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Deep neural 

networks (DNNs) 

are increasingly 

popular in machine 

translation.

symbol variable processing, such as natural 

language processing (NLP). As one of the 

more challenging NLP tasks, machine trans-

lation (MT) has become a testing ground for 

researchers who want to evaluate various 

kinds of DNNs.

MT aims to �nd for the source language sen-

tence the most probable target language sen-

tence that shares the most similar meaning. 

Essentially, MT is a sequence-to-sequence pre-

diction task. This article gives a comprehen-

sive overview of applications of DNNs in MT 

from two views: indirect application, which at-

tempts to improve standard MT systems, and 

direct application, which adopts DNNs to de-

sign a purely neural MT model. We can elabo-

rate further:

•	 Indirect application designs new features 

with DNNs in the framework of standard  

MT systems, which consist of multiple sub-

models (such as translation selection and lan-

guage models). For example, DNNs can be  

leveraged to represent the source language  

context’s semantics and better predict trans-

lation candidates.

•	Direct application regards MT as a se-

quence-to-sequence prediction task and, 

without using any information from stan-

dard MT systems, designs two deep neural 

networks—an encoder, which learns con-

tinuous representations of source language 

sentences, and a decoder, which generates 

the target language sentence with source 

sentence representation.

Let’s start by examining DNNs themselves.

Deep Neural Networks
Researchers have designed many kinds 

of DNNs, including deep belief networks 

(DBNs), deep stack networks (DSNs), con-

volutional neural networks (CNNs), and  

recurrent neural networks (RNNs). In NLP, 

all these DNNs aim to learn the syntactic 

and semantic representations for the dis-

crete words, phrases, structures, and sen-

tences in the real-valued continuous space so 

D
ue to the powerful capacity of feature learning and representation, deep 

neural networks (DNNs) have made big breakthroughs in speech recog-

nition and image processing. Following recent success in signal variable process-

ing, researchers want to �gure out whether DNNs can achieve similar progress in 
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that similar words (phrases or struc-

tures) are near each other. We brie�y 

introduce �ve popular neural networks  

after giving some notations—namely, 

we use wi to denote the ith word of 

a T-word sentence, and xi as the cor-

responding distributed real-valued 

vector. Vectors of all the words in 

the vocabulary form the embedding  

matrix L ∈ Rk×|V|, where k is the  

embedding dimension and |V| is the 

vocabulary size. Additionally, U and 

W are parameter matrices of a neural 

network, and b is the bias; f and e in-

dicate the source and target sentence, 

respectively.

Feed-Forward Neural Network 

The feed-forward neural network (FNN)  

is one of the simplest multilayer net-

works.1 Figure 1 shows an FNN ar-

chitecture with hidden layers as well  

as input and output layers. Taking the  

language model as an example, the 

FNN attempts to predict the conditional 

probability of the next word given the 

�xed-window history words. Suppose 

we have a T-word sentence, w1, w2, ...,  

wt, ..., wT; our task is to estimate  

the four-gram conditional probability 

of wt given the trigram history wt−3, 

wt−2, wt−1. The FNN �rst maps each his-

tory word into a real-valued vector xt−3,  

xt−2, xt−1 using embedding matrix L ∈ 

Rk×|V|; xt−3, xt−2, xt−1 are then concate-

nated to form a single input vector xt_

history. The hidden layers are followed 

to extract the abstract representation 

of the history words through a linear 

transformation W × xt_history and a non-

linear projection f(W × xt_history + b),  

such as f = tanh (x)). The softmax layer 

is usually adopted in the output to  

predict each word’s probability in the 

vocabulary.

Recurrent Neural Network 

The recurrent neural network (Recur-

rentNN)2 is theoretically more power-

ful than FNN in language modeling due 

to its capability of representing all the 

history words rather than a �xed-length 

context as in FNN. Figure 2 depicts the 

RecurrentNN architecture. Given the 

history representation ht−1 encoding all 

the preceding words, we can obtain the 

new history representation ht with the 

formula ht = Uxt + Wht−1. With ht, we 

can calculate the probability of next 

word using the softmax function:
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where i traverses all the words in the 

vocabulary. Similarly, the new his-

tory representation ht and the next 

word will be utilized to get the his-

tory representation ht+1 at time t + 1.

