convergence behavior.
On the other hand, large learning rate may incur a high valida-
tion error, whereas low one slows down convergence speed. To
strike a balance between convergence speed and accuracy, we
find out how the training loss defined in (2) in the validation
set changes with different batch sizes and learning rates dur-
ing the first 500 epochs and choose the appropriate parameters
according to the results.

Fig. 4. Batch size selection.

Fig. 5. Learning rate selection.

IV. TEST RESULTS

In this section, we first test a small-scale scenario where
n = 4 following the procedures proposed in Section III, and
then extend it into larger systems. All the codes for DNNs are
implemented in python 3.6 with TensorFlow 1.0.0. To compare
the performance of different methods fairly, the Hungarian
algorithm is also implemented in python. Using the data gen-
eration method mentioned above, we first get 50,000 training
samples obeying discrete uniform distribution over [1, 100).
Then we split 90% of these data into the training data set and
the rest 10% into the validation one.

A. Network Structures and Parameters for n = 4 System

When the dataset is prepared, we first choose specific num-
bers of layers and neurons for FNN and CNN, respectively.
Then we implement the parameter selection procedure to
choose appropriate parameters for the following training stage.

Network 1 (FNN): We construct a fully-connected FNN with
five layers: one input layer, three hidden layers with 32, 64,
and 256 nodes, respectively, and one output layer, and use
Sigmoid function (eg. logistics function) as the activation func-
tion. Fig. 4 shows the influence of batch size on the training
loss value. According to the figure, we select 1024 as the batch
size since it can assure low loss value with a small sacrifice
for convergence speed. On the other hand, Fig. 5 shows how
loss value changes with different learning rates. According to
the figure, we choose 0.001 as the learning rate to guarantee
the lowest loss value while with relatively high convergence
speed.

Network 2 (CNN): We construct a CNN with five layers: one
input layer, two convolutional layers with 2 and 4 different
kernels, one fully connected layer with 256 nodes, and one
output layer. We set the stride to be 1 and the convolutional
kernel size to be 1 × 1 in each convolutional layer due to the
small size of input data. We change our activation function
into ReLu since it performs better than Sigmoid in CNN [12].



LEE et al.: DNNs FOR LSAPs 965

TABLE I
PERFORMANCE COMPARISON FOR DIFFERENT METHODS

The selection of parameters is almost the same as FNN but
we make a slight modification of learning rate. We decrease
it to 0.0001 to ensure CNNs’ convergence and stability.

B. Results

After network structures and parameters are settled, we do
the training stage to get the learned models. Then, we evaluate
the accuracy and time-efficiency of DNNs with 5,000 testing
samples, and the results are summarized in Table I.

From Table I, DNNs outperform the Hungarian algorithm
in terms of time efficiency with a slight loss of accuracy.
According to [13], the Hungarian algorithm has the compu-
tational complexity of O(n3), which can be considered to be
impractical for many applications. As for the testing stage of
DNNs, the computational complexity decreases to O(n2) and
O(n) for CNN and FNN, respectively. Because we can solve n
sub-assignment problems in parallel, the computational com-
plexity of our proposed method solving the LSAP is the same
as that of solving each sub-assignment problem. Furthermore,
DNNs have only a slight decrement of accuracy. In particular,
9% loss in accuracy can lead to 49 times increase in time effi-
ciency by using CNN, which suggests the obvious advantages
of our proposed methods.

Table I also indicates that CNN outperforms FNN. The rea-
son can be explained as follows. By using CNN, we can regard
the cost matrix as an image. Each convolutional layer of the
CNN can extract different features of the input cost matrices
before the fully-connected layers. Instead of directly learn-
ing the input/output relations by the fully-connected layers
in FNN, CNN first analyzes the inputs by digging out more
hidden features, which contributes to the increase of accuracy.

