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ABSTRACT

In this paper we investigate the use of deep neural networks (DNNs)

for a small footprint text-dependent speaker verification task. At de-

velopment stage, a DNN is trained to classify speakers at the frame-

level. During speaker enrollment, the trained DNN is used to extract

speaker specific features from the last hidden layer. The average of

these speaker features, or d-vector, is taken as the speaker model.

At evaluation stage, a d-vector is extracted for each utterance and

compared to the enrolled speaker model to make a verification deci-

sion. Experimental results show the DNN based speaker verification

system achieves good performance compared to a popular i-vector

system on a small footprint text-dependent speaker verification task.

In addition, the DNN based system is more robust to additive noise

and outperforms the i-vector system at low False Rejection operat-

ing points. Finally the combined system outperforms the i-vector

system by 14% and 25% relative in equal error rate (EER) for clean

and noisy conditions respectively.

Index Terms— Deep neural networks, speaker verification.

1. INTRODUCTION

Speaker verification (SV) is the task of accepting or rejecting the

identity claim of a speaker based on the information from his/her

speech signal. Based on the text to be spoken, the SV systems can be

classified into two categories, text-dependent and text-independent.

Text-dependent SV systems require the speech to be produced from

a fixed or prompted text phrase, while the text-independent SV sys-

tems operate on unconstrained speech. In this paper, we focus on a

small footprint text-dependent SV task using fixed-text, although the

proposed technique may be extended to text-independent tasks.

The SV process can be divided into three phases:

• Development: background models are trained from a large

collection of data to define the speaker manifold. Background

models vary from simple Gaussian mixture model (GMM)

based Universal Background Models (UBMs) [1] to more so-

phisticated Joint Factor Analysis (JFA) based models [2, 3, 4].

• Enrollment: new speakers are enrolled by deriving speaker

specific information to obtain speaker-dependent models.

Speakers in the enrollment and development sets are not over-

lapped.

• Evaluation: each test utterance is evaluated using the enrolled

speaker models and background models. A decision is made

on the identity claim.

∗Research conducted as an intern at Google.

A wide variety of SV systems have been studied using different

statistical tools for each of the three phases in verification. The state-

of-the-art SV systems are based on i-vectors [5] and Probabilistic

Linear Discriminant Analysis (PLDA). In these systems, JFA is used

as a feature extractor to extract a low-dimensional i-vector as the

compact representation of a speech utterance for SV.

Motivated by the powerful feature extraction capability and re-

cent success of deep neural networks (DNNs) applied to speech

recognition [6], we propose a SV technique based on DNN as the

speaker feature extractor. A new type of DNN-based background

model is used to directly model the speaker space. A DNN is trained

to map frame-level features in a given context to the correspond-

ing speaker identity target. During enrollment, the speaker model

is computed as the average of activations derived from the last DNN

hidden layer, which we refer to as a deep vector or “d-vector”. In the

evaluation phase, we make decisions using the distance between the

target d-vector and the test d-vector, similar to i-vector SV systems.

One significant advantage of using DNNs for SV is that it is easy to

integrate them into a state-of-the-art speech recognition system since

they can share the same DNN inference engine and simple filterbank

energies frontend.

The rest of this paper is organized as follows. In Section 2, pre-

vious related work on SV is described. In Section 3 we describe the

proposed DNN-based SV system. Section 4 shows the experimental

results for a small footprint text-dependent SV system. The DNN-

based SV system is compared with an i-vector system in both clean

and noisy conditions. We also evaluate the performance with dif-

ferent numbers of enrollment utterances and describe improvements

from combination of two systems. Finally, Section 5 concludes the

paper and discusses future work.

2. PREVIOUS WORK

The combination of i-vector and PLDA [5, 7] has become the dom-

inant approach for text-independent speaker recognition. The i-

vector represents an utterance in a low-dimensional space named

total variability space. Given an utterance, the speaker- and session-

dependent GMM supervector is defined as follows:

M = m+ Tw (1)

where m is the speaker- and session-independent supervector, usu-

ally taken to be the UBM supervector, T is a rectangular matrix of

low rank, referred to as the total variability matrix (TVM), and w is

a random vector with a standard normal distribution N(0, I). The

vector w contains the total factors and is referred to as the i-vector.

