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Abstract

Partial differential equations (PDEs) are indispensable for modeling many physical phenomena and also commonly used for

solving image processing tasks. In the latter area, PDE-based approaches interpret image data as discretizations of multivariate

functions and the output of image processing algorithms as solutions to certain PDEs. Posing image processing problems in the

infinite-dimensional setting provides powerful tools for their analysis and solution. For the last few decades, the reinterpretation

of classical image processing problems through the PDE lens has been creating multiple celebrated approaches that benefit

a vast area of tasks including image segmentation, denoising, registration, and reconstruction. In this paper, we establish

a new PDE interpretation of a class of deep convolutional neural networks (CNN) that are commonly used to learn from

speech, image, and video data. Our interpretation includes convolution residual neural networks (ResNet), which are among

the most promising approaches for tasks such as image classification having improved the state-of-the-art performance in

prestigious benchmark challenges. Despite their recent successes, deep ResNets still face some critical challenges associated

with their design, immense computational costs and memory requirements, and lack of understanding of their reasoning.

Guided by well-established PDE theory, we derive three new ResNet architectures that fall into two new classes: parabolic

and hyperbolic CNNs. We demonstrate how PDE theory can provide new insights and algorithms for deep learning and

demonstrate the competitiveness of three new CNN architectures using numerical experiments.

Keywords Machine learning · Deep neural networks · Partial differential equations · PDE-constrained optimization · Image

classification

1 Introduction

For the last three decades, algorithms inspired by partial dif-

ferential equations (PDE) have had a profound impact on

many processing tasks that involve speech, image, and video

data. Adapting PDE models that were traditionally used in

physics to perform image processing tasks has led to ground-

breaking contributions. An incomplete list of seminal works

includes optical flow models for motion estimation [29],

nonlinear diffusion models for filtering of images [41],
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variational methods for image segmentation [1,8,39], and

nonlinear edge-preserving denoising [45].

A standard step in PDE-based data processing is inter-

preting the involved data as discretizations of multivariate

functions. Consequently, many operations on the data can

be modeled as discretizations of PDE operators acting on

the underlying functions. This continuous data model has

led to solid mathematical theories for classical data pro-

cessing tasks obtained by leveraging the rich results from

PDEs and variational calculus (e.g., [46]). The continuous

perspective has also enabled more abstract formulations that

are independent of the actual resolution, which has been

exploited to obtain efficient multiscale and multilevel algo-

rithms (e.g., [37]).

In this paper, we establish a new PDE interpretation of

deep learning tasks that involve speech, image, and video

data as features. Deep learning is a form of machine learn-

ing that uses neural networks with many hidden layers [4,34].

Although neural networks date back at least to the 1950s [44],

their popularity soared a few years ago when deep neu-

ral networks (DNNs) outperformed other machine learning
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methods in speech recognition [42] and image classifica-

tion [28]. Deep learning also led to dramatic improvements

in computer vision, e.g., surpassing human performance in

image recognition [28,32,34]. These results ignited the recent

flare of research in the field. To obtain a PDE interpretation,

we use a continuous representation of the images and extend

recent works by [21,49], which relate deep learning prob-

lems for general data types to ordinary differential equations

(ODE).

Deep neural networks filter input features using several

layers whose operations consist of element-wise nonlinear-

ities and affine transformations. The main idea of convo-

lutional neural networks (CNN) [33] is to base the affine

transformations on convolution operators with compactly

supported filters. Supervised learning aims at learning the

filters and other parameters, which are also called weights,

from training data. CNNs are widely used for solving

large-scale learning tasks involving data that represent a dis-

cretization of a continuous function, e.g., voice, images, and

videos [32,33,35]. By design, each CNN layer exploits the

local relation between image information, which simplifies

computation [42].

Despite their enormous success, deep CNNs still face crit-

ical challenges including designing a CNN architecture that

is effective for a practical learning task, which requires many

choices. In addition to the number of layers, also called depth

of the network, important aspects are the number of convo-

lution filters at each layer, also called the width of the layers,

and the connections between those filters. A recent trend is to

favor deep over wide networks, aiming at improving gener-

alization, i.e., the performance of the CNN on new examples

that were not used during the training [34]. Another key

challenge is designing the layer, i.e., choosing the combina-

tion of affine transformations and nonlinearities. A practical

but costly approach is to consider depth, width, and other

properties of the architecture as hyperparameters and jointly

infer them with the network weights [26]. Our interpreta-

tion of CNN architectures as discretized PDEs provides new

mathematical theories to guide the design process. In short,

we obtain architectures by discretizing the underlying PDE

through adequate time integration methods.

In addition to substantial training costs, deep CNNs face

fundamental challenges when it comes to their interpretabil-

ity and robustness. In particular, CNNs that are used in

mission-critical tasks (such as driverless cars) face the chal-

lenge of being “explainable.” Casting the learning task within

nonlinear PDE theory allows us to understand the properties

of such networks better. We believe that further research into

the mathematical structures presented here will result in a

more solid understanding of the networks and will close the

gap between deep learning and more mature fields that rely

on nonlinear PDEs such as fluid dynamics. A direct impact of

our approach can be observed when studying, e.g., adversar-

ial examples. Recent works [40] indicate that the predictions

obtained by deep networks can be very sensitive to pertur-

bations of the input images. These findings motivate us to

favor networks that are stable, i.e., networks whose output

are robust to small perturbations of the input features, similar

to what PDE analysis suggests.

