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Abstract

The complex multi-stage architecture of cortical visual

pathways provides the neural basis for efficient visual ob-

ject recognition in humans. However, the stage-wise com-

putations therein remain poorly understood. Here, we

compared temporal (magnetoencephalography) and spatial

(functional MRI) visual brain representations with repre-

sentations in an artificial deep neural network (DNN) tuned

to the statistics of real-world visual recognition. We showed

that the DNN captured the stages of human visual process-

ing in both time and space from early visual areas towards

the dorsal and ventral streams. Further investigation of

crucial DNN parameters revealed that while model archi-

tecture was important, training on real-world categoriza-

tion was necessary to enforce spatio-temporal hierarchical

relationships with the brain. Together our results provide

an algorithmically informed view on the spatio-temporal

dynamics of visual object recognition in the human visual

brain.

1. Introduction

Visual object recognition in humans is mediated by com-

plex multi-stage processing of visual information emerg-

ing rapidly in a distributed network of cortical regions [43,

15, 5, 31, 23, 26, 14]. Understanding visual object recog-

nition in cortex thus requires a predictive and quantitative

model that captures the complexity of the underlying spatio-

temporal dynamics [35, 36, 34].

A major impediment in creating such a model is the

highly nonlinear and sparse nature of neural tuning prop-

erties in mid- and high-level visual areas [11, 44, 47] that is

difficult to capture experimentally, and thus unknown. Pre-

vious approaches to modeling object recognition in cortex

relied on extrapolation of principles from well understood

lower visual areas such as V1 [35, 36] and strong manual

intervention, achieving only modest task performance com-

pared to humans.

Here we take an alternative route, constructing and com-

paring against brain signals a visual computational model

based on deep neural networks (DNNs) [30, 32] , i.e., com-

puter vision models in which model neuron tuning prop-

erties are set by supervised learning without manual inter-

vention [30, 37]. DNNs are the best performing models on

computer vision object recognition benchmarks and yield

human performance levels on object categorization [38, 19].

We used a tripartite strategy to reveal the spatio-temporal

processing cascade underlying human visual object recog-

nition by DNN model comparisons.

First, as object recognition is a process rapidly unfold-

ing over time [5, 9, 41], we compared DNN visual rep-

resentations to millisecond resolved magnetoencephalogra-

phy (MEG) brain data. Our results delineate, to our knowl-

edge for the first time, an ordered relationship between the

stages of processing in computer vision model and the time

course with which object representations emerge in the hu-

man brain.

Second, as object recognition recruits a multitude of dis-

tributed brain regions, a full account of object recognition

needs to go beyond the analysis of a few pre-defined brain

regions [1, 6, 18, 21, 48], determining the relationship be-

tween DNNs and the whole brain. Using a spatially unbi-

ased approach, we revealed a hierarchical relationship be-

tween DNNs and the processing cascade of both the ventral

and dorsal visual pathway.

Third, interpretation of a DNN-brain comparison de-

pends on the factors shaping the DNN fundamentally: the

pre-specified model architecture, the training procedure,

and the learned task (e.g. object categorization). By com-

paring different DNN models to brain data, we demon-

strated the influence of each of these factors on the emer-

gence of similarity relations between DNNs and brains in

both space and time.

Together, our results provide an algorithmically in-

formed perspective of the spatio-temporal dynamics under-

lying visual object recognition in the human brain.
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2. Results

2.1. Construction of a DNN performing at human
level in object categorization

To be a plausible model of object recognition in cor-

tex, a computational model must provide high performance

on visual object categorization. Latest generations of com-

puter vision models, termed deep neural networks (DNNs),

have achieved extraordinary performance, thus raising the

question whether their algorithmic representations bear re-

semblance of the neural computations underlying human vi-

sion. To investigate we created an 8-layer DNN architecture

(Fig. 1(a)) that corresponds to the best-performing model

in object classification in the ImageNet Large Scale Visual

Recognition Challenge 2012 [29]. Each DNN layer per-

forms simple operations that are implementable in biologi-

cal circuits, such as convolution, pooling and normalization.

We trained the DNN to perform object categorization on ev-

eryday object categories (683 categories, with 1300 images

in each category) using back propagation, i.e., the network

learned neuronal tuning functions by itself. We termed this

neural network object deep neural network (object DNN).

The object DNN performed equally well on object catego-

rization as previous implementations (Suppl. Table 1). We

investigated the coding of visual information in the object

DNN by determining the receptive field (RF) selectivity of

the model neurons using a neuroscience-inspired reduction

method [49].

We found that neurons in early layers had Gabor filter

or color patch-like sensitivity, while those of deeper layers

had larger RFs and sensitivity to complex forms (Fig. 1(b)).

Thus the object DNN learned representations in a hierar-

chy of increasing complexity, akin to representations in the

primate visual brain hierarchy [23, 14]. Figure 1(c) ex-

emplifies the connectivity and receptive field selectivity of

the most strongly connected neurons starting from a sample

neuron in layer 1. An online tool offering visualization of

RF selectivity of all neurons in layers 1 through 5 is avail-

able at http://brainmodels.csail.mit.edu.

2.2. Representational similarity analysis was used
as the integrative framework for DNN­brain
comparison

To compare representations in the object DNN and hu-

man brains, we used a 118-image set of natural objects

on real-world backgrounds (Fig. 2(a)). Note that these

118 images were not used for training the object DNN

to avoid circular inference. With 94% correct perfor-

mance in a top-five categorization task on this 118 image

set, the network performed at a level comparable to hu-

mans [38] (voting on each of the 118 images is available

at http://brainmodels.csail.mit.edu).

We also recorded fMRI and MEG in 15 participants

viewing random sequences of the same 118 real-world ob-

ject image set while conducting an orthogonal task. The ex-

perimental design was adapted to the specifics of the mea-

surement technique (Suppl. Fig. 1).