Recursive Auto-encoder 

The recursive auto-encoder (RAE)3 

provides a good way to embed a 

phrase or a sentence in continu-

ous space with an unsupervised or 

semisupervised method. Figure 3 

shows an RAE architecture that learns 

a vector representation of a four-word 

phrase by recursively combining two 

children vectors in a bottom-up man-

ner. By convention, the four words w1, 

w2, w3, and w4 are �rst projected into 

real-valued vectors x1, x2, x3, and x4. 

In RAE, a standard auto-encoder (in 

box) is reused at each node. For two 

children c1 = x1 and c2 = x2, the auto-

encoder computes the parent vector y1 

as follows:

y1 = f(W(1) [c1; c2] + b(1)). (2)

To assess how well the parent’s vec-

tor represents its children, the standard 

auto-encoder reconstructs the children 

in a reconstruction layer:

[c′1; c′2] = f ′(W(2) y1 + b(2)). (3)

The standard auto-encoder tries to 

minimize the reconstruction errors  

between the inputs and the recon-

structions during training:

Erec([c1; c2]) = ½ ||[c1; c2] - [c′1; c′2]||2.
 (4)

The same auto-encoder is reused 

until the whole phrase’s vector is gen-

erated. For unsupervised learning, 

the objective is to minimize the sum 

of reconstruction errors at each node 

in the optimal binary tree:
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Figure 1. The feed-forward neural 

network (FNN) architecture. Taking the 

language model as an example, the 

FNN attempts to predict the conditional 

probability of the next word given the 

fixed-window history words.
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Figure 2. The recurrent neural network 

(RecurrentNN) architecture. Theoretically, 

it’s more powerful than FNN in language 

modeling due to its capability of 

representing all the history words rather 

than a fixed-length context.
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A(x) denotes all the possible binary 

trees that can be built from input x.

Recursive Neural Network 

The recursive neural network (Recur-

siveNN)4 performs structure prediction 

and representation learning using a bot-

tom-up fashion similar to that of RAE. 

However, RecursiveNN differs from 

RAE in four points: RecursiveNN is op-

timized with supervised learning; the tree 

structure is usually �xed before train-

ing; RecursiveNN doesn’t have to recon-

struct the inputs; and different matrices 

can be used at different nodes. Figure 4 

illustrates an example that applies three 

different matrices. The structure, repre-

sentation, and parameter matrices W(1), 

W(2), and W(3) have been learned to op-

timize the label-related supervised objec-

tive function.

Convolutional Neural Network

The convolutional neural network 

(CNN)5 consists of the convolution and 

pooling layers and provides a standard 

architecture that maps variable-length 

sentences into �xed-size distributed vec-

tors. Figure 5 shows the architecture. 

The CNN model takes as input the 

sequence of word embeddings, sum-

marizes the sentence meaning by con-

volving the sliding window and pooling 

the saliency through the sentence, 

and yields the �xed-length distributed  

vector with other layers, such as drop-

out and fully connected layers.

Given a sentence w1, w2, ..., wt, ..., 

wT, each word wt is �rst projected 

into a vector xt. Then, we concate-

nate all the vectors to form the input 

X = [x1, x2, ..., xt, ..., xT].

The convolution layer involves sev-

eral �lters W ∈ Rh×k that summarize the 

information of an h-word window and 

produce a new feature. For the window 

of h words Xt:t+h−1, a �lter Fl (1 ≤ l ≤ L) 

generates the feature yt
l as follows:

y f WX bt
l

t t h= +( )+ −: 1
. (6)

When a �lter traverses each window 

from X1:h−1 to XT−h+1:T, we get the fea-

ture map’s output: y y yl l
T t
l

1 2 1, , ,… − +




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(yl ∈ RT−h+1). Note that the sentences 

differ from each other in length T, and 

yl has different dimensions for different 

sentences. A key question becomes how 

do we transform the variable-length 

vector yl into a �xed-size vector?

The pooling layer is designed to 

perform this task. In most cases, we 

apply a standard max-over-time pool-

ing  operation over yl and choose the 

maximum value ŷ max yl l
= { }. With 

L �lters, the dimension of the pooling 

layer output will be L. Using other lay-

ers, such as fully connected linear lay-

ers, we can �nally obtain a �xed-length 

output representation.