In this paper, we consider residual neural networks

(ResNet) [24], a very effective type of neural networks. We

show that residual CNNs can be interpreted as a discretiza-

tion of a space-time differential equation. We use this link for

analyzing the stability of a network and for motivating new

network models that bear similarities with well-known PDEs.

Using our framework, we present three new architectures.

First, we introduce parabolic CNNs that restrict the forward

propagation to dynamics that smooth image features and bear

similarities with anisotropic filtering [12,41,48]. Second, we

propose hyperbolic CNNs that are inspired by Hamiltonian

systems and finally, a third, second-order hyperbolic CNN.

As to be expected, those networks have different properties.

For example, hyperbolic CNNs approximately preserve the

energy in the system, which sets them apart from parabolic

networks that smooth the image data, reducing the energy.

Computationally, the structure of a hyperbolic forward prop-

agation can be exploited to alleviate the memory burden

because hyperbolic dynamics can be made reversible on the

continuous and discrete levels. The methods suggested here

are closely related to reversible ResNets [9,18].

The remainder of this paper is organized as follows. In

Sect. 2, we briefly introduce residual networks and their

relation to ordinary and, in the case of convolutional neu-

ral networks, partial differential equations. In Sect. 3, we

present three novel CNN architectures motivated by PDE

theory. Based on our continuous interpretation, we design

regularization functionals that enforce the smoothness of

the dynamical systems, in Sect. 4. In Sect. 5, we present

numerical results for image classification that indicate the

competitiveness of our PDE-based architectures. Finally, we

highlight some directions for future research in Sect. 6.

2 Residual Networks and Differential
Equations

The abstract goal of machine learning is to find a function

f : Rn × Rp → R
m such that f (·, θ) accurately predicts

the result of an observed phenomenon (e.g., the class of an

image or a spoken word). The function is parameterized by

the weight vector θ ∈ Rp that is trained using examples. In

supervised learning, a set of input features y1, . . . , ys ∈ Rn

and output labels c1, . . . , cs ∈ R
m are available and used

to train the model f (·, θ). The output labels are vectors

whose components correspond to the estimated probability

of a particular example belonging to a given class. As an
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Fig. 1 Classification results of the three proposed CNN architecture

for four test images from the STL-10 dataset [14]. The predicted and

actual class probabilities are visualized using bar plots on the right of

each image. While all networks reach an adequate prediction accuracy

between around 79.6% and 80.9% across the whole dataset, predictions

for individual images vary in some cases (Color figure online)

example, consider the image classification results in Fig. 1

where the predicted and actual labels are visualized using

bar plots. For brevity, we denote the training data by Y =
[y1, y2, . . . , ys] ∈ Rn×s and C = [c1, c2, . . . , cs] ∈ Rm×s .

In deep learning, the function f consists of a concatena-

tion of nonlinear functions called hidden layers. Each layer

is composed of affine linear transformations and pointwise

nonlinearities and aims at filtering the input features in a

way that enables learning. As a fairly general formulation,

we consider an extended version of the layer used in [24],

which filters the features Y as follows

F(θ , Y) = K2(θ
(3))σ

(

N (K1(θ
(1))Y, θ (2))

)

. (1)

Here, the parameter vector, θ , is partitioned into three parts

where θ (1) and θ (3) parameterize the linear operators K1(·) ∈
R

w̃×n and K2(·) ∈ Rwout×w̃, respectively, and θ (2) are the

parameters of the normalization layer N . The parameters w̃

and wout denote the width of the layer, i.e., they correspond

to the number of input, intermediate, and output features of

this layer. The activation function σ : R → R is applied

component-wise. Common examples are σ(x) = tanh(x) or

the rectified linear unit (ReLU) defined as σ(x) = max(0, x).

A deep neural network can be written by concatenating many

of the layers given in (1).

When dealing with image data, it is common to group the

features into different channels (e.g., for RGB image data

there are three channels) and define the operators K1 and K2

as block matrices consisting of spatial convolutions. Typ-

ically each channel of the output image is computed as a

weighted sum of each of the convolved input channels. To

give an example, assume that K1 has three input and two out-

put channels and denote by K
(·,·)
1 (·) a standard convolution

operator [23]. In this case, we can write K1 as

K1(θ) =
(

K
(1,1)
1 (θ (1,1)) K

(1,2)
1 (θ (1,2)) K

(1,3)
1 (θ (1,3))

K
(2,1)
1 (θ (2,1)) K

(2,2)
1 (θ (2,2)) K

(2,3)
1 (θ (2,3))

)

,

(2)

where θ (i, j) denotes the parameters of the stencil of the (i, j)-

th convolution operator.

A common choice for N in (1) is the batch normalization

layer [30]. This layer computes the empirical mean and stan-

dard deviation of each channel in the input images across the

spatial dimensions and examples and uses this information

to normalize the statistics of the output images. While the

coupling of different examples is counter-intuitive, its use

is widespread and motivated by empirical evidence show-

ing a faster convergence of training algorithms. The weights

θ (2) represent scaling factors and biases (i.e., constant shifts

applied to all pixels in the channel) for each output channel

that are applied after the normalization.

ResNets have recently improved the state-of-the-art in

several benchmarks including computer vision contests on

image classification [28,32,34]. Given the input features

Y0 = Y, a ResNet block with N layers produces a filtered

version YN as follows

Y j+1 = Y j + F(θ ( j), Y j ), for j = 0, 1, . . . , N − 1, (3)

where θ ( j) are the weights (convolution stencils and biases)

of the j th layer. To emphasize the dependency of this process

on the weights, we denote YN (θ).