We compared fMRI and MEG brain measurements with

the DNN in a common analysis framework with represen-

tational similarity analysis [28] (Fig. 2(b)). The basic idea

is that if two images are similarly represented in the brain,

they should also be similarly represented in the DNN. To

quantify, we first obtained signal measurements in tempo-

rally specific MEG sensor activation patterns (1ms steps

from −100 to +1000ms), in spatially specific fMRI voxel

patterns, and in layer-specific model neuron activations of

the DNN. To make the different signal spaces (fMRI, MEG,

DNN) comparable, we abstracted signals to a similarity

space. In detail, for each signal space we computed dis-

similarities (1−Spearman’s ρ for DNN and fMRI, percent

decoding accuracy in pair-wise classification for MEG) be-

tween every pair of conditions (images), as exemplified by

images 1 and 2 in Fig. 2(b). This yielded 118 × 118 repre-

sentational dissimilarity matrices (RDMs) indexed in rows

and columns by the compared conditions. These RDMs

were time-resolved for MEG, space-resolved for fMRI, and

layer-resolved in DNN. Comparing DNN RDMs with MEG

RDMs resulted in time courses highlighting how DNN pre-

dicted emerging visual representations. Comparing DNN

RDMs with fMRI RDMs resulted in spatial maps indicative

of how the object DNN predicted brain activity.

2.3. The object DNN predicted temporal dynam­
ics of emerging visual representations in the
human brain

Visual information processing in the brain is a process

that rapidly evolves over time [5, 9, 41], and a model of ob-

ject recognition in cortex should mirror this temporal evo-

lution. While the DNN used here does not model time,

it has a clear sequential structure: information flows from

one layer to the next in strict order. We thus investigated

whether the object DNN predicted emerging visual repre-

sentations in the first few hundred milliseconds of vision in

sequential order. For this we determined representational

similarity between layer-specific DNN representations and

MEG data in millisecond steps from −100 to +1000ms
with respect to image onset and layer-specific DNN repre-

sentations. We found that all layers of the object DNN were

representationally similar to human brain activity, indicat-

ing that the model captures emerging brain visual represen-

tations (Fig. 3(a), P < 0.05 cluster definition threshold,

P < 0.05 cluster threshold, lines above data curves color-

coded same as those indicate significant time points, for

details see Suppl. Table 2). We next investigated whether

the hierarchy of the layered architecture of the object DNN,

as characterized by an increasing size and complexity of

http://brainmodels.csail.mit.edu
http://brainmodels.csail.mit.edu


Figure 1: Deep neural network architecture and properties. (a) The DNN architecture comprised 8 layers. Each of layers

1−5 contained a combination of convolution, max-pooling and normalization stages, whereas the last three layers were fully

connected. The DNN takes pixel values as inputs and propagates information feed-forward through the layers, activating

model neurons with particular activation values successively at each layer. (b) Visualization of model receptive fields (RFs)

selectivity. Each row shows the 4 images most strongly activating two exemplary model neurons for layers 1 through 5,

with shaded regions highlighting the image area primarily driving the neuron response. (c) Visualization of example DNN

connections and neuron RF selectivity. The thickness of highlighted lines (colored to ease visualization) indicates the weight

of the strongest connections going in and out of neurons, starting from a sample neuron in layer 1. Combined visualization

of neuron RF selectivity and connections between neurons, here starting from a sample neuron in layer 1 (only parts of the

network for visualization). Neurons in layer 1 are represented by their filters, and in layers 2−5 by gray dots. Inlays show the

4 images that most strongly activate each neuron. A complete visualization of all neurons in layers 1 through 5 is available

at http://brainmodels.csail.mit.edu.

http://brainmodels.csail.mit.edu


model RFs feature selectivity, corresponded to the hierarchy

of temporal processing in the brain. That is, we examined

whether low and high layers of the object DNN predicted

early and late brain representations, respectively. We found

this to be the case: There was a positive hierarchical re-

lationship (n = 15, Spearman’s ρ = 0.35, P = 0.0007)

between the layer number of the object DNN and posi-

tion in the hierarchy of the deep object network and the

peak latency of the correlation time courses between ob-

ject DNN and MEG RDMs and deep object network layer

RDMs (Fig. 3(b)).

Together these analyses established, to our knowledge

for the first time, a correspondence in the sequence of pro-

cessing steps of a computational model of vision and the

time course with which visual representations emerge in the

human brain.

2.4. The object DNN predicted the hierarchical to­
pography of visual representations in the hu­
man ventral and dorsal visual streams

To localize visual representations common to brain and

the object DNN, we used a spatially unbiased surface-based

searchlight approach. Comparison of representational simi-

larities between fMRI data and object DNN RDMs yielded

8 layer-specific spatial maps identifying the cortical regions

where the object DNN predicted brain activity (Fig. 4, clus-

ter definition threshold P < 0.05, cluster-threshold P <
0.05; different viewing angles available in Suppl. Movie 1).

The results indicate a hierarchical correspondence be-

tween model network layers and the human visual system.

For low DNN layers, similarities of visual representations

were confined to the occipital lobe, i.e., low- and mid-level

visual regions, and for high DNN layers in more anterior

regions in both the ventral and dorsal visual stream. A sup-

plementary volumetric searchlight analysis (Suppl. Text 1,

Suppl. Fig. 2; using a false discovery rate correction allow-

ing voxel-wise inference reproduced these findings, yield-

ing corroborative evidence across analysis methodologies.

These results suggest that hierarchical systems of visual

representations emerge in both the human ventral and dor-

sal visual stream as the result of task constraints of object

categorization posed in everyday life, and provide strong

evidence for object representations in the dorsal stream in-

dependent of attention or motor intention.