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 4080



Fig. 1. The background DNN model for speaker verification.

Moreover, the PLDA on the i-vectors can decompose the total vari-

ability into speaker and session variability more effectively com-

pared to JFA. The i-vector-PLDA technique and its variants have

also been successfully used in text-dependent speaker recognition

tasks [8, 9, 10].

In past studies, neural networks have been investigated for

speaker recognition [11, 12]. Being nonlinear classifiers, neural net-

works can discriminate the characteristics of different speakers. The

neural network was typically used as a binary classifier of target and

non-target speakers, or multicategory classifiers for speaker identi-

fication purposes. Auto-associative neural networks (AANN) [13]

were proposed to use the reconstruction error difference computed

from the UBM-AANN and speaker specific AANN as the verifica-

tion score. Multi-layer perceptrons (MLPs) with a bottleneck layer

have been used to derive robust features for speaker recognition [14].

More recently, some preliminary studies have been conducted on us-

ing deep learning for speaker recognition, such as the use of convolu-

tional deep belief networks [15] and Boltzmann machine classifiers

[16].

3. DNN FOR SPEAKER VERIFICATION

The proposed background DNN model for SV is depicted in Fig-

ure 1. The idea is similar to [15] in the sense that neural networks

are used to learn speaker specific features. The main differences are

that here we perform supervised training, and use DNNs instead of

convolutional neural networks. In addition, in this paper we evaluate

on a SV task instead of the simpler speaker identification task.

3.1. DNN as a feature extractor

At the heart of the proposed approach in this work is the idea of using

a DNN architecture as a speaker feature extractor. As in the i-vector

approach, we look for a more abstract and compact representation of

the speaker acoustic frames but using a DNN rather than a generative

Factor Analysis model.

With this aim, we first built a supervised DNN, operating at the

frame level, to classify the speakers in the development set. The

input of this background network is formed by stacking each training

frame with its left and right context frames. The number of outputs

corresponds to the number of speakers in the development set, N .

The target labels are formed as a 1-hot N -dimensional vector where

the only non-zero component is the one corresponding to the speaker

identity. Figure 1 illustrates the DNN topology.

Once the DNN has been trained successfully, we use the accu-

mulated output activations of the last hidden layer as a new speaker

representation. That is, for every frame of a given utterance belong-

ing to a new speaker, we compute the output activations of the last

hidden layer using standard feedforward propagation in the trained

DNN, and then accumulate those activations to form a new compact

representation of that speaker, the d-vector. We choose to use the

output from the last hidden layer instead of the softmax output layer

due to a couple of reasons. First, we can reduce the DNN model size

for runtime by pruning away the output layer, and this also enables

us to use a large number of development speakers without increasing

DNN size at runtime. Second, we have observed better generaliza-

tion to unseen speakers from the last hidden layer output.

The underlying hypothesis here is that the trained DNN, having

learned compact representations of the development set speakers in

the output of the last hidden layer, may also be able to represent

unseen speakers.

3.2. Enrollment and evaluation

Given a set of utterances Xs = {Os1 , Os2 , . . . , Osn} from a

speaker s, with observations Osi = {o1, o2, . . . , om}, the process

of enrollment can be described as follows. First, we use every ob-

servation oj in utterance Osi , together with its context, to feed the

supervised trained DNN. The output of the last hidden layer is then

obtained, L2 normalized, and accumulated for all the observations

oj in Osi . We refer to the resulting accumulated vector as the d-

vector associated with the utterance Osi . The final representation of

the speaker s is derived by averaging all d-vectors corresponding for

utterances in Xs.

During the evaluation phase, we first extract the normalized d-

vector from the test utterance. Then we compute the cosine distance

between the test d-vector and the claimed speaker’s d-vector. A ver-

ification decision is made by comparing the distance to a threshold.

3.3. DNN training procedure

Given the low-resource conditions of the scenario explored in this

study (see Section 4), we trained the background DNN as a maxout

DNN using dropout [17][18].