Note that the dimension of the feature vectors (i.e., the

image resolution and the number of channels) is the same

across all layers of a ResNets block, which is limiting in

many practical applications. Therefore, implementations of

deep CNNs contain a concatenation of ResNet blocks with

other layers that can change, e.g., the number of channels

and the image resolution; see, e.g., [9,24] and Fig. 2.

In image recognition, the goal is to classify the output

of (3), YN (θ), using, e.g., a linear classifier modeled by a

fully connected layer, i.e., an affine transformation with a

dense matrix. To avoid confusion with the ResNet blocks,

we denote these transformations as WYN (θ) + (BW µ)e⊤
s ,

where the columns of BW represent a distributed bias and

es ∈ Rs is a vector of all ones. The parameters of the network

and the classifier are unknown and have to be learned. Thus,

the goal of learning is to estimate the network parameters,

θ , and the weights of the classifier, W,µ, by approximately

solving the optimization problem

min
θ ,W,µ

1

2
S(WYN (θ) + (BW µ)e⊤

s , C) + R(θ , W,µ), (4)
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where S is a loss function, which is convex in its first argu-

ment, and R is a convex regularizer discussed below. Typical

examples of loss functions are the least-squares function in

regression and logistic regression or cross-entropy functions

in classification [19].

The optimization problem in (4) is challenging for sev-

eral reasons. First, it is a high-dimensional and non-convex

optimization problem. Therefore one has to be content with

local minima. Second, the computational cost per example

is high, and the number of examples is large. Third, very

deep architectures are prone to problems such as vanishing

and exploding gradients [5] that may occur when the discrete

forward propagation is unstable [21].

2.1 Residual Networks and ODEs

We derived a continuous interpretation of the filtering pro-

vided by ResNets in [21]. Similar observations were made

in [10,49]. The ResNet in (3) can be seen as a forward Euler

discretization (with a fixed step size of δt = 1) of the initial

value problem

∂t Y(θ, t) = F(θ(t), Y(t)), for t ∈ (0, T ]
Y(θ , 0) = Y0.

(5)

Here, we introduce an artificial time t ∈ [0, T ]. The depth

of the network is related to the arbitrary final time T and

the magnitude of the matrices K1 and K2 in (1). This obser-

vation shows the relation between the learning problem (4)

and parameter estimation of a system of nonlinear ordinary

differential equations. Note that this interpretation does not

assume any particular structure of the layer F.

The continuous interpretation of ResNets can be exploited

in several ways. One idea is to accelerate training by solving a

hierarchy of optimization problems that gradually introduce

new time discretization points for the weights, θ [22]. Also,

new numerical solvers based on optimal control theory have

been proposed in [36]. Another recent work [11] presents an

optimize-discretize approach with sophisticated time inte-

grators to solve the forward propagation and the adjoint

problem (in this context commonly called back-propagation),

which is needed to compute derivatives of the objective func-

tion with respect to the network weights.

2.2 Convolutional ResNets and PDEs

In the following, we consider learning tasks involving fea-

tures given by speech, image, or video data. For these

problems, the input features, Y, can be seen as a discretization

of a continuous function Y (x). We assume that the matrices

K1 ∈ Rw̃×win and K2 ∈ Rwout×w̃ in (1) represent convolu-

tion operators [23].

We now show that a particular class of deep residual CNNs

can be interpreted as nonlinear systems of PDEs. For ease of

notation, we first consider a one-dimensional convolution of

a feature with one channel and then outline how the result

extends to higher space dimensions and multiple channels.

Assume that the vector y ∈ R
n represents a one-

dimensional grid function obtained by discretizing y :
[0, 1] → R at the cell-centers of a regular grid with n cells

and a mesh size h = 1/n, i.e., for i = 1, 2, . . . , n

y = [y(x1), . . . , y(xn)]⊤ with xi =
(

i −
1

2

)

h.

Assume, e.g., that the operator K1 = K1(θ) ∈ Rn×n in (1) is

parameterized by the stencil θ ∈ R3. Applying a coordinate

change, we see that

K1(θ)y = [θ1 θ2 θ3] ∗ y

=
(

β1

4
[1 2 1] +

β2

2h
[−1 0 1] +

β3

h2
[−1 2 − 1]

)

∗ y.

Here, the weights β ∈ R3 are given by

⎛

⎜

⎝

1
4

− 1
2h

− 1
h2

1
2

0 2
h2

1
4

1
2h

− 1
h2

⎞

⎟

⎠

⎛

⎝

β1

β2

β3

⎞

⎠ =

⎛

⎝

θ1

θ2

θ3

⎞

⎠ ,

which is a non-singular linear system for any h > 0. We

denote by β(θ) the unique solution of this linear system.

Upon taking the limit, h → 0, this observation motivates

one to parameterize the convolution operator as

K1(θ) = β1(θ) + β2(θ)∂x + β3(θ)∂2
x .

The individual terms in the transformation matrix correspond

to reaction, convection, diffusion and the bias term in (1) is a

source/sink term, respectively. Note that higher-order deriva-

tives can be generated by multiplying different convolution

operators or increasing the stencil size.