2.5. Factors determining DNN’s predictability of
visual representations emerging in time

The observation of a positive and hierarchical relation-

ship between the object DNN and brain temporal dynamics

poses the fundamental question of the origin of this rela-

tionship. Three fundamental factors shape DNNs: architec-

ture, task, and training procedure. Determining the effect of

each is crucial to understanding the emergence of the brain-

DNN relationships on the real-world object categorization

task. To this goal, we created several different DNN models

(Fig. 5(a)). We reasoned that a comparison of brain with 1)

an untrained DNN would reveal the effect of DNN architec-

ture alone, 2) a DNN trained on an alternate categorization

task, scene categorization, would reveal the effect of spe-

cific task, and 3) a DNN trained on an image set with ran-

dom unecological assignment of images to category labels,

or a DNN trained on noise images, would reveal the effect

of the training procedure per se.

To evaluate the hierarchy of temporal and spatial rela-

tionships between the human brain and DNNs, we com-

puted layer-specific RDMs for each DNN. To allow di-

rect comparisons across models, we also computed a single

summary RDM for each DNN model based on concatenated

layer-specific activation vectors.

Concerning the role of architecture, we found the un-

trained DNN significantly predicted emerging brain rep-

resentations (Fig. 5(b)), but worse than the object DNN

(Fig. 5(c)). A supplementary layer-specific analysis identi-

fied every layer as a significant contributor to to this predic-

tion (Suppl. Fig. 3a). Even though the relationship between

layer number and the peak latency of brain-DNN similarity

time series was hierarchical, it was negative (ρ = 0.6, P =
0.0003, Suppl. Fig. 3b) and thus reversed and statistically

different from the object DNN (∆ρ = 0.96, P = 0.0003).

This shows that DNN architecture alone, independent of

task constraints or training procedures, induces represen-

tational similarity to emerging visual representations in the

brain, but that constraints imposed by training on a real-

world categorization task significantly increases this effect

and reverses the direction of the hierarchical relationship.

Concerning the role of task, we found the scene DNN

also predicted emerging brain representations, but worse

than the object DNN (Fig. 5(b,c); Suppl. Fig. 3c). This

suggests that task constraints influence the model and pos-

sibly also brain in a partly overlapping, and partly dissocia-

ble manner. Further, the relationship between layer num-

ber and brain-DNN similarity time series was positively

hierarchical for the scene DNN (ρ = 0.44, P = 0.001,

Suppl. Fig. 3(d)), and not different from the object DNN

(∆ρ = 0.09, P = 0.41), further suggesting overlapping

neural mechanisms for object and scene perception.

Concerning the role of the training operation, we found

both the unecological and noise DNNs predicted brain rep-

resentations (Fig. 5(b), Suppl. Fig 3(e,g)), but worse than

the object DNN (Fig. 5(c)). Further, there was no evi-

dence for a hierarchical relationship between layer num-

ber and brain-DNN similarity time series for either DNN

(unecological DNN: ρ = 0.01, P = 0.94; noise DNN:

ρ = 0.04, P = 0.68; Suppl. Fig. 3(f,h)), and both had a

weaker hierarchical relationship than the object DNN (un-

ecological DNN: ∆ρ = 0.39, P = 0.0107; noise DNN:



Figure 2: Stimulus set and comparison of brain and DNN representations. (a) The stimulus set consisted of 118 images of

distinct object categories. (b) Representational similarity analysis between MEG, fMRI and DNN data. In each signal space

(fMRI, MEG, DNN) we summarized representational structure by calculating the dissimilarity between activation patterns of

different pairs of conditions (here exemplified for two objects: bus and orange). This yielded representational dissimilarity

matrices (RDMs) indexed in rows and columns by the compared conditions. We calculated millisecond resolved MEG

RDMs from 100ms to +1000ms with respect to image onset, layer-specific DNN RDMs (layers 1 through 8) and voxel-

specific fMRI RDMs in a spatially unbiased cortical surface-based searchlight procedure. RDMs were directly comparable

(Spearman’s ρ), facilitating integration across signal spaces. Comparison of DNN with MEG RDMs yielded time courses of

similarity between emerging visual representations in the brain and DNN. Comparison of the DNN with fMRI RDMs yielded

spatial maps of visual representations common to the human brain and the DNN.



Figure 3: The object DNN predicted the order of temporally emerging visual representations in the human brain. (a)

Time courses with which representational similarity in the brain and layers of the deep object network emerged. Color-coded

lines above data curves indicate significant time points (n = 15, cluster definition threshold P = 0.05, cluster threshold

P = 0.05; for onset and peak latencies see Suppl. Table 2). Gray vertical line indicates image onset. (b) Peak latency of time

courses increased with layer number (n = 15, ρ = 0.35, P = 0.0007, sign permutation test), indicating that deeper layers

predicted later brain signals. Error bars indicate standard error of the mean determined by 10,000 bootstrap samples of the

participant pool.

∆ρ = 0.36, P = 0.0052). Thus the training operation per

se has an effect on the relationship to the brain, but only

training on real-world categorization increases brain-DNN

similarity and hierarchy.

In summary, we found that although architecture alone

predicted the temporal emergence of visual representations,

training on real-world categorization was necessary for a

hierarchical relationship to emerge. Thus, both architec-

ture and training crucially influence the prediction power of

DNNs over the first few hundred milliseconds of vision.

2.6. Factors determining DNN’s predictability of
the topography of visual representations in
cortex

The observation of a positive and hierarchical relation-

ship between the object DNN structure and the brain vi-

sual pathways motivates an inquiry, akin to the temporal dy-

namics analysis in the previous section, regarding the role

of architecture, task demands and training operation. For

this we systematically investigated three regions-of-interest

(ROIs): the early visual area V1, and two regions up-stream

in the ventral and dorsal stream, the inferior temporal cor-

tex IT and a region encompassing intraparietal sulcus 1 and

2 (IPS1&2), respectively. We examined whether DNNs

predicted brain activity in these ROIs (Fig. 6(a)), and also

whether this prediction was hierarchical (Fig. 6, Suppl. Ta-

ble 4(a)).