Machine Translation
Statistical models dominate the MT 

community today. Given a source lan-

guage sentence f, statistical machine 

translation (SMT) searches through 

all the target language sentences e 

and �nds the one with the highest 

probability:

′ =e p e f
e

argmax ( | ). (7)

Usually, p(e|f) is decomposed using 

the log-linear model6:
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y3 =f(W
(1)[y2; x4]+b)

y2 =f(W
(1)[y1; x3]+b)

y1 =f(W
(1)[x1; x2]+b)

x1 x2 x3 x4

Figure 3. The recursive auto-encoder (RAE) architecture. It learns a vector representation of 

a four-word phrase by recursively combining two children vectors in a bottom-up manner.

Figure 4. Recursive neural network 

(RecursiveNN) architecture. The 

structure, representation, and 

parameter matrices W(1), W(2), and W(3) 

have been learned to optimize the label-

related supervised objective function.

y3 =f(W (3)[y2; x4]+b(3))

label

label

label

y2 =f(W (2)[y1; x3]+b(2))

x2x1 x3 x4

y1 =f(W (1)[x1; x2]+b(1))
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where hi(f, e) can be any translation fea-

ture and λi is the corresponding weight.

The translation process can be di-

vided into three steps: partition the 

source sentence (or syntactic tree) into 

a sequence of words or phrases (or 

set of subtrees), perform word/phrase 

or subtree translation; and compos-

ite the fragment translations to obtain 

the �nal target sentence. If the transla-

tion unit is word, it’s the word-based 

model. If phrase is the basic transla-

tion unit, it’s the popular phrase-based 

model. In this article, we mainly take 

the phrase-based SMT7 as an example.

In the training stage, we �rst per-

form word alignment to �nd word 

correspondence between the bilingual 

sentences. Then, based on the word-

aligned bilingual sentences, we extract 

phrase-based translation rules (such as 

the a–e translation rules in Figure 6)  

and learn their probabilities. Mean-

while, the phrase reordering model 

can be trained from the word-aligned 

bilingual text. In addition, the lan-

guage model can be trained with the 

large-scale target monolingual data.

During decoding, the phrase-based 

model �nds the best phrase partition 

of the source sentence, searches for the 

best phrase translations, and �gures 

out the best composition of the target 

phrases. Figure 6 shows an example 

for a Chinese-to-English translation. 

Phrasal rules (a–e) are �rst utilized to 

get the partial translations, and then 

reordering rules (f–i) are employed to 

arrange the translation positions. Rule 

g denotes that “the two countries” 

and “the relations between” should be 

swapped. Rules f, g, and i just compos-

ite the target phrases monotonously. 

Finally, the language model measures 

which translation is more accurate.

Obviously, from training and decod-

ing, we can see the dif�culties in SMT:

•	 It’s dif�cult to obtain accurate 

word alignment because we have 

no knowledge besides the parallel 

data.

•	 It’s dif�cult to determine which tar-

get phrase is the best candidate for 

a source phrase because a source 

phrase can have many translations, 

and different contexts lead to differ-

ent translations.

•	 It’s tough work to predict the trans-

lation derivation structure because 

phrase partition and phrase reor-

dering for a source sentence can be 

arbitrary.

•	 It’s dif�cult to learn a good language 

model due to the data sparseness 

problem.
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Figure 5. The convolutional neural network (CNN) architecture. The CNN model takes as 

input the sequence of word embeddings, summarizes the sentence meaning by convolving 

the sliding window and pooling the saliency through the sentence, and yields the fixed-

length distributed vector with other layers, such as dropout and fully connected layers.

Figure 6. An example of translation derivation structure prediction. Phrasal rules 

(a–e) are first utilized to get the partial translations, and then reordering rules (f–i) 

are employed to arrange the translation positions. Rule g denotes that “the two 

countries” and “the relations between” should be swapped. Rules f, g, and i just 

composite the target phrases monotonously. Finally, the language model measures 

which translation is more accurate.
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The core issues lie in two areas: data 

sparseness (when considering addi-

tional contexts) and the lack of se-

mantic modeling of words (phrases 

and sentences). Fortunately, DNNs are 

good at learning semantic representa-

tions and modeling wide context with-

out severe data sparseness.