This simple observation exposes the dependence of

learned weights on the image resolution, which can be

exploited in practice, e.g., by multiscale training strate-

gies [22]. Here, the idea is to train a sequence of networks

using a coarse-to-fine hierarchy of image resolutions (often

called image pyramid). Since both the number of operations

and the memory required in training is proportional to the

image size, this leads to immediate savings during training

but also allows one to coarsen already trained networks to

enable efficient evaluation. In addition to computational ben-

efits, ignoring fine-scale features when training on the coarse

grid can also reduce the risk of being trapped in an undesir-

able local minimum, which is an observation also made in

other image processing applications.
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Our argument extends to higher spatial dimensions. In 2D,

e.g., we can relate the 3 × 3 stencil parametrized by θ ∈ R9

to

K1(θ) = β1(θ) + β2(θ)∂x + β3(θ)∂y

+ β4(θ)∂2
x + β5(θ)∂2

y + β6(θ)∂x∂y

+ β7(θ)∂2
x ∂y + β8(θ)∂x∂

2
y + β9(θ)∂2

x ∂2
y .

To obtain a fully continuous model for the layer in (1), we

proceed the same way with K2. In view of (2), we note that

when the number of input and output channels is larger than

one, K1 and K2 lead to a system of coupled partial differential

operators.

Given the continuous space-time interpretation of CNN,

we view the optimization problem (4) as an optimal control

problem and, similarly, see learning as a parameter estimation

problem for the time-dependent nonlinear PDE (5). Develop-

ing efficient numerical methods for solving PDE-constrained

optimization problems arising in optimal control and param-

eter estimation has been a fruitful research endeavor and

led to many advances in science and engineering; for recent

overviews see, e.g., [6,7,27]. Using the theoretical and algo-

rithmic framework of optimal control in machine learning

applications has gained some traction only recently; see, e.g.,

[9,11,21,36,49].

3 Deep Neural Networks Motivated by PDEs

It is well-known that not every time-dependent PDE is stable

with respect to perturbations of the initial conditions [2].

Here, we say that the forward propagation in (5) is stable if

there is a constant M > 0 independent of T such that

‖Y(θ , T ) − Ỹ(θ , T )‖F ≤ M‖Y0 − Ỹ0‖F , (6)

where Y and Ỹ are the solutions of (5) for the initial val-

ues Y0, Ỹ0, respectively, and ‖ · ‖F is the Frobenius norm.

The stability of the forward propagation depends on the val-

ues of the weights θ that are chosen by solving (4). In the

context of learning, the stability of the network is critical

to provide robustness to small perturbations of the input

images. In addition to image noise, perturbations could also

be added deliberately to mislead the network’s prediction

by an adversary. There is some recent evidence showing the

existence of such perturbations that reliably mislead deep

networks by being barely noticeable to a human observer;

see, e.g., [20,38,40]. Networks that satisfy (6) are Lipschitz

continuous with a Lipschitz constant that is independent of T .

Lipschitz continuity has been recently shown to be important

for generalization and robustness of deep neural networks;

see, e.g., [13,15,16] and references therein.

To ensure the stability of the network for all possible

weights, we propose to restrict the space of CNNs. As exam-

ples of this general idea, we present three new types of

residual CNNs that are motivated by parabolic and first- and

second-order hyperbolic PDEs, respectively. The construc-

tion of our networks guarantees that under some assumptions

the networks are stable forward and, for the hyperbolic net-

work, stable backward in time.

Though it is common practice to model K1 and K2 in (1)

independently, we note that it is, in general, hard to show

the stability of the resulting network. This is because, the

Jacobian of F(θ , Y) with respect to the features has the form

JYF = K2(θ) diag(σ ′(K1(θ)Y)) K1(θ),

where σ ′ denotes the derivatives of the pointwise nonlinear-

ity and for simplicity we assume N (Y) = Y. Even in this

simplified setting, the spectral properties of JY, which impact

the stability, are unknown for arbitrary choices of K1 and K2.

As one way to obtain a stable network, we introduce a

symmetric version of the layer in (1) by choosing K2 = −K⊤
1

in (1). To simplify our notation, we drop the subscript of the

operator and define the symmetric layer

Fsym(θ , Y) = −K(θ)⊤σ (N (K(θ)Y, θ)) . (7)

It is straightforward to verify that this choice leads to a nega-

tive semi-definite Jacobian for any non-decreasing activation

function. As we see next, this choice also allows us to link

the discrete network to different types of PDEs.

3.1 Parabolic CNN

We define the parabolic CNN by using the symmetric layer

from (7) in the forward propagation, i.e., in the standard

ResNet we replace the dynamic in (5) by

∂t Y(θ , t) = Fsym(θ(t), Y(t)), for t ∈ (0, T ]. (8)

Note that (8) is equivalent to the heat equation if σ(x) = x ,

N (Y) = Y and K(t) = ∇. This motivates us to refer to this

network as a parabolic CNN. This is not the only possible

interpretation, e.g., for other cases in which K is constant in

time (8) can be seen as a gradient flow. Nonlinear parabolic

PDEs are widely used, e.g., to filter images [12,41,48] and

our interpretation implies that the networks can be viewed as

an extension of such methods.

The similarity to the heat equation motivates us to intro-

duce a new normalization layer motivated by total variation

denoising. For a single example y ∈ Rn that can be grouped

into c channels, we define
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Ntv(y) = diag

(

1

A⊤
√

(Ay)2 + ǫ

)

y, (9)

where the operator A ∈ R
n
c
×n computes the sum over

all c channels for each pixel, the square, square root, and

the division are defined component-wise, and the constant

0 < ǫ ≪ 1 is fixed. As for the batch norm layer, we imple-

ment Ntv with trainable weights corresponding to global

scaling factors and biases for each channel. In the case that

the convolution is reduced to a discrete gradient, Ntv leads

to the regular dynamics in TV denoising.

Stability Parabolic PDEs have a well-known decay prop-

erty that renders them robust to perturbations of the initial

conditions. For the parabolic CNN in (8), we can show the

following stability result.