Concerning the role of architecture, we found the un-

trained DNN predicted brain representations better than

the object DNN in V1, but worse in IT and IPS1&2

(Fig. 6(a,c)). Further, the relationship was hierarchical (neg-

ative) only in IT (ρ = 0.47, P = 0.002) (Fig. 6(b); stars

above bars). Thus depending on cortical region the DNN

architecture alone is enough to induce similarity between a

DNN and the brain, but the hierarchy absent (V1, IPS1&2)

or reversed (IT) without proper DNN training.

Concerning the role of task, we found the scene DNN

had largely similar, albeit weaker, similarity to the brain

than the object DNN for all ROIs (Fig. 6(a,c)), with a sig-

nificant hierarchical relationship in V1 (ρ = 0.68, P =
0.002), but not in IT (ρ = 0.26, P = 0.155) or IPS1&2

(ρ = 0.30, P = 0.08) (Fig. 6(b)). In addition, comparing

results for the object and scene DNNs directly (Fig. 6(c)),

we found stronger effects for the object DNN in several

layers in all ROIs. Together these results corroborate the

conclusions of the MEG analysis, showing that task con-

straints shape brain representations along both ventral vi-

sual streams in a partly overlapping, and partly dissociable

manner.

Concerning the role of the training operation, we found

both the unecological and noise DNNs predicted visual rep-

resentations in V1 and IT, but not IPS1&2 (Fig. 6(a)), and

with less predictive power than the object DNN in all re-

gions (Fig. 6(c)). A hierarchical relationship was present

and negative in V1 and IT, but not IPS1&2 (Fig. 6(b),

unecological DNN: V1 ρ = 0.40, P = 0.001, IT ρ =
0.38, P = 0.001, IPS1&2 ρ = 0.03, P = 0.77; noise DNN:

V1 ρ = 0.08, P = 0.42, IT ρ = 0.29, P = 0.012, IPS1&2

ρ = 0.08, P = 0.42).

Therefore the training on a real-world categorization

task, but not the training operation per se, increases the

brain-DNN similarity while inducing a hierarchical rela-

tionship.



Figure 4: Spatial maps of visual representations common to brain and object DNN. The object DNN predicted the

hierarchical topography of visual representations in the human brain. Low layers had significant representational similarities

confined to the occipital lobe of the brain, i.e. low- and mid-level visual regions. Higher layers had significant representational

similarities with more anterior regions in the temporal and parietal lobe, with layers 7 and 8 reaching far into the inferior

temporal cortex and inferior parietal cortex (n = 15, cluster definition threshold P < 0.05, cluster-threshold P < 0.05,

analysis separate for each hemisphere).



Figure 5: Architecture, task, and training procedure influence the DNN’s predictability of temporally emerging brain

representations. (a) We created 5 different models: (1) a model trained on object categorization (object DNN; Fig. 1); (2) an

untrained model initialized with random weights (untrained DNN) to determine the effect of architecture alone; (3) a model

trained on a different real-world task, scene categorization (scene DNN) to investigate the effect of task; and (4,5) a model

trained on object categorization with random assignment of image labels (unecological DNN), or spatially smoothed noisy

images with random assignment of image labels (noise DNN), to determine the effect of the training operation independent

of task constraints. (b) All DNNs had significant representational similarities to human brains (layer-specific analysis in

Suppl. Fig. 3). (c) We contrasted the object DNN against all other models (subtraction of corresponding time series shown in

(b)). Representations in the object DNN were more similar to brain representations than any other model, though the scene

DNN was a close second. Lines above data curves significant time points (n = 15, cluster definition threshold P = 0.05,

cluster threshold P = 0.05; for onset and peak latencies see Suppl. Table 3(a,b)). Gray vertical lines indicates image onset.

3. Discussion

By comparing the spatio-temporal dynamics in the hu-

man brain with a deep neural network (DNN) model trained

on object categorization, we provided a formal model of

object recognition in cortex. We found a correspondence

between the object DNN and the brain in both space (fMRI

data) and time (MEG data). Both cases demonstrated a hier-

archy: in space from low- to high-level visual areas in both

ventral and dorsal stream, in time over the visual process-

ing stages in the first few hundred milliseconds of vision.

A systematic analysis of the fundamental determinants of

this DNN-brain relationship identified that the architecture

alone induces similarity, but that training on a real-world

categorization task was necessary for a hierarchical rela-

tionship to emerge. Our results demonstrate the explana-

tory and discovery power of the brain-DNN comparison ap-

proach to understand the spatio-temporal neural dynamics

underlying object recognition. They provide novel evidence

for a role of parietal cortex in visual object categorization,

and give rise to the idea that the organization of the visual

cortex may be influenced by processing constraints imposed

by visual categorization the same way that DNN represen-

tations were influenced by object categorization tasks.

3.1. Object DNN predicts a hierarchy of brain rep­
resentations in space and time

A major impediment in modeling human object recog-

nition in cortex is the lack of principled understanding of

exact neuronal tuning in mid- and high-level visual cortex.

Previous approaches thus extrapolated principles observed



in low-level visual cortex, with limited success in capturing

neuronal variability and a much inferior to human behav-

ioral performance [35, 36].

Our approach allowed us to obviate this limitation by

relying on an object recognition model that learns neu-

ronal tuning. By comparing representations between the

DNN and the human brain we found a hierarchical cor-

respondence in both space and time: early layers of the

DNN predicted visual representations emerging early after

stimulus onset, and in regions low in the cortical process-

ing hierarchy, with progressively higher DNN layers pre-

dicting subsequent emerging representations in higher re-

gions of both the dorsal and ventral visual pathway. Our

results provide algorithmically informed evidence for the

idea of visual processing as a step-wise hierarchical pro-

cess in time [5, 9, 33] and along a system of cortical re-

gions [15, 14, 16].