DNNs in Standard SMT 
Frameworks
The indirect application of DNNs in 

SMT aims to solve one dif�cult prob-

lem in an SMT system with more 

accurate context modeling and syn-

tactic/semantic representation. Table 1  

gives an overview of SMT problems 

and their various DNN solutions.

DNNs for Word Alignment

Word alignment attempts to identify 

the word correspondence between 

parallel sentence pairs. Given a source 

sentence f = f1, f2, ..., ft, ..., fT and its 

target translation e = e1, e2, ..., et, ..., 

eT ′, the word alignment is to �nd the 

set A = {(i, j), 1 ≤ i ≤ T, 1 ≤ j ≤ T ′}, in 

which (i, j) denotes that fi and ej are 

translations of each other. Figure 7 

shows an example.

In SMT, the generative model is a 

popular solution for word alignment. 

Generative approaches use the statistics 

of word occurrences and learn their pa-

rameters to maximize the likelihood of 

the bilingual training data. They have 

two disadvantages: discrete symbol 

representation can’t capture the simi-

larity between words, and contextual 

information surrounding the word isn’t 

fully explored.

Nan Yang and colleagues8 extended 

the HMM word alignment model and 

adapted each subcomponent with an 

FNN. The HMM word alignment 

takes the following form:

p a e f p e f p a alex j a d j

j

T

j j
( , | ) ( | ) ( )= −

−

=

′

∏ 1

1

,
 

(9)

where plex is the lexical translation 

probability and pd is the distor-

tion probability. Both components are 

modeled with an FNN. For the lexical  

translation score, the authors employed 

the following formula:

slex(ej|fi, e, f) = f3 ° f2 ° f1 ° L  

(window(ej), window (fi)). (10)

The FNN-based approach considers 

the bilingual contexts (window(ej) and 

window (fi)). All the source and target 

words in the window are mapped into 

vectors using L ∈ Rk×|V| and concatenated  

to feed to hidden layers f1 and f2.  

Finally, the output layer f3 generates 

a translation score. A similar FNN is 

applied to model the distortion score 

sd(aj - aj−1). This DNN-based method 

not only can learn the bilingual word  

embedding that captures the similarity 

between words, but can also make use 

of wide contextual information.

Akihiro Tamura and colleagues9 

adopted RecurrentNN to extend the 

FNN-based model. Because the FNN-

based approach can only explore 

the context in a window, the Recur-

rentNN predicts the jth alignment aj 

by conditioning on all the preceding 

alignments a j1
1− . 

The reported experimental results 

indicate that RecurrentNN outper-

forms FNN in word alignment qual-

ity on the same test set. It also implies 

that RecurrentNN can capture long 

dependency by trying to memorize all 

the history.

DNNs for Translation Rule 

Selection

With word-aligned bilingual text, we 

can extract a huge number of transla-

tion rules. In phrase-based SMT, we can 

extract many phrase translation rules 

for a given source phrase. It becomes a 

key issue to choose the most appropri-

ate translation rules during decoding. 

Traditionally, translation rule selection  

is usually performed according to co-

occurrence statistics in the bilingual 

training data rather than by exploring 

the large context and its semantics.

Will Zou and colleagues10 used two 

FNNs (one for source language and 

the other for target language) to learn 

bilingual word embeddings so as to 

make sure that a source word is close 

to its correct translation in the joint 

embedding space. The FNN used for 

source or target language takes as in-

put the concatenation of the context 

words, applies one hidden layer, and 

�nally generates a score in the output 

Table 1. Statistical machine translation difficulties and their corresponding  

deep neural network solutions.

Word alignment FNN, RecurrentNN

Translation rule selection FNN, RAE, CNN

Reordering and structure prediction RAE, RecurrentNN, RecursiveNN

Language model FNN, RecurrentNN

Joint translation prediction FNN, RecurrentNN, CNN

we pay great attention to developing the relations between the two countries

Figure 7. Word alignment example. Each line connecting a Chinese word to an 

English word indicates they are translation pairs.
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layer. For source language embedding, 

the objective function is as follows:

Jsrc + lJtgt→src, (11)

where Jsrc is the contrastive objective 

function with monolingual data, and 

Jtgt→src is a bilingual constraint:

Jtgt→src = || Lsrc - Atgt→srcLtgt||2. (12)

Equation 12 says that after word 

alignment projection Atgt→src, the tar-

get word embeddings Ltgt should be 

close to the source embeddings Lsrc. 