Theorem 1 If the activation function σ is monotonically

non-decreasing, then the forward propagation through a

parabolic CNN satisfies (6).

Proof For ease of notation, we assume that no normalization

layer is used, i.e., N (Y) = Y in (8). We then show that

Fsym(θ(t), Y) is a monotone operator. Let Y and Ỹ be the

solutions of (5) for the initial values Y0, Ỹ0, respectively.

Note that for all t ∈ [0, T ]

−
(

σ(K(t)Y) − σ(K(t)Ỹ), K(t)(Y − Ỹ)

)

≤ 0.

Where (·, ·) is the standard inner product and the inequal-

ity follows from the monotonicity of the activation function,

which shows that

∂t‖Y(t) − Ỹ(t)‖2
F ≤ 0.

Integrating this inequality over [0, T ]yields stability as in (6).

The proof extends straightforwardly to cases when a normal-

ization layer with scaling and bias is included. ⊓⊔

One way to discretize the parabolic forward propaga-

tion (8) is using the forward Euler method. Denoting the

time step size by δt > 0 this reads

Y j+1 = Y j +δt Fsym(θ(t j ), Y j ), j = 0, 1, . . . , N−1, (10)

where t j = jδt . For a linear dynamic ∂t y(t) = Jy(t), the

forward Euler method is stable if δt satisfies

max
i=1,2,...,n

|1 + δtλi (J)| ≤ 1

and accurate if δt is chosen small enough to capture the

dynamics of the system. Here, λi (J) denotes the i th eigen-

value of J; see, e.g., [2,3]. A rigorous stability analysis of

the discrete forward propagation in (10) is more complicated

since the underlying PDE is nonlinear and time-dependent.

However, the result above provides some intuition. Here,

we can linearize the forward propagation using the Jacobian

J(t j ) = (∇yFsym)⊤ at the j th time point t j . Assuming, for

simplicity, that no normalization layer is used, this reads

J(t j ) = −K⊤(θ (1)(t j )) D(t j )K(θ (1)(t j )),

with D(t) = diag
(

σ ′
(

K(θ (1)(t))y(t)
) )

.

If the activation function is monotonically non-decreasing,

then σ ′(·) ≥ 0 everywhere. In this case, all eigenvalues of

J(t j ) are real and bounded above by zero since J(t j ) is also

symmetric. Thus, there is an appropriate δt that renders the

linearized discrete forward propagation stable. To achieve

stability of the linear problem, we limit the magnitude of

elements in K by using Tikhonov regularization and impos-

ing bound constraints to the optimization problem (4). Also,

to minimize the difference between the linearized forward

propagation and the actual dynamics, we penalize large tem-

poral changes through regularization; see Sect. 4.

3.2 Hyperbolic CNNs

Different types of networks can be obtained by consider-

ing hyperbolic PDEs. In this section, we present two CNN

architectures that are inspired by hyperbolic systems. A

favorable feature of hyperbolic equations is their reversibil-

ity. Reversibility allows us to avoid storage of intermediate

network states, thus achieving higher memory efficiency.

Reversibility is particularly important for very deep networks

where memory limitation can hinder training; see [18] and

[9].

Hamiltonian CNNs Introducing an auxiliary variable Z, we

consider the dynamics

∂t Y(t) = Fsym(θ (1)(t), Z(t)), Y(0) = Y0

∂t Z(t) = −Fsym(θ (2)(t), Y(t)), Z(0) = Z0.

The dimensions and the values of Z0 can be chosen in dif-

ferent ways, e.g., by partitioning the channels of the original

features into Y0 and Z0. This approach is used in our numeri-

cal experiments in which we split the number of channels into

two. We showed in [9] that the eigenvalues of the associated

Jacobian are imaginary. When assuming that θ (1) and θ (2)

are constant in time, stability as defined in (6) is obtained. A

more precise stability result can be established by analyzing

the kinematic eigenvalues of the forward propagation [3].
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We discretize the dynamic using the symplectic Verlet

integration (see, e.g., [2] for details)

Y j+1 = Y j + δt Fsym(θ (1)(t j ), Z j ),

Z j+1 = Z j − δt Fsym(θ (2)(t j ), Y j+1),
(11)

for j = 0, 1, . . . , N − 1 using a fixed step size δt > 0. This

dynamic is reversible, i.e., given YN , YN−1 and ZN , ZN−1

it can also be computed backwards

Z j = Z j+1 + δt Fsym(θ (2)(t j ), Y j+1)

Y j = Y j+1 − δt Fsym(θ (1)(t j ), Z j ),

for j = N − 1, N − 2, . . . , 0. These operations are numeri-

cally stable for the Hamiltonian CNN; see [9] for details.

Second-order CNNs An alternative way to obtain hyperbolic

CNNs is by using a second-order dynamics

∂2
t Y(t) = Fsym(θ(t), Y(t)),

Y(0) = Y0, ∂t Y(0) = 0.
(12)

The resulting forward propagation is associated with a non-

linear version of the telegraph equation [43], which describes

the propagation of signals through networks. Hence, one

could claim that second-order networks better mimic bio-

logical networks and are therefore more appropriate than

first-order networks for approaches that aim at imitating the

propagation through biological networks.

We discretize the second-order network using the Leapfrog

method. For j = 0, 1, . . . , N − 1 and δt > 0 fixed this reads

Y j+1 = 2Y j − Y j−1 + δ2
t Fsym(θ(t j ), Y j ).

We set Y−1 = Y0 to denote the initial condition. As the

symplectic integration in (11), this scheme is reversible under

similar conditions.