Furthermore, we use 1,000 testing samples to verify the
effectiveness of the greedy collision-avoidance rule. When the
accuracy of solving each sub-assignment problem is about
90.8%, the probability of collisions is 7.6% for each person.
In this case, the accuracy of solving the problem in (1) with-
out and with the greedy collision-avoidance rule is 69.4% and
82.9%, respectively, which demonstrates the effectiveness of
the low-complexity heuristic algorithm.

C. Scalability

To examine the scalability of our method, we use CNN to do
more test work with n = 8 and 16. As the size of the problem
increases, we set the number of training samples up to one
million and modify our network structure at the same time.
We add one more convolutional layer to the network and also
increase the node number of the fully-connected layer. The
results are summarized in Table II.

Since the difficulty of the problem increases, the accuracy
will drop to some degree. However, as shown in the Table II,

TABLE II
COMPARISON OF CNN WITH RANDOM ASSIGNMENT

the accuracy of our model is quite satisfactory as compared
with the random assignment.

V. CONCLUSION AND FUTURE WORK

In this letter, we have implemented the DNN technique to
solve LSAPs. We first decompose LSAPs into several clas-
sification sub-problems, and then train DNNs, specifically
FNNs and CNNs, to solve each sub-assignment problem. Our
test results show that DNNs can be used to obtain the real-
time solution to LSAPs with a slight loss of accuracy. This
initial study suggests that ML approaches have great poten-
tial in solving combinatorial optimization problems. Further
attempts to solve more complicated combinatorial optimization
problems using DNNs are important future directions. Also,
improving the training of the DNNs, finding the optimal DNN
architecture, and designing better collision avoidance rules are
very interesting issues for fine-tuning our proposal.

REFERENCES

[1] G. Yu et al., “Joint mode selection and resource allocation for device-
to-device communications,” IEEE Trans. Wireless Commun., vol. 62,
no. 11, pp. 3814–3824, Nov. 2014.

[2] X. Lu, Q. Ni, W. Li, and H. Zhang, “Dynamic user grouping and joint
resource allocation with multi-cell cooperation for uplink virtual MIMO
systems,” IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3854–3869,
Jun. 2017.

[3] H. Song, X. Fang, and Y. Fang, “Unlicensed spectra fusion and
interference coordination for LTE systems,” IEEE Trans. Mobile
Comput., vol. 15, no. 12, pp. 3171–3184, Dec. 2016.

[4] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Res. Logist., vol. 2, nos. 1–2, pp. 83–97, Mar. 1955.

[5] D. P. Bertsekas, “The auction algorithm: A distributed relaxation
method for the assignment problem,” Ann. Oper. Res., vol. 14, no. 1,
pp. 105–123, Dec. 1988.

[6] K. Ramakrishnan, N. Karmarkar, and A. Kamath, “An approximate
dual projective algorithm for solving assignment problems,” Network
Flows and Matching: First DIMACS Implementation Challenge, vol. 12.
Providence, RI, USA: Amer. Math. Soc., May 1993, pp. 431–451.

[7] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” J. Glob. Optim., vol. 6, no. 2, pp. 109–133, Mar. 1995.

[8] A. Naiem and M. El-Beltagy, “Deep greedy switching: A fast and sim-
ple approach for linear assignment problems,” in Proc. 7th Int. Conf.
Numerical Anal. Appl. Math., Jan. 2009, pp. 1–6.

[9] H. Sun et al., “Learning to optimize: Training deep neural networks
for wireless resource management,” in Proc. IEEE 18th Int. Workshop
Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2017, pp. 1–6.

[10] P. de Kerret, D. Gesbert, and M. Filippone, “Decentralized deep schedul-
ing for interference channels,” arXiv preprint arXiv:1711.00625, 2017.
[Online]. Available: https://arxiv.org/abs/1711.00625

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), May 2014, pp. 1–6.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neu-
ral networks,” in Proc. 14th Int. Conf. Artif. Intell. Stat., Jun. 2011,
pp. 315–323.

[13] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The dynamic
Hungarian algorithm for the assignment problem with changing
costs,” Robot. Inst., Pittsburgh, PA, USA, Rep. CMU-RI-TR-07-27,
Jul. 2007.