This method has shown that it can 

cluster bilingual words with similar 

meanings. The bilingual word embed-

dings are adopted to calculate the se-

mantic similarity between the source 

and target phrases in a phrasal rule, 

effectively improving the performance 

of translation rule selection.

Jianfeng Gao and colleagues11 at-

tempted to predict the similarity be-

tween a source and a target phrase 

using two FNNs with the objective 

of maximizing translation quality on 

a validation set. For a phrasal rule 

(f1,…,i, e1,…,j), the FNN (for source 

or target language) is employed �rst 

to abstract the vector representa-

tion for f1,…,i  and e1,…,j, respectively. 

The similarity score will be score  
f e y yi j f

T
ei j1 1 1 1, , , ,,

, , , ,… …

… …

( ) = . The FNN 

parameters are trained to optimize the 

score of the phrase pairs that can lead  

to better translation quality in the 

valida tion set.

Because word order isn’t considered 

in the above approach, Jianjun Zhang 

and colleagues12 proposed a bilingually 

constrained RAE (BRAE) to learn se-

mantic phrase embeddings. As shown in 

Figure 3, unsupervised RAE can get the 

vector representation for each phrase. 

In contrast, the BRAE model not only 

tries to minimize the reconstruction  

error but also attempts to minimize 

the semantic distance between phrasal 

translation equivalents. By �ne-tuning  

BRAE’s parameters, the model can 

learn the semantic vector representation 

for each source and target phrase. Using 

BRAE, each phrase translation rule can 

be associated with a semantic similarity. 

With the help of semantic similarities, 

translation rule selection is much more 

accurate.

Lei Cui and colleagues13 applied the 

auto-encoder to learn the topic repre-

sentation for each sentence in the par-

allel training data. By associating each 

translation rule with topic informa-

tion, topic-related rules can be selected 

according to the distributed similarity 

with the source language text.

Although these methods adopt dif-

ferent DNNs, they all achieve better 

rule prediction by addressing differ-

ent aspects such as phrase similar-

ity and topic similarity. FNN as used 

in the �rst two approaches is simple 

and learns much of the semantics of 

words and phrases with bilingual or 

BLEU (Bilingual Evaluation Under-

study) objectives. In contrast, RAE is 

capable of capturing a phrase’s word 

order information.

DNNs for Reordering and 

Structure Prediction

After translation rule selection, we can 

obtain the partial translation candi-

dates for the source phrases (see the 

branches in Figure 6). The next task 

is to perform derivation  structure 

 prediction, which includes two sub-

tasks: determining which two neigh-

boring candidates should be composed 

�rst and deciding how to compose 

the two candidates. The �rst subtask 

hasn’t been explicitly modeled to date. 

The second subtask is usually done 

via the reordering model. In SMT, the 

phrase reordering model is formalized 

as a classi�cation problem, and dis-

crete word features are employed, al-

though data sparseness is a big issue 

and similar phrases can’t share similar 

reordering patterns with each other.

Peng Li and colleagues14,15 adopted 

the semisupervised RAE to learn the 

phrase representations that are sensitive 

to reordering patterns. For two neigh-

boring translation candidates (f1, e1)  

and (f2, e2), the objective function is

E = aErec(f1, e1, f2, e2) + (1 - a) Ereorder 

((f1, e1), (f2, e2)), (13)

where Erec(f1, e1, f2, e2) is the sum 

of reconstruction errors, and Ereorder 

((f1, e1), (f2, e2)) is the reordering loss 

computed with cross-entropy error 

function. The semisupervised RAE 

shows that it can group the phrases 

sharing similar reordering patterns.

Feifei Zhai and colleagues16 and  

Jianjun Zhang and colleagues17 explic-

itly modeled the translation process  

of the derivation structure prediction. 