In regards to the temporal correspondence in particular,

our results provide first evidence for a hierarchical relation-

ship between computer models of vision and the brain. Peak

latencies between layers of the object DNN and emerging

brain activations ranged between approximately 100 and

160ms. While in agreement with prior findings about the

time necessary for complex object processing [42], our re-

sults go further by making explicit the step-wise transfor-

mations of representational format that may underlie rapid

complex object categorization behavior.

In regards to the spatial correspondence, previous stud-

ies compared DNNs to the ventral visual stream only,

mostly using a spatially limited region-of-interest approach

[18, 21, 48]. Here, using a spatially unbiased whole-brain

approach [27], we discovered a hierarchical correspondence

in the dorsal visual pathway. While previous studies have

documented object selective responses in dorsal stream in

monkeys [20, 39] and humans [7, 22], it is still debated

whether dorsal visual representations are better explained

by differential motor action associations or ability to en-

gage attention, rather than category membership or shape

representation [17, 25]. Crucially, our results defy expla-

nation by attention or motor-related concepts, as neither

played any role in the DNN and thus brain-DNN correspon-

dence. Concurrent with the observation that temporal lobe

resection shows limited behavioral effect in object recogni-

tion [4, 46], our results argue that parietal cortex might play

a stronger role in object recognition than previously appre-

ciated.

Our results thus challenge the classic descriptions of the

dorsal pathway as a spatially- or action oriented ‘where’

or ‘how’ pathway [43, 31], and suggest that current theo-

ries describing parietal cortex as related to spatial working

memory, visually guided actions and spatial navigation [26]

should be complemented with a role for the dorsal visual

stream in object categorization [22].

3.2. Origin and implications of brain­DNN repre­
sentation similarities

Investigating the influence of crucial parameters deter-

mining DNNs, we found an influence of both architecture

and task constraints induced by training the DNN on a real-

world categorization task. This suggests that that simi-

lar architectural principles, i.e., convolution, max pooling

and normalization govern both model and brains, concur-

rent with the origin of those principle by observation in the

brain [35]. The stronger similarity with early rather than

late brain regions might be explained by the fact that neu-

ral networks initialized with random weights that involve

a convolution, nonlinearity and normalization stage exhibit

Gabor-like filters sensitive to oriented edges, and thus simi-

lar properties an neurons in early visual areas [40].

Although architecture alone induced similarity, training

on a real-world categorization tasks increased similarity and

was necessary for a hierarchical relationship in processing

stages between the brain and the DNN to emerge in space

and time. This demonstrates that learning constraints im-

posed by a real-world categorization task crucially shape

the representational space of a DNN [48], and suggests that

the processing hierarchy in the human brain is a the result

of computational constraints imposed by visual object cat-

egorization. Such constraints may originate in high-level

visual regions such as IT and IPS, be propagated backwards

from high-level visual regions through the visual hierar-

chies through abundantly present feedback connections in

the visual stream at all levels [13] during visual learning [2],

and provide the basis of learning at all stages of the process-

ing in visual brain [24].

3.3. Summary statement

In sum, by comparing deep neural networks to human

brains in space and time, we provide a spatio-temporally

unbiased algorithmic account of visual object recognition

in human cortex.

4. Method

Participants: 15 healthy human volunteers (5 female,

age: mean ± s.d. = 26.6 ± 5.18 years, recruited from a

subject pool at Massachusetts Institute of Technology) par-

ticipated in the experiment. The sample size was based on

methodological recommendations in literature for random-

effects fMRI and MEG analyses. Written informed consent

was obtained from all subjects. The study was approved by

the local ethics committee (Institutional Review Board of

the Massachusetts Institute of Technology) and conducted

according to the principles of the declaration of Helsinki.

All methods were carried out in accordance with the ap-

proved guidelines.

Visual stimuli: The stimuli presented to humans and



Figure 6: Architecture, task constraints, and training procedure influence the DNN’s predictability of the topography

of brain representations. (a) Comparison of fMRI representations in V1, IT and IPS1&2 with the layer-specific DNN

representations of each model. Error bars indicate standard error of the mean as determined by bootstrapping (n = 15).

(b) Correlations between layer number and brain-DNN representational similarities for the different models shown in (a).

Non-zero correlations indicate hierarchical relationships; positive correlations indicate an increase in brain-DNN similarities

towards higher layers, and vice versa for negative correlations. Bars color-coded as DNNs, stars above bars indicate signifi-

cance (sign-permutation tests, P < 0.05, FDR-corrected, for details see Suppl. Table 4(a)). (c) Comparison of object DNN

against all other models (subtraction of corresponding points shown in (a)). (d) Same as (b), but for the curves shown in (c)

(for details see Suppl. Table 4b).

computer vision models were 118 color photographs of ev-

eryday objects, each from a different category, on natural

backgrounds (Fig. 2(b)) from the ImageNet database [12].

4.1. Experimental design and task

Participants viewed images presented at the center of

the screen (4◦ visual angle) for 0.5s and overlaid with a

light gray fixation cross. The presentation parameters were

adapted to the specific requirements of each acquisition

technique (Suppl. Fig. 1).

For MEG, participants completed 15 runs of 314s dura-

tion. Each image was presented twice in each MEG run in

random order with an inter-trial interval (ITI) of 0.9 − 1s.

Participants were asked to press a button and blink their

eyes in response to a paper clip image shown randomly ev-

ery 3 to 5 trials (average 4). The paper clip image was not

part of the image set, and paper clip trials were excluded

from further analysis.

For fMRI, each participant completed two independent

sessions of 9 − 11 runs (486s duration each) on two sepa-

rate days. Each run consisted of one presentation of each

image in random order, interspersed randomly with 39 null

trials (i.e., 25% of all trials) with no stimulus presentation.

During the null trials the fixation cross turned darker for

500ms. Participants reported changes in fixation cross hue

with a button press.