We show that the second-order network is stable in the

sense of (6) when we assume stationary weights. In our

experiments, we use regularization to limit the magnitude

of ∂tθ(t) and ideally obtain piecewise constant weights. A

rigorous analysis for the general case is more complicated

and an item of future work.

Theorem 2 Let θ(t) be constant in time and assume that the

activation function satisfies |σ(x)| ≤ |x | for all x. Then,

the forward propagation through the second-order network

satisfies (6).

Proof For brevity, we denote K = K(θ(t)) and consider the

forward propagation of a single example. Let y : [0, T ] →
R

n be a solution to (12) and consider the energy

E(t) =
1

2

(

(∂t y(t))⊤∂t y(t) + (Ky(t))⊤σ(Ky(t))
)

. (13)

Given that |σ(x)| ≤ |x | for all x by assumption, this energy

can be bounded as follows

E(t) ≤ Elin(t)

=
1

2

(

(∂t u(t))⊤∂t u(t) + (Ku(t))⊤(Ku(t))
)

,

where Elin is the energy associated with the linear wave-like

hyperbolic equation

∂2
t u(t) = −K⊤Ku(t), u(0) = y0, ∂t u(0) = 0.

Since by assumption K is constant in time, we have that

∂tElin(t) = ∂t u(t)⊤
(

∂2
t u(t) + K⊤Ku(t)

)

= 0.

Thus, the energy of the hyperbolic network in (13) is positive

and bounded from above by the energy of the linear wave

equation. Applying this argument to the initial condition y0−
ỹ0, we derive (6) and thus the forward propagation is stable.

4 Regularization

The proposed continuous interpretation of the CNNs also

provides new perspectives on regularization. To enforce sta-

bility of the forward propagation, the linear operator K in (7)

should not change drastically in time. This suggests adding

a smoothness regularizer in time. In [21], a H1-seminorm

was used to smooth kernels over time to avoid overfitting. A

theoretically more appropriate function space consists of all

kernels that are piecewise constant in time. To this end, we

introduce the regularizer

R(θ , W,µ) = α1

∫ T

0

φτ (∂tθ(t))dt

+
α2

2

(∫ T

0

‖θ(t)‖2dt + ‖W‖2
F + ‖µ‖2

)

,

(14)

where the function φτ (x) =
√

x2 + τ is a smoothed ℓ1-

norm with conditioning parameter τ > 0. The first term of

R can be seen as a total variation [45] penalty in time that

favors piecewise constant dynamics. Here, α1, α2 ≥ 0 are

regularization parameters that are assumed to be fixed.

A second important aspect of stability is to keep the time

step sufficiently small. Since δt can be absorbed in K we use

the box constraint −1 ≤ θ (1)(t j ) ≤ 1 for all j , and fix the

time step size to δt = 1 in our numerical experiments.
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A. STL-10 architecture
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B. CIFAR-10/100 architectures
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Fig. 2 Overview of network architectures for the STL-10 (top row) and

CIFAR-10/100 (bottom row) image classification problems. The archi-

tectures consist of ResNet blocks (red) that represent the parabolic,

Hamiltonian, and second-order dynamics, respectively. The networks

also contain an opening layer and several connector layers (blue) that

increase the number of channels and reduce the image resolution (Color

figure online)

5 Numerical Experiments

We demonstrate the potential of the proposed architectures

using the common image classification benchmarks STL-

10 [14], CIFAR-10, and CIFAR-100 [31]. Instead of beating

state-of-the-art results on these competitive datasets, our cen-

tral goal is to show that, despite their modeling restrictions,

our new network types achieve competitive results. We use

our basic architecture for all experiments, do not excessively

tune hyperparameters individually for each case, and employ

a simple data augmentation technique consisting of random

flipping and cropping.

Network Architecture Our architecture is similar to the ones

in [9,24] and contains an opening layer, followed by several

blocks each containing a few time steps of a ResNet and a

connector that increases the width of the CNN and coarsens

the images. Our focus is on the different options for defining

the ResNet block using parabolic and hyperbolic networks.

To this end, we choose the same basic components for the

opening and connecting layers. The opening layer increases

the number of channels from three (for RGB image data) to

the number of channels of the first ResNet using convolution

operators with 3×3 stencils, a batch normalization layer and

a ReLU activation function. We build the connecting layers

using 1 × 1 convolution operators that increase the number

of channels, a batch normalization layer, a ReLU activation,

and an average pooling operator that coarsens the images

by a factor of two. Finally, we obtain the output features

Y(θ) by averaging the features of each channel to ensure

translation-invariance. The ResNet blocks use the symmetric

layer (7) including the total variation normalization (9) with

ǫ = 10−3. The network architectures are illustrated in Fig. 2.

The classifier is modeled using a fully connected layer, a

softmax transformation, and a cross-entropy loss.

Training Algorithm In order to estimate the weights, we use

a standard stochastic gradient descent (SGD) method with a

momentum of 0.9. We use a piecewise constant step size (in

this context also called learning rate). We choose an initial

learning rate of 0.05 and divided it by a factor of 1.5 at a

priori specified epochs, after every 10th epoch for CIFAR-10

and STL-10 and after every 20th epoch for CIFAR-100. The

training is stopped when the training loss drops below 0.01

(indicating overfitting), or a maximum number of epochs is

reached (180 for STL-10 and CIFAR-10 and 340 for CIFAR-

100). In all examples, the SGD steps are computed using

mini-batches consisting of 32 randomly chosen examples.