A type-dependent RecursiveNN17 

jointly determines which two partial  

translation candidates should be com-

posed together and how that should 

be done. Figure 8 shows a training 

example. For a parallel sentence pair 

(f, e), the correct derivation exactly 

leads to e, as Figure 8a illustrates. 

Meanwhile, we have other wrong 

derivation trees in the search space 

(Figure 8b gives one incorrect deri-

vation). Using RecursiveNN, we can 

get scores SRecursiveNN(cTree) and 

SRecursiveNN(wTree) for the correct and 

incorrect derivations. We train the 

model by making sure that the score 

of the correct derivation is better than 

that of incorrect one:

SRecursiveNN(cTree) ≤ SRecursiveNN(wTree) 

+ D(SRecursiveNN(cTree), 

SRecursiveNN(wTree)), (14)

where, D( SRecursiveNN(cTree), SRecursiveNN 

(wTree)) is a structure margin.

As RecursiveNN can only explore 

the children information, Shujie Liu 

and colleagues18 designed a model 
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combining RecursiveNN and Recur-

rentNN together. This not only retains 

the capacity of RecursiveNN but also 

takes advantage of the history.

Compared to RAE, RecursiveNN ap-

plies different weight matrixes according 

to different composition types. Other 

work17 has shown via experiments that 

RecursiveNN can outperform RAE on 

the same test data.

DNNs for Language Models in SMT

During derivation prediction, any 

composition of two partial transla-

tions leads to a bigger partial transla-

tion. The language model performs the 

task to measure whether the transla-

tion hypothesis is �uent. In SMT, the 

most popular language model is the 

count-based n-gram model. One big 

issue here is that data sparseness be-

comes severe as n grows. To alleviate 

this problem, researchers tried to de-

sign a neural network-based language 

model in the continuous vector space.

Yoshua Bengio and colleagues1 de-

signed an FNN as Figure 1 shows to 

learn the n-gram model in the continu-

ous space. For an n-gram e1, ..., en, each 

word in e1, ..., en−1 is mapped onto a 

vector and concatenation of vectors 

feed into the input layer followed by one 

hidden layer and one softmax layer that 

outputs the probability p(en|e1, ..., en−1). 

The network parameters are optimized 

to maximize the likelihood of the large-

scale monolingual data. Ashish Vaswani 

and colleagues19 employed two hidden  

layers in the FNN that’s similar to  

Bengio’s FNN.

The n-gram model assumes that the 

word depends on the previous n - 1  

words. RecurrentNN doesn’t use this 

assumption and models the probabil-

ity of a sentence as follows:

p e e p e e eT j j

j

T

1 1 1

1

, , | , , .… …′ −

=

′

( ) = ( )∏  
 (15)

All the history words are applied to 

predict the next word. 

Tomas Mikolov20 designed the Re-

currentNN (see Figure 2). A sentence 

start symbol <s> is �rst mapped to a 

real-valued vector as h0 and then em-

ployed to predict the probability of e1; 

h0 and e1 are used to form the new his-

tory h1 to predict e2, h1 and e2 gener-

ate h2, and so on. When predicting eT′, 
all the history e1, ..., eT′−1 can be used. 

The RecurrentNN language model is 

employed to rescore the n-best trans-

lation candidates. Michael Auli and 

Jianfeng Gao21 integrated the Re-

currentNN language model during 

the decoding stage, and further im-

provements can still be obtained than 

just rescoring the �nal n-best transla-

tion candidates.

DNNs for Joint Translation 

Prediction

The joint model predicts the target 

translation by using both of the source 

sentences’ information and the target-

side history.

Yuening Hu and colleagues22 and 

Youzheng Wu and colleagues23 cast the 

translation process as a language model 

prediction over the minimum transla-

tion units (smallest bilingual phrase 

pairs satisfying word alignments). They 

adopted RecurrentNN to model the 

process.