MEG acquisition: MEG signals were acquired contin-

uously from 306 channels (204 planar gradiometers, 102

magnetometers, Elektra Neuromag TRIUX, Elekta, Stock-

holm) at a sampling rate of 1000Hz, and filtered online be-

tween 0.03 and 330Hz. We preprocessed data with temporal

source space separation (maxfilter software, Elekta, Stock-

holm) before further analysis with Brainstorm1. We ex-

tracted each trial with a 100ms baseline and 1000ms post-

stimulus recordings, removed baseline mean, smoothed

data with a 30Hz low-pass filter, and normalized each chan-

nel with its baseline standard deviation. This yielded 30

preprocessed trials per condition and participant.

fMRI acquisition: Magnetic resonance imaging (MRI)

was conducted on a 3T Trio scanner (Siemens, Erlangen,

Germany) with a 32-channel head coil. We acquired struc-

tural images using a standard T1-weighted sequence (192

sagittal slices, FOV = 256mm2, TR = 1900ms, TE =

2.52ms, flip angle = 9◦).

For fMRI, we conducted 911 runs in which 648 volumes

were acquired for each participant (gradient-echo EPI se-

quence: TR = 750ms, TE = 30ms, flip angle = 61◦, FOV

read = 192mm, FOV phase = 100% with a partial frac-

tion of 6

8
, through-plane acceleration factor 3, bandwidth

1816Hz/Px, resolution = 3mm3, slice gap 20%, slices = 33,

ascending acquisition). The acquisition volume covered the

whole cortex.

1http://neuroimage.usc.edu/brainstorm/

http://neuroimage.usc.edu/brainstorm/


4.2. Anatomical MRI analysis

We reconstructed the cortical surface of each participant

using Freesurfer on the basis of the T1 structural scan [10].

This yielded a discrete triangular mesh representing the cor-

tical surface used for the surface-based two-dimensional

(2D) searchlight procedure outlined below.

fMRI analysis: We preprocessed fMRI data using

SPM82. For each participant and session separately, fMRI

data were realigned and co-registered to the T1 structural

scan acquired in the first MRI session. Data was neither

normalized nor smoothed. We estimated the fMRI response

to the 118 image conditions with a general linear model.

Image onsets and duration were entered into the GLM as re-

gressors and convolved with a hemodynamic response func-

tion. Movement parameters entered the GLM as nuisance

regressors. We then converted each of the 118 estimated

GLM parameters into t-values by contrasting each condi-

tion estimate against the implicitly modeled baseline. Ad-

ditionally, we determined the grand-average effect of visual

stimulation independent of condition in a separate t-contrast

of parameter estimates for all 118 image conditions versus

the implicit baseline.

Definition of fMRI regions of interest: We defined

three regions-of-interest for each participant: V1 corre-

sponding to the central 4 of the visual field, inferior tem-

poral cortex (IT), and intraparietal sulcus regions 1 and 2

combined (IPS1&2). We defined the V1 ROI based on

an anatomical eccentricity template [3]. For this, we reg-

istered a generic V1 eccentricity template to reconstructed

participant-specific cortical surfaces and restricted the tem-

plate to the central 4 of visual angle. The surface-based

ROIs for the left and right hemisphere were resampled to

the space of EPI volumes and combined.

To define inferior temporal cortex (IT), we used an

anatomical mask of bilateral fusiform and inferior tempo-

ral cortex (WFU Pickatlas, IBASPM116 Atlas). To de-

fine IPS1&2, we used a combined probabilistic mask of

IPS1 and IPS2 [45]. Masks in MNI space were reverse-

normalized to single-subject functional space. We then re-

stricted the anatomical definition of each ROI for each par-

ticipant by functional criteria to the 100 most strongly acti-

vated voxels in the grand-average contrast of visual stimu-

lation vs. baseline.

fMRI surface-based searchlight construction and

analysis: To analyze fMRI data in a spatially unbiased

(unrestricted from ROIs) approach, we performed a 2D

surface-based searchlight analysis following the approach

of Chen et al [8]. We used a cortical surface-based in-

stead of a volumetric searchlight procedure as the former

promises higher spatial specificity. The construction of 2D

surface-based searchlights was a two-point procedure. First,

2http://www.fil.ion.ucl.ac.uk/spm/

we defined 2D searchlight disks on subject-specific recon-

structed cortical surfaces by identifying all vertices less than

9mm away in geodesic space for each vertex v. Geodesic

distances between vertices were approximated by the length

of the shortest path on the surface between two vertices

by Dijkstra’s algorithm [10]. Second, we extracted fMRI

activity patterns in functional space corresponding to the

vertices comprising the searchlight disks. Voxels belong-

ing to a searchlight were constrained to appear only once

in a searchlight, even if they were nearest neighbor to sev-

eral vertices. For random effects analysis, i.e., to summa-

rize results across subjects, we estimated a mapping be-

tween subject-specific surfaces and an average surface us-

ing freesurfer [10] (fsaverage).

4.3. Convolutional neural network architecture and
training

We used a deep neural network (DNN) architecture as

described by Krizhevsky et al [29] (Fig. 1(a)). We chose

this architecture because it was the best-performing neural

network in the ImageNet Large Scale Visual Recognition

Challenge 2012, it is inspired by biological principles. The

network architecture consisted of 8 layers; the first five lay-

ers were convolutional; the last three were fully connected.

Layers 1 and 2 consisted of three stages: convolution, max

pooling and normalization; layers 3− 5 consisted of a con-

volution stage only (enumeration of units and features for

each layer in Suppl. Table 5). We used the last processing

stage of each layer as model output of each layer for com-

parison with fMRI and MEG data.