Dropout is a useful strategy to prevent over-fitting in DNN fine-

tuning when using a small training set [18][19]. In essence, the

dropout training procedure consists of randomly omitting certain

hidden units for each training token. Maxout DNNs [17] were con-

ceived to properly exploit dropout properties. Maxout networks dif-

fer from the standard multi-layer perceptron (MLP) in that hidden

units at each layer are divided into non-overlapping groups. Each

group generates a single activation via the max pooling operation.

Training of maxout networks can optimize the activation function

for each unit.

Specifically, in this study, we trained a maxout DNN with four

hidden layers and 256 nodes per layer, within the DistBelief frame-

work [20]. A pool size of 2 is used per layer. The first two layers do

not use dropout while the last two layers drop 50 percent of activa-

tions after dropout, as shown in Figure 1.

Regarding other configuration parameters, we used rectified lin-

ear units [21] as the non-linear activation function on hidden units

and a learning rate of 0.001 with exponential decay (0.1 every
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5M steps). The input of the DNN is formed by stacking the 40-

dimensional log filterbank energy features extracted from a given

frame, together with its context, 30 frames to the left and 10 frames

to the right. The dimension of the training target vectors is 496,

which is the same as the number of speakers in the development set

(see Section 4). The final maxout DNN model contains about 600K
parameters, which is similar to the smallest baseline i-vector system.

4. EXPERIMENTAL RESULTS

The experiments are performed on a small footprint text-dependent

SV task. The data set contains 646 speakers speaking the same

phrase, “ok google”, many times in multiple sessions. The gen-

der distribution is balanced on the data set. 496 randomly selected

speakers are used for training the background model and the remain-

ing 150 speakers were used for enrollment and evaluation. The num-

ber of utterances per speaker for background model training varies

from 60 to 130. For the enrollment speakers, the first 20 utterances

are reserved for possible use in enrollment and the remaining utter-

ances are used for evaluation. By default, we only use the first 4
utterances of the enrollment set for extracting speaker models. We

used one out of 150 trials as a target trial and there are approximately

12750 trials in total.

4.1. Baseline system

In this small footprint text-dependent SV task, we aim to keep the

model size small while achieving good performance. The base-

line system is an i-vector based SV system similar to [5]. The

GMM UBM is trained on 13-dimensional perceptual linear predic-

tive (PLP) features with ∆ and ∆∆ features appended. We evaluate

the equal error rate (EER) performance of the i-vector system with

three different model sizes. The number of Gaussian components in

the UBM, the dimension of the i-vectors and the dimension of Linear

Discriminant Analysis (LDA) output are varied. The TVM is initial-

ized using PCA and further refined using 10 EM iterations, while

for UBM training we used 7 EM iterations. As shown in Table 1,

the i-vector system performance degrades with reduced model size

but not too significantly. The EER results with t-norm [22] for score

normalization are consistently much better than with the raw scores.

The smallest i-vector system contains about 540K parameters and

is used as our baseline system.

Table 1. Comparison of EER results of i-vector systems with differ-

ent number of UBM Gaussian components, i-vector and LDA output

dimensions.

#Gaussians
i-vector LDA

#Params
EER EER

Dim Dim (raw) (t-norm)

1024 300 200 12.2M 2.92% 2.29%

256 200 100 2.1M 3.11% 2.92%

128 100 100 540K 3.50% 2.83%

4.2. DNN verification system

The left plot in Figure 2 shows the detection error tradeoff (DET)

curve comparison of the i-vector system and d-vector system. One

interesting finding is that in the d-vector system the raw scores are

slightly better than the t-norm scores, whereas in the i-vector system

the t-norm scores are significantly better. The histogram analysis

of the raw scores of the d-vector system indicates the distribution

is heavy-tailed instead of a normal distribution. This suggests more

sophisticated score normalization methods may be necessary for the

d-vector SV system. Moreover, since t-norm requires extra storage

and computation at runtime, we evaluate the d-vector systems using

raw scores for the following experiments unless specified.

The overall performance of the i-vector system is better than the

d-vector system: 2.83% EER using i-vector t-norm scores versus

4.54% with d-vector raw scores. However, in low False Rejection

regions, as shown in right bottom part of the plots in Figure 2, the

d-vector system outperforms the i-vector system.