Michael Auli and colleagues24 adapted 

the RecurrentNN language model and 

Figure 8. Type-dependent RecursiveNN: (a) correct derivation vs. (b) incorrect 

derivation. The correct derivation is obtained by performing forced decoding on 

the bilingual sentence pair; the derivation structure leads directly to the correct 

translation. The incorrect derivation is obtained by decoding the source sentence 

with the trained SMT model; it results in a wrong translation.
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added a vector representation for the 

source sentence as the input along with 

the target history. Jacob Devlin and col-

leagues25 proposed a neural network 

joint model (NNJM) that adapts FNN 

to take as input both the n - 1 target 

word history and h-window source con-

text. They reported promising improve-

ments over the strong baseline. Because 

no global information is employed in 

NNJM, Fandong Meng and colleagues26 

and Jiajun Zhang and colleagues27 pre-

sented an augmented NNJM model: 

CNN is designed to learn the vector 

representation for each source sentence; 

then, the sentence representation aug-

ments the NNJM model’s input to pre-

dict the target word generation. This 

approach further improves the transla-

tion quality over the NNJM model.

The RecurrentNN joint model just 

�ts the phrase-based SMT due to the as-

sumption that the translation is gener-

ated from left to right or right to left. In 

contrast, FNN and CNN can bene�t all 

the translation models because they fo-

cus only on applying DNNs to learn the 

distributed representations of local and 

global contexts.

Purely Neural MT
Purely neural machine translation 

(NMT) is the new MT paradigm. The 

standard SMT system consists of sev-

eral subcomponents that are separately 

optimized. In contrast, NMT employs 

only one neural network that’s trained 

to maximize the conditional likelihood 

on the bilingual training data. The basic 

architecture includes two networks: one 

encodes the variable-length source sen-

tence into a real-valued vector, and the 

other decodes the vector into a variable-

length target sentence.

Kyunghyun Cho and colleagues,28 

Ilya Sutskever and colleagues,29 and 

Dzmitry Bahdanau and colleagues30 fol-

low the similar RecurrentNN encoder-

decoder architecture (see Figure 9).  

Given a source sentence in vector  

sequence X = (x1, ..., xT), the encoder 

applies RecurrentNN to obtain a vec-

tor C = q(h1, ..., hT) in which ht (1 ≤ ht 

≤ T) is calculated as follows:

ht = f(ht−1, xt), (16)

where f and q are nonlinear func-

tions. Sutskever and colleagues sim-

pli�ed the vector to be a �xed-length 

vector C = q(h1, ..., hT) = hT, whereas 

Bahdanau and colleagues directly  

applied the variable-length vector  

(h1, ..., hT) when predicting each tar-

get word.

The decoder also applies Recur-

rentNN to predict the target sentence 

Y = (y1, ..., yT’), where T′ usually dif-

fers from T. Each target word yt de-

pends on the source context C and 

all the predicted target words {y1, ..., 

yt−1}; the probability of Y will be

p Y p y y y Ct t t

t

T

( ) = { }( )−

=

′

∑ | , , ,1 1

1

… . (17)

Sutskever and colleagues chose Ct = 

C = hT, and Bahdanau and colleagues 

set C ht j
T

tj j= =∑ 1α .

All the network parameters are trained 

to maximize ∏p(Y) in the bilingual train-

ing data. For a speci�c network struc-

ture, Sutskever and colleagues employed 

deep LSTM to calculate each hidden 

state, whereas Bahdanau and colleagues 

applied bidirectional RecurrentNN to 

compute the source-side hidden-state hj. 

Both report similar or superior perfor-

mance in English-to-French translation 

compared to the standard phrase-based 

SMT system.

The MT network architecture is 

simple, but it has many shortcomings. 

For example, it restricts tens of thou-

sands of vocabulary words for both 

languages to make it workable in real 

applications, meaning that many un-

known words appear. Furthermore, 

this architecture can’t make use of 

the target large-scale monolingual 

data. Recently, Minh-Thang Luong 

and colleagues31 and Sebastien Jean 

and colleagues32 attempted to solve 

the vocabulary problem, but their ap-

proaches are heuristic. For example, 

they used a dictionary in the post-

processor to translate the unknown 

words.

Discussion and Future 
Directions
Applying DNNs to MT is a hot re-

search topic. Indirect application is 

a relatively conservative attempt be-

cause it retains the standard SMT sys-

tem’s strength, and the log-linear SMT 

model facilitates the integration of 

DNN-based translation features that 

can employ different kinds of DNNs 

to deal with different tasks. However, 

indirect application makes the SMT 

system much more complicated.