We constructed 5 different DNN models that differed in

the categorization task they were trained on (Fig. 5(a)): (1)

object DNN, i.e., a model trained on object categorization;

(2) untrained DNN, i.e., an untrained model initialized with

random weights; (3) scene DNN, i.e., a model trained on

scene categorization; (4) unecological DNN, i.e., a model

trained on object categorization but with random assign-

ment of label to the training image set; and (5) noise DNN,

i.e., a model trained to categorize structured noise images.

In detail, the object DNN was trained with 900k images

of 683 different objects from ImageNet [12] with roughly

equal number of images per object (∼ 1300). The scene

DNN, was trained with the recently released Places dataset

that contains images from different scene categories [50].

We used 216 scene categories and normalized the total num-

ber of images to be equivalent to the number of images used

to train the object DNN. For the noise DNN we created an

image set consisting of 1000 random categories of 1300 im-

ages each. All noise images were sampled independently of

each other and had size 256 × 256 with 3 color channels.

To generate, each color channel and pixel was sampled in-

dependently from a uniform [0, 1] distribution, followed by

convolution with a 2D Gaussian filter of size 10 × 10 with

http://www.fil.ion.ucl.ac.uk/spm/


standard deviation of 80 pixels. The resulting noise images

had small but perceptible spatial gradients.

All DNNs except the untrained DNN were trained on

GPUs using the Caffe toolbox3 with the learning parame-

ters set as follows: the networks were trained for 450k it-

erations, with the initial learning rate set to 0.01 and a step

multiple of 0.1 every 100k iterations. The momentum and

weight decay were fixed at 0.9 and 0.0005 respectively.

To ascertain that we successfully trained the networks,

we determined their performance in predicting the category

of images in object and scene databases based on the output

of layer 7. As expected, the deep object- and scene net-

works performed comparably to previous DNNs trained on

object and scene categorization, whereas the unecological

and noise networks performed at chance level (Suppl. Ta-

ble 1).

To determine classification accuracy of the object DNN

on the 118-image set used to probe the brain here, we deter-

mined the 5 most confident classification labels for each im-

age. We then manually verified whether the predicted labels

matched the expected object category. Manual verification

was required to correctly identify categories that were vi-

sually very similar but had different labels e.g., backpack

and book bag, or airplane and airliner. Images belong-

ing to categories for which the network was not trained

(i.e., person, apple, cattle, sheep) were marked as incor-

rect. Overall, the network classified 111/118 images cor-

rectly, resulting in a 94% success rate, comparable to hu-

mans [38] (image-specific voting results available online at

http://brainmodels.csail.mit.edu).

4.4. Visualization of model neuron receptive field
properties and DNN connectivity

We used a neuroscience-inspired reduction method to

determine the receptive field (RF) properties size and selec-

tivity of model neurons [49]. In short, for any neuron we de-

termined the K = 25 most-strongly activating images. To

determine the empirical size of the RF, we replicated the K
images many times with small random occluders at differ-

ent positions in the image. We then passed the occluded im-

ages into the DNN and compared the output to the original

image, thus constructing a discrepancy map that indicates

which portion of the image drives the neuron. Re-centering

and averaging discrepancy maps generated the final RF.

To illustrate the selectivity of neuron RFs, we use shaded

regions to highlight the image area primarily driving the

neuron response (Fig. 1(b)). This was obtained by first pro-

ducing the neuron feature map (the output of a neuron to

a given image as it convolves the output of the previous

layer), then multiplying the neuron RF with the value of

the feature map in each location, summing the contribution

3http://caffe.berkeleyvision.org/

across all pixels, and finally thresholding this map at 50%
of its maximum value.

To illustrate the parameters of the object

deep network, we developed a tool (DrawNet;

http://brainmodels.csail.mit.edu) that plots for any chosen

neuron in the model 1) the selectivity of the neuron for a

particular image, and the strongest connections (weights)

between the neurons in the previous and next layer. Only

connections with weights that exceed a threshold of 0.75

times the maximum weight for a particular neuron are

displayed. DrawNet plots properties for the pooling stage

of layers 1, 2 and 5 and for the convolutional stage of layers

3 and 4.

4.5. Analysis of fMRI, MEG and computer model
data in a common framework

To compare brain imaging data (fMRI, MEG) with the

DNN in a common framework we used representational

similarity analysis [21, 28]. The basic idea is that if two

images are similarly represented in the brain, they should

be similarly represented in the computer model, too. Pair-

wise similarities, or equivalently dissimilarities, between

the 118 condition-specific representations can be summa-

rized in a representational dissimilarity matrix (RDM) of

size 118 × 118, indexed in rows and columns by the com-

pared conditions. Thus representational dissimilarity ma-

trices can be calculated for fMRI (one fMRI RDM for

each ROI or searchlight), for MEG (one MEG RDM for

each millisecond), and for DNNs (one DNN RDM for each

layer). In turn, layer-specific DNN RDMs can be compared

to fMRI or MEG RDMs yielding a measure of brain-DNN

representational similarity. The specifics of RDM construc-

tion for MEG, fMRI and DNNs are given below.

4.6. Multivariate analysis of fMRI data yields space­
resolved fMRI representational dissimilarity
matrices

To compute fMRI RDMs we used a correlation-based

approach. The analysis was conducted independently for

each subject. First, for each ROI (V1, IT, or IPS1&2) and

each of the 118 conditions we extracted condition-specific

t-value activation patterns and concatenated them into vec-

tors, forming 118 voxel pattern vectors of length V=100.

We then calculated the dissimilarity (1− Spearman’s ρ) be-

tween t-value patterns for every pair of conditions. This

yielded a 118×118 fMRI representational dissimilarity ma-

trix (RDM) indexed in rows and columns by the compared

conditions for each ROI. Each fMRI RDM was symmet-

ric across the diagonal, with entries bounded between 0 (no

dissimilarity) and 2 (complete dissimilarity).