For data augmentation, we apply a random horizontal flip

(50% probability), pad the images by a factor of 1/16 with

zeros into all directions and randomly crop the image by 1/8

of the pixels, counting from the lower-left corner. The train-

ing is performed using the open-source software Meganet on

a workstation running Ubuntu 16.04 and MATLAB 2018b

with two Intel(R) Xeon(R) CPU E5-2620 v4 and 64 GB of

RAM. We use a NVIDIA Titan X GPU for accelerating the

computation through the frameworks CUDA 9.1 and CuDNN

7.0. This package is designed as an academic and teaching

tool and not optimized for efficiency. Running up to three

instances on the same device, the average time to complete

an epoch is about 1.5 minutes for STL-10 and 5 minutes for

the CIFAR examples.
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A. Convergence for STL-10
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Fig. 3 Performance of the training algorithm for the three proposed

architectures applied to the STL-10 (left), CIFAR-10 (middle) and

CIFAR-100 (right) datasets. We use randomly choose 80% of the train-

ing images to update the weights using SGD. The plots show the

validation accuracy computed using the remaining images after every

epoch. In these examples, we did not observe considerable overfitting

and note that the weights from the final epoch led to adequate validation

accuracies (Color figure online)

We demonstrate the effectiveness of this strategy using

a simple cross-validation approach that updates the weights

using 80% of the training data and monitors the loss com-

puted using 20% of the training data until no significant

overfitting is observed; we plot the performance of the net-

works on the validation data after each epoch in Fig. 3. In the

STL-10 experiment (left subplot), the iterations were stopped

after around 100 epochs since the training loss was low,

whereas for the CIFAR-10/100 experiments (middle, right

subplots) the maximum number of epochs was reached. In

all cases, the weights at the final epoch are nearly optimal

with respect to the validation datasets, which indicates that

the learning rate schedule and stopping criteria are adequate

to prevent overfitting.

Results for STL-10 The STL-10 dataset [14] contains 13,000

digital color images of size 96 × 96 that are evenly divided

into ten categories, which can be inferred from Fig. 1. The

dataset is split into 5,000 training and 8,000 test images. The

STL-10 data is a popular benchmark test for image classifi-

cation algorithms and challenging due to the relatively small

number of training images.

For each dynamic, the network uses four ResNet blocks

with 16, 32, 64, and 128 channels and image sizes of

96 × 96, 48 × 48, 24 × 24, 12 × 12, respectively. Within

each ResNet block, we perform five time steps with a step

size of δt = 1 and include a total variation normalization

layer and ReLU activation. This architecture leads to 521,594

trainable weights for the Hamiltonian network and 1,011,194

weights for the parabolic and second-order network, respec-

tively. The reversibility of the Hamiltonian and second-order

network can be used to reduce the memory consumption

of the ResNet blocks during training, e.g., by re-computing

the features and activations at the second, third, and fourth

layer. This would result in an approximately 60% reduction

of memory required in those blocks. Additional savings can

be realized by avoiding duplicate storage with connecting

layers. As these savings become more drastic and important
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Fig. 4 Improvement of the test accuracy when increasing the number of

training images in the STL-10 dataset (from 10% to 80% in increments

of 10%). We first train the weights of the three proposed architectures

and plot the test accuracy of the final iterate. Here, we do not use any

data augmentation. Expectedly, the generalization improves as more

images are used for all architectures (Color figure online)

for very deep architectures (see [9]), we do not exploit the

reversibility in our experiments.

We note that our networks are smaller than commonly

used ResNets, e.g., the architectures in [9] contain about two

million parameters. Reducing the number of parameters is

essential during training and, e.g., when trained networks

have to be deployed on devices with limited memory. Another

difference to networks in this work is the use of the total vari-

ation normalization instead of the batch normalization in the

ResNet layers. This removes the coupling between different

examples in a batch that is introduced by the batch norm and

increases the potential for parallelization. The regularization

parameters are α1 = 4 · 10−4 and α2 = 1 · 10−4.

To show how the generalization improves as more training

data becomes available, we train the network with an increas-

ing number of examples that we choose randomly from the

training dataset. We also randomly sample 1000 examples

from the remaining training data to build a validation set,

which we use to monitor the performance after each full
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Fig. 5 Confusion matrices for classifiers obtained using the three pro-

posed architectures (row-wise) for an increasing number of training

data from the STL-10 dataset (column-wise). The (i, j)th element of

the 10 × 10 confusion matrix counts the number of images of class i

for which the predicted class is j . We use the entire test data set, which

contains 800 images per class (Color figure online)

epoch. We use no data augmentation in this experiment. In

all cases, the training accuracy was close to 100%. After the

training, we compute the accuracy of the networks parame-

terized by the weights that performed best on the validation

data for all the 8000 test images; see Fig. 4. The predictions

of the three networks may vary for single examples without

any apparent pattern; see also Fig. 1. However, overall their

performance and convergence are comparable which leads

to similarities in the confusion matrices; see Fig. 5.

To show the overall performance of the networks, we

train the networks using all 5000 training images and no

cross-validation. For data augmentation, we use horizontal

flipping and random cropping. Our training strategy found

weights that almost perfectly fit the training data (defined

by a loss of less than 0.01) after 97, 91, and 106 epoch

for the parabolic, Hamiltonian, and second-order CNN,

respectively. After the training, we compute the loss and

classification accuracy for all 8000 test images. For this

example, the parabolic and Hamiltonian network perform

slightly superior to the second-order network 80.9% and

80.4% versus 79.6% test classification accuracy, respec-

tively. It is important to emphasize that the Hamiltonian

network uses only about half as many trainable weights as

the other two networks. These results are competitive with

the results reported, e.g., in [17,50] and slightly inferior of

the ones we achieved with a larger architecture and the use

of batch norm in [9]. Our results could possibly be further

improved by fine-tuning of hyperparameters such as step size,

number of time steps, and width of the network may achieve

additional improvements for each dynamic.