In contrast, direct application is 

simple in terms of model architecture: 

a network encodes the source sentence 

and another network decodes to the 

target sentence. Translation quality is 

improving, but this new MT architec-

ture is far from perfect. There’s still 

an open question of how to ef�ciently 

cover most of the vocabulary, how 

to make use of the target large-scale 

Figure 9. Neural machine translation (NMT) architecture. The model reads a source 

sentence abc and produces a target sentence wxyz.

w
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monolingual data, and how to utilize 

more syntactic/semantic knowledge in 

addition to source sentences.

For both direct and indirect appli-

cations, DNNs boost translation per-

formance. Naturally, we’re interested 

in the following questions:

•	Why can DNNs improve transla-

tion quality?

•	Can DNNs lead to a big break- 

through?

•	What aspects should DNNs im-

prove if they’re to become an MT 

panacea?

For the �rst question, DNNs rep-

resent and operate language units in 

the continuous vector space that fa-

cilitates the computation of semantic 

distance. For example, several algo-

rithms such as Euclidean distance and 

cosine distance can be applied to cal-

culate the similarity between phrases 

or sentences. But they also capture 

much more contextual information 

than standard SMT systems, and data 

sparseness isn’t a big problem. For ex-

ample, the RecurrentNN can utilize all 

the history information before the cur-

rently predicted target word; this is im-

possible with standard SMT systems.

For the second question, DNNs 

haven’t achieved huge success with 

MT until recently. We’ve conducted 

some analysis and propose some key 

problems for SMT with DNNs:

•	Computational complexity. Be-

cause the network structure is com-

plicated, and normalization over 

the entire vocabulary is usually 

required, DNN training is a time-

consuming task. Training a stan-

dard SMT system on millions of 

sentence pairs only requires about 

two or three days, whereas train-

ing a similar NMT system can take 

several weeks, even with powerful 

GPUs.

•	Error analysis. Because the DNN-

based subcomponent (or NMT) deals 

with variables in the real-valued con-

tinuous space and there are no effec-

tive approaches to show a meaningful 

and explainable trace from input to 

output, it’s dif�cult to understand 

why it leads to better translation per-

formance or why it fails.

•	Remembering and reasoning. For cur-

rent DNNs, the continuous vector 

representation (even using LSTM in 

RecurrentNN) can’t remember full in-

formation for the source sentence. It’s 

quite dif�cult to obtain correct target 

translation by decoding from this rep-

resentation. Furthermore, unlike other 

sequence-to-sequence NLP tasks, MT 

is a more complicated problem that 

requires rich reasoning operations 

(such as coreference resolution). Cur-

rent DNNs can’t perform this kind of 

reasoning with simple vector or ma-

trix operations.

These problems tell us that 

DNNs have a long way to go 

in MT. Nevertheless, due to their ef-

fective representations of languages, 

they could be a good solution eventu-

ally. To achieve this goal, we should 

pay attention to the path ahead.

First, DNNs are good at handling 

continuous variables, but natural lan-

guage is composed of abstract discrete 

symbols. If they completely abandon 

discrete symbols, DNNs won’t fully 

control the language generation pro-

cess: sentences are discrete, not con-

tinuous. Representing and handling 

both discrete and continuous vari-

ables in DNNs is a big challenge.

Second, DNNs represent words, 

phrases, and sentences in continuous 

space, but what if they could mine 

deeper knowledge, such as parts of 

speech, syntactic parse trees, and 

knowledge graphs? What about ex-

ploring wider knowledge beyond the 

sentence, such as paragraphs and dis-

course? Unfortunately, representation, 

computation, and reasoning of such 

information in DNNs remain a dif�-

cult problem.

Third, effectively integrating DNNs 

into standard SMT is still worth trying. 

In the multicomponent system, we can 

study which subcomponent is indis-

pensable and which can be completely 

replaced by DNN-based features. In-

stead of the log-linear model, we need a 

better mathematical model to combine 

multiple subcomponents.

Fourth, it’s interesting and impera-

tive to investigate more ef�cient algo-

rithms for parameter learning of the 

complicated neural network architec-

tures. Moreover, new network archi-

tectures can be explored in addition to 

existing neural networks. We believe 

that the best network architectures for 

MT must be equipped with representa-

tion, remembering, computation, and 

reasoning, simultaneously.
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