To analyze fMRI data in a spatially unbiased fashion we

used a surface-based searchlight method. Construction of

fMRI RDMs was similar to the ROI case above, with the

http://brainmodels.csail.mit.edu
http://caffe.berkeleyvision.org/
http://brainmodels.csail.mit.edu


only difference that activation pattern vectors were formed

separately for each voxel by using t-values within each

corresponding searchlight, thus resulting in voxel-resolved

fMRI RDMs.

4.7. Construction of DNN layer­resolved and sum­
mary DNN representational dissimilarity ma­
trices

To compute DNN RDMs we again used a correlation-

based approach. For each layer of the DNN, we extracted

condition-specific model neuron activation values and con-

catenated them into a vector. Then, for each condition

pair we computed the dissimilarity (1− Spearman’s ρ) be-

tween the model activation pattern vectors. This yielded a

118×118 DNN representational dissimilarity matrix (DNN

RDM) summarizing the representational dissimilarities for

each layer of a network. The DNN RDM is symmetric

across the diagonal and bounded between 0 (no dissimilar-

ity) and 2 (complete dissimilarity).

For an analysis of representational dissimilarity at the

level of whole DNNs rather than individual layers we mod-

ified the aforementioned procedure (Fig. 5(b)). Layer-

specific model neuron activation values were concatenated

before entering similarity analysis, yielding a single DNN

RDM per model. To balance the contribution of each

layer irrespective of the highly different number of neu-

rons per layer, we applied a principal component analysis

(PCA) on the condition- and layer-specific activation pat-

terns before concatenation, yielding 117-dimensional sum-

mary vectors for each layer and condition. Concatenat-

ing the 117-dimensional vector across 8 layers yielded a

117 × 8 = 936 dimensional vector per condition that en-

tered similarity analysis.

4.8. Multivariate analysis of MEG data yields time­
resolved MEG representational dissimilarity
matrices

To compute MEG RDMs we used a decoding approach

with a linear support vector machine (SVM). The idea is

that if a classifier performs well in predicting condition la-

bels based on MEG data, then the MEG visual represen-

tations must be sufficiently dissimilar. Thus, decoding ac-

curacy of a classifier can be interpreted as a dissimilarity

measure. The motivation for a classifier-based dissimilarity

measure rather than 1− Spearman’s ρ (as above) is that a

SVM selects MEG sensors that contain discriminative in-

formation in noisy data without human intervention. A dis-

similarity measure over all sensors might be strongly influ-

ences by noisy channels, and an a-priori sensor selection

might introduce a bias, and neglect the fact that different

channels contain discriminate information over time.

We extracted MEG sensor level patterns for each mil-

lisecond time point (100ms before to 1000ms after image

onset) and for each trial. For each time point, MEG sensor

level activations were arranged in 306 dimensional vectors

(corresponding to the 306 MEG sensors), yielding M = 30
pattern vectors per time point and condition). To reduce

computational load and improve signal-to-noise ratio, we

sub-averaged the M vectors in groups of k = 5 with ran-

dom assignment, thus obtaining L = M/k averaged pattern

vectors. For each pair of conditions, we assigned L− 1 av-

eraged pattern vectors to a training data set used to train a

linear support vector machine in the LibSVM implementa-

tion4. The trained SVM was then used to predict the con-

dition labels of the left-out testing data set consisting of the

Lth averaged pattern vector. We repeated this process 100

times with random assignment of the M raw pattern vec-

tors to L averaged pattern vectors. We assigned the average

decoding accuracy to a decoding accuracy matrix of size

118×118, with rows and columns indexed by the classified

conditions. The matrix was symmetric across the diagonal,

with the diagonal undefined. This procedure yielded one

118×118 matrix of decoding accuracies and thus one MEG

representational dissimilarity matrix (MEG RDM) for every

time point.

4.9. Representational similarity analysis compares
brain data to DNNs

We used representational similarity analysis to compare

layer-specific DNN RDMs to space-resolved fMRI RDMs

or time-resolved MEG RDMs (Fig. 2(b)). In particular,

fMRI or MEG RDMs were compared to layer-specific DNN

RDMs by calculating Spearman’s correlation between the

lower half of the RDMs excluding the diagonal. All analy-

ses were conducted on single-subject basis.

A comparison of time-resolved MEG RDMs and DNN

RDMs (Fig. 2(b)) yielded the time course with which visual

representations common to brains and DNNs emerged. For

the comparison of fMRI and DNNs RDMs, fMRI search-

light (Fig. 2(b)) and ROI RDMs were compared with DNN

RDMs, yielding single ROI values and 2-dimensional brain

maps of similarity between human brains and DNNs respec-

tively.

For the searchlight-based fMRI-DNN comparison pro-

cedure in detail, we computed the Spearman’s ρ between

the DNN RDM of a given layer and the fMRI RDM of a

particular voxel in the searchlight approach. The resulting

similarity value was assigned to a 2D map at the location of

the voxel. Repeating this procedure for each voxel yielded a

spatially resolved similarity map indicating common brain-

DNN representations. The entire analysis yielded 8 maps,

i.e., one for each DNN layer. Subject-specific similarity

maps were transformed into a common average cortical sur-

face space before entering random-effects analysis.

4http://www.csie.ntu.edu.tw/∼cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm


4.10. Statistical testing

For random-effects inference we used sign permutation

tests. In short, we randomly changed the sign of the data

points (10,000 permutation samples) for each subject to de-

termine significant effects at a threshold of P < 0.05. To

correct for multiple comparisons in cases where neighbor-

ing tests had a meaningful structure, i.e., neighboring vox-

els in the searchlight analysis and neighboring time points

in the MEG analysis, we used cluster-size inference with a

cluster-size threshold of P < 0.05. In other cases, we used

FDR correction.

To provide estimates of the accuracy of a statistic we

bootstrapped the pool of subjects (1000 bootstraps) and cal-

culated the standard deviation of the sampled bootstrap dis-

tribution. This provided the standard error of the statistic.
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