Results for CIFAR-10/100 For additional comparison of the

proposed architectures, we use the CIFAR-10 and CIFAR-

100 datasets [31]. Each of these datasets consists of 60,000

labeled RGB images of size 32 × 32 that are chosen from

the 80 million tiny images dataset [47]. In both cases, we

use 50,000 images for training and validation and keep the

remaining 10,000 to test the generalization of the trained

weights. While CIFAR-10 consists of ten categories, CIFAR-

100 contains 100 categories, which renders the classification

problem more challenging.

Our architectures contain three blocks of parabolic or

hyperbolic networks between which the image size is reduced

from 32×32 to 8×8. For the simpler CIFAR-10 problem, we

use a narrower network with 32, 64, 112 channels while for

CIFAR-100 we use more channels (32, 64, and 128) and add a

final connecting layer that increases the number of channels

to 256. This leads to networks whose number of trainable

weights vary between 264,106 and 502,570; see also Table

1. As regularization parameters, we use α1 = 2 · 10−4 and

α2 = 2 · 10−4, which is similar to [9].

As for the STL-10 data set, the three proposed architec-

tures achieved comparable results on these benchmarks; see

convergence plots in Fig. 3 and test accuracies in Table 1. In

our experiments, the optimization is stopped after the max-

imum number of epochs (180 for CIFAR-10 and 340 for

CIFAR-100). Additional tuning of the learning rate, regular-

ization parameter, and other hyperparameters may further

improve the results shown here. Using similar networks

and the less interpretable batch normalization in the ResNet

blocks, we achieved about 5% higher accuracy on CIFAR-10

and 9% higher accuracy on CIFAR-100 in [9].

6 Discussion and Outlook

In this paper, we establish a link between deep residual

convolutional neural networks and PDEs. The relation pro-

vides a general framework for designing, analyzing, and

training those CNNs. It also exposes the dependence of

learned weights on the image resolution used in training.
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Table 1 Summary of numerical results for the STL-10, CIFAR-10, and CIFAR-100 datasets

STL-10 CIFAR-10 CIFAR-100

Number of

weights (M)

Test data

(8000) accu-

racy %(loss)

Number of

weights (M)

Test data

(10,000)

accuracy

%(loss)

Number of

weights (M)

Test data

(10,000)

accuracy

%(loss)

Parabolic 1.01 80.9% (0.726) 0.50 90.5% (0.316) 0.65 67.4% (1.185)

Hamiltonian 0.52 80.4% (0.770) 0.26 90.7% (0.334) 0.36 67.1% (1.208)

Second-order 1.01 79.6% (0.770) 0.50 90.6% (0.329) 0.65 66.9% (1.281)

Hamiltonian [9] 1.28 85.5% (n/a) 0.43 92.8% (n/a) 0.44 71.0% (n/a)

Leapfrog [9] 2.44 84.6% (n/a) 0.50 91.9% (n/a) 0.51 69.1% (n/a)

ResNet-110 [25] 1.7 93.4% (n/a) 1.7 74.8% (n/a)

Wide ResNet [51] 0.6 93.2% (n/a) 0.6 69.1% (n/a)

Using the hyperparameters chosen by cross-validation, we train the networks on the entire training data. After training, we compute and report the

classification accuracy and the value of cross-entropy loss (in brackets where reported) for the test data. To this end, we use the weights from the

final epoch of SGD. We also report the number of trainable weights for each network and for comparison state results from the literature achieved

with similarly sized or larger architectures

Exemplarily, we derive three PDE-based network architec-

tures that are forward stable (the parabolic network) and

forward-backward stable (the hyperbolic networks) under

some assumptions.

It is well known that different types of PDEs have different

properties. For example, linear parabolic PDEs have decay

properties, while linear hyperbolic PDEs conserve energy.

Hence, it is common to choose different numerical techniques

for solving and optimizing different kinds of PDEs. The type

of the underlying PDE is not known a priori for a standard

convolutional ResNet as it depends on the trained weights.

This renders ensuring the stability of the trained network

and the choice of adequate time integration methods difficult.

These considerations motivate us to restrict the convolutional

ResNet architecture a-priori to discretizations of nonlinear

PDEs that are stable.

In our numerical examples, our new architectures lead to

an adequate performance despite the constraints on the net-

works. In fact, using only networks of relatively modest size,

we obtain results that are close to those of state-of-the-art

networks. This may not hold in general, and future research

will show which types of architectures are best suited for

a learning task at hand. Our intuition is that, e.g., hyper-

bolic networks may be preferable over parabolic ones for

image extrapolation tasks to ensure the preservation of edge

information in the images. In contrast to that, we anticipate

parabolic networks to perform superior for tasks that require

filtering, e.g., image denoising. Another important direction

is to quantitatively compare the architectures proposed here

to existing ones with respect to aspects other than classifica-

tion accuracy, e.g., robustness to adversarial attacks.

We note that our view of CNNs mirrors the developments

in PDE-based image processing in the 1990s. PDE-based

methods have since significantly enhanced our mathemati-

cal understanding of image processing tasks and opened the

door to many popular algorithms and techniques. We hope

that continuous models of CNNs will result in similar break-

throughs and, e.g., help streamline the design of network

architectures and improve training outcomes with less trial

and error.
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