We also experiment with different configurations for DNN train-

ing. Without maxout and dropout techniques, the EER of the trained

DNN is about 2% absolute worse. Increasing the number of nodes to

512 in the hidden layers does not help significantly, while reducing

the number of nodes to 128 gives much worse EER at 7.0%. Reduc-

ing the context window size to 10 frames on the left and 5 frames on

the right also degrades the EER performance to 5.67%.

4.3. Effect of enrollment data

In d-vector SV system, there are no speaker adaptation statistics in-

volved in the enrollment phase. Instead, the background DNN model

is used to extract speaker-specific features for each utterance in both

enrollment and evaluation phases. In this experiment we investigate

how much the verification performance changes in the d-vector sys-

tem with different numbers of enrollment utterances per speaker. We

compare the performance results using 4, 8, 12 and 20 utterances for

speaker enrollment.

Table 2. EER results of i-vector and d-vector verification systems

using different number of utterances for enrollment.

# utterances in enrollment

4 8 12 20

i-vector 2.83% 2.06% 1.64% 1.21%

d-vector 4.54% 3.21% 2.64% 2.00%

The EER results are listed in Table 2. It shows that both SV

systems perform better with increasing numbers of enrollment utter-

ances. The trend is similar for both systems.

4.4. Noise robustness

In practice there is usually a mismatch between development and

runtime conditions. In this experiment, we examine the robustness

of the d-vector SV system in noisy conditions and compare it with

the i-vector system. The background models are trained with clean

data. 10 dB cafeteria noise is added to the enrollment and evaluation

data. The comparison of DET curves are shown in the right plot in

Figure 2. As this figure illustrates, the performance of both systems

is degraded by noise, but the performance loss of the d-vector system

is smaller. Under 10 dB noisy environment, the overall performance

of the d-vector system is very close to the i-vector system. At oper-

ating points of 2% or lower False Rejection probability, the d-vector

system is in fact better than the i-vector system.

4.5. System combination

The results above show that the proposed d-vector system can be a

viable SV approach when compared to the i-vector system. The as-

sessment holds true mostly for noisy environments, or applications

that require small footprint model and low False Rejection rates. Al-

ternatively, here we aim to provide an analysis of a combined i/d-

vector system. Although more sophisticated combinations can be

4082



Fig. 2. Left: DET curve comparison between i-vector and d-vector speaker verification systems using raw and t-norm scores. Right: DET

curve comparison of the two systems in clean and noisy conditions.

Fig. 3. DET curve for the sum fusion of the i-vector and d-vector systems in clean (left) and noisy (right) conditions.

devised at the feature level, our preliminary results in Figure 3 are

obtained using a simple combination named as sum fusion, which

sums the scores provided by each individual system for each trial. A

prior t-norm stage was applied in both systems to facilitate the com-

bination of scores. Results show that the combined system outper-

forms either component system in essentially all possible operating

points and noise conditions. In terms of EER performance, the i/d-

vector system beats the i-vector system by 14% and 25% relative, in

clean and noisy conditions respectively.

5. CONCLUSIONS

In this paper we have proposed a new DNN based speaker verifica-

tion method for a small footprint text-dependent speaker verification

task. DNNs are trained to classify speakers with frame-level acous-

tic features. The trained DNN is used to extract speaker specific fea-

tures. The average of these speaker features, or d-vector, is then used

for speaker verification similarly to the popular i-vector. Experimen-

tal results show that the performance of the d-vector SV system is

reasonably good compared to an i-vector system, and system fusion

achieves much better results than the standalone i-vector system. A

simple sum fusion of these two systems can improve the i-vector sys-

tem performance in all operating points. The EER of the combined

system is 14% and 25% better than our classical i-vector system in

clean and noisy conditions respectively. Furthermore, the d-vector

system is more robust to additive noise in enrollment and evaluation

data. At low False Rejection operating points, the d-vector system

outperforms the i-vector system.

Future work includes improving the current cosine distance

scoring, as well as trying normalization schemes such as Gaussian-

ization for the raw scores. We will explore different combination

approaches, such as using a PLDA model over the the feature space

of the i-vectors and d-vectors stacked. Finally, we aim to investigate

the effect of increasing the number of development speakers and how

speaker clustering affects performance.
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