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ARTICLE

Deep-ocean mixing driven by small-scale internal
tides
Clément Vic1,8, Alberto C. Naveira Garabato1, J.A. Mattias Green2, Amy F. Waterhouse 3, Zhongxiang Zhao4,

Angélique Melet5, Casimir de Lavergne6, Maarten C. Buijsman 7 & Gordon R. Stephenson7

Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and

biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides

supply much of the mechanical energy required to sustain mixing via the generation of

internal waves, known as internal tides, whose fate—the relative importance of their local

versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-

analytical model of internal tide generation with satellite and in situ measurements to show

that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for

the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we

unveil the pronounced geographical variations of their energy proportion, ignored by current

parameterisations of mixing in climate-scale models. Based on these results, we propose a

physically consistent, observationally supported approach to accurately represent the dis-

sipation of small-scale internal tides and their induced mixing in climate-scale models.
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T
he deep ocean communicates with the atmosphere through
a network of currents termed the meridional overturning
circulation. Chokepoints of communication include

upwelling currents across density stratification, maintained by
turbulent diapycnal mixing. Decades of observations have
revealed that the processes driving mixing exhibit prominent
spatio-temporal variability, and are often energised in the
proximity of complex topography1. In turn, recent theoretical and
modelling investigations have shown that the spatial distribution
of mixing strongly impacts the ocean state, highlighting an
imperative to develop realistic and physically consistent repre-
sentations of key mixing processes2–4. The generation and
breaking of internal (or baroclinic) tides is a primary driver
of deep-ocean mixing5–7. Lunisolar tides supply ~1 TW of
mechanical energy to global internal tide generation outside of
continental shelves6, which is approximately half of the 2 ± 0.6
TW required to fuel global turbulent dissipation and
overturning8,9. Lunisolar tides lose their energy on interacting
with major features of the seafloor topography, such as mid-ocean
ridges and seamounts, and thereby transfer much of their energy
to internal tides. Although the geography of internal tide gen-
eration is relatively well understood (as it depends, to first order,
on well-known barotropic tidal currents and properties of the
seafloor topography10), the waves’ subsequent evolution and
eventual fate are highly uncertain. As a result, parameterisations
of tidally driven mixing in climate-scale ocean models are poorly
constrained7, and mechanistic descriptions of the association
between mixing and overturning suffer from fundamental
knowledge gaps3.

Internal tides span a wide range of vertical and horizontal
scales, and it is common practice to cast them into a discrete set
of normal modes with distinct structures determined by the local
stratification11. Observations show that low-mode (i.e., large-
scale) internal tides are able to propagate over one thousand
kilometres from their generation site, such that their breaking
may contribute to far-field oceanic background mixing or remote
mixing hot spots. In contrast, high-mode (i.e., small-scale)
internal tides are prone to direct breaking, often triggered by
wave-wave interactions12, and thus drive mixing in the near field
of their generation site. The dichotomous fate of low-mode and
high-mode waves calls for quantification of the modal parti-
tioning of internal tide generation. Critically, this modal parti-
tioning is directly linked to the parameter q, the fraction of locally
dissipated tidal energy to local barotropic-to-baroclinic tidal
energy conversion. This parameter is a cornerstone of para-
meterisations of tidal mixing2,13 used in state-of-the-art climate-
scale ocean models, such as the Community Climate System
Model version 4 (CCSM414) and the Nucleus for European
Modelling of the Ocean (NEMO15). In these models, q adopts a
constant value of 1/3, although the potential for significant spatial
variability in q is acknowledged by several studies16–18.

In this paper, we present an estimate of the modal partitioning
of global internal tide generation with a resolution of up to 50
modes, and show that its predictions are consistent with available
observations of tidal energy conversion, radiation and mixing. We
demonstrate that the generation of very high (>10) modes
accounts for a remarkably large fraction (27%) of all tidal energy
conversion. Contrary to current views, reflected in para-
meterisations of tidal mixing, near-field mixing, associated with
locally generated high-mode internal tides, dominates tidal mix-
ing on a global scale (>50%) and exhibits a strong geographical
variability: the parameter q is widely distributed across values
from 0 to 1. These findings have important implications for the
representation of deep-ocean mixing and overturning in climate-
scale ocean models, which we discuss.

Results
Energy budgets and evidence of high-mode generation. We use
a linear, semi-analytical model of barotropic-to-baroclinic tidal
energy conversion based on the assumptions of subcritical
topography and small tidal excursion19–22. The model takes into
account the spectral shape of seafloor topography, the barotropic
tidal currents and the frequencies of the system, and predicts the
energy conversion as a function of wavenumber and azimuthal
direction (see Methods). This spectral-space method relies on the
same assumptions as real-space methods, which can also compute
estimates of the modal partitioning of internal tide generation23.
It however has the advantage of not predicting negative conver-
sion rates23,24 that are difficult to interpret physically. The cal-
culation is performed globally on a 1/2° grid and gives, at each
grid point, the energy conversion En

ω into mode n (with n ≥ 1) for
a tide of frequency ω. The highest mode resolved by our model
depends on the resolution of the bathymetric data set, latitude,
and stratification at each location; at mid-latitudes, it is
approximately 50. However, the global bathymetry product does
not resolve abyssal hills (topographic features with lateral scales
of O(1–10) km that populate mid-ocean ridges), yet these are
responsible for non-negligible energy conversion25. In order to
account for this, we complement our model with a published
independent estimate of tidal energy conversion by abyssal hills25,
hereafter denoted Ehills

M2
(only computed for the semidiurnal tide

M2). In the following, Ehills
M2

is included in En�1
M2

for n ≥ 1, except

in Fig. 1 and associated discussion. Our estimates of energy
conversion are corrected wherever topographic slopes are
supercritical, as done in preceding studies23,25 (see Supplemen-
tary Note 1). In the following, unless stated otherwise, we focus
on the semidiurnal M2 tidal constituent, which accounts for the
bulk of tidal energy conversion in the deep ocean26.

We assess the realism of our estimate of energy conversion
with two independent observational data sets: the energy lost by
the barotropic tide, DM2

, computed through an inverse analysis of

satellite altimetric measurements; and the positive part of the
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suggested in Egbert and Ray26 for deep-ocean integrals. The inset map

shows the boundaries separating the different basins. Budgets are

computed for seafloor depths greater than 700m
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mode-1 energy flux divergence, ð∇ � F1M2
Þþ, also estimated from

satellite altimetric data27 (see Methods). ð∇ � F1M2
Þþ quantifies the

rate of generation of mode-1 internal tides. These altimetry-based
data sets enable us to define regional and global budgets of the M2

tidal energy, and to validate the predictions of our semi-analytical
model (Fig. 1). All terms are integrated for seafloor depths larger
than 700 m, in order to exclude shallow topography where the
supercritical-slope correction is important (see Supplementary
Fig. 1).

The correspondence between observational estimates and our
model’s predictions is notable and enables, for the first time, to
accurately depict a budget for the energy lost by the barotropic
tide, when decomposed into various basins and various
contributing components. First, the bulk of the energy lost by
the M2 barotropic tide is found to be converted into internal tides
for all three major ocean basins: E1�1

M2
is within the error bars of

DM2
globally (692 GW vs. 853 ± 171 GW). The contribution of

abyssal hills is crucial to close the budget of barotropic tide
dissipation, as it represents 12% of the conversion, globally. Note
that the marginally significant difference between DM2

and E1�1
M2

in the Atlantic basin, suggestive of missing conversion, may be
attributable to under-represented conversion by abyssal hills25.
The geographical patterns of DM2

and E1�1
M2

match throughout

the global ocean (see Supplementary Note 2 and Supplementary
Fig. 2), and reveal that M2 tidal energy conversion is amplified
over mid-ocean ridges, seamounts, and continental shelf breaks
(Fig. 2a, b).

Second, there is a close agreement between our model’s
predictions (E1

M2
) and observational estimates (ð∇ � F1M2

Þþ) of the

rate of generation of M2 mode-1 internal tides, both globally and
for each of the major ocean basins (Fig. 1). Mode 1 only accounts
for 29% of M2 tidal energy conversion on a global scale. The
relative importance of mode-1 is lower in the Atlantic and Indian

basins, where mode-1 contributes 21 and 23% of all M2 tidal
energy conversion, but is higher in the Pacific basin, where the
fraction of mode-1 conversion is 35%. The enhanced generation
of mode-1 internal tides in the Pacific Ocean stems from the
basin’s comparative abundance of steep ridges and seamounts,
which are conducive to the generation of low-mode baroclinic
tides. Hot spots of mode-1 generation are co-located in E1

M2
and

ð∇ � F1M2
Þþ (Fig. 2c, d; Supplementary Note 3 and Supplementary

Fig. 3): prominent sites include the Canary Islands, the Atlantis-
Meteor Seamount complex, the Iberian shelf break and the
Walvis Ridge in the Atlantic Ocean; the northern and southern
edges of Madagascar in the Indian Ocean; and the Hawaiian and
Polynesian Ridges, the Galápagos archipelago, the Tonga-
Kermadec Ridge (north of New Zealand) and the Tasman Sea
shelf break in the Pacific Ocean. Other likely sites of important
M2 mode-1 internal tide generation south of 40 °S, such as the
Kerguelen Plateau, could not be resolved in the observational data
set due to contamination of the tidal signals by the region’s
energetic mesoscale eddy field. All in all, both our model and the
observations indicate that the bulk (71–82%) of M2 tidal energy
conversion occurs in modes higher than 1. This result challenges
the widespread view that mode 1 overwhelms tidal energy
fluxes28.

The robustness of our model is further endorsed by two
independent calculations of the modal partitioning of internal
tide generation. Falahat et al.23 used a different approach to ours,
but based on the same assumptions, to compute the M2 tidal
energy conversion for the first 10 modes. Their modal distribu-
tion closely matches ours for this subset of modes (Fig. 3), with a
global conversion into modes 1–10 (integrated up to 700 m) of
518 GW vs. 506 GW. Our model has slightly more energy in
modes 6–10, which could be attributed to the better-resolved
bathymetry dataset used (SRTM30-PLUS vs. ETOPO2) and the
upgraded barotropic tide model used to derive barotropic tidal
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. c Positive part of the divergence of
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Þþ derived from satellite altimetry27 (areas where the mesoscale activity is too strong to recover the internal tide

signal are masked in dark grey), and d barotropic-to-baroclinic tide energy conversion into mode 1 from the model, E1M2
. Areas shallower than 700m are

shown in dark grey
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currents (TPXO8 vs. TPXO6.2). Our estimate for modes 1–5 also
compares well to the internal tide generation diagnosed in a state-
of-the-art global numerical simulation (Fig. 3) at a horizontal
resolution of 4 km using the primitive-equation model HYCOM
(see Methods). Modes higher than ~4 are only partially resolved
in HYCOM as this model cannot adequately represent the
horizontal and vertical internal wave lengths. While the
consistency between our predictions and these independent
estimates is reassuring, our results highlight that modes higher
than 10, hitherto unresolved, account for a large fraction—27%,
including the contribution of abyssal hills—of global M2 internal
tide generation. The importance of modes higher than 10 is
bolstered by the fact that the integrated conversion into modes
1–10 (506 GW) is too small to explain the observed energy lost by
the M2 barotropic tide (853 GW, Fig. 1). Since bottom drag is
only a minor player in the dissipation of the M2 barotropic tide in
the deep ocean29, the missing energy sink must be attributed to
the generation of mode >10 internal tides.

Geographical variability of modal content. The geographical
variability of the modal partitioning of M2 tidal energy conver-
sion is illustrated in Fig. 4. Continental shelf breaks, steep ridges
and isolated seamounts stand out as preferential locations for
mode-1 internal tide generation (Fig. 4a). In contrast, wide ridge
systems, such as the Mid-Atlantic Ridge and the East Pacific Rise,
systematically display a peak in the energy conversion continuum
around modes 2–5. In the deep regions of the Pacific, the most
energetic modes are often ≥5.

Although mode 1 is the most energetic mode on a global scale
(Fig. 3), its fractional contribution to the total conversion,
E1
M2
=E1�1

M2
, exhibits pronounced geographical variability (Fig. 4b).

Over continental shelf breaks and steep ridges, mode 1 can
account for over 50% of the total M2 tidal energy conversion. For
example, in the Hawaiian Ridge system, mode 1 contributes
between 40 and 60% of the total conversion, in the range of the
ratios estimated from observations30 and regional numerical
simulations31. However, over most of the global ocean, mode 1

accounts for <30% of the M2 tidal energy conversion. Specifically,
in wide regions of strong conversion such as the Mid-Atlantic
Ridge and the East Pacific Rise, mode 1 contributes less than 10%
of the total conversion. Considering that mode 1 may be the only
mode capable of propagating far (>1000 km) from its generation
site22,32–34, this modal partitioning of conversion suggests that
most of the internal tide energy sourced in these regions
dissipates within a short distance of generation sites.

Implications for near-field dissipation. Areas where strong tidal
energy conversion occurs span very different topographic struc-
tures, which affect the modal content of locally generated internal
tides. Thus, strong geographical variability of near-field dissipa-
tion is expected, with high (small) rates where high (low) modes
are preferentially generated. Here, we propose a new approach to
assess near-field dissipation driven by the breaking of locally
generated, high-mode internal tides, which can be used to con-
struct parameterisations of near-field mixing in ocean models (see
Discussion). Key to the approach is the definition of a critical
mode n above which all modes are assumed to dissipate locally,
i.e., within the grid point where conversion occurs. In turn,
modes <n can propagate away and dissipate in the far field. The
rate of near-field tidal dissipation is thus defined as En−∞. Among
the range of processes that may trigger a forward cascade and
dissipation of internal tide energy, we consider only the dominant
mechanism, i.e., wave-wave interactions12, which renders our
estimate of near-field dissipation conservative. We take the
attenuation time scale τn of mode n associated with wave-wave
interactions to be proportional to 1/n2 (see Fig. 33 in Olbers35),
which yields an attenuation length scale for that mode Ln= cnτn
proportional to 1/n3, since the group velocity cn is proportional to
1/n. Consequently, Ln ≈ L1/n3. Using numerical simulations and
in situ data from a mooring array aligned with an internal tide
beam emanating from the Hawaiian Ridge36, we estimate the
characteristic attenuation length scale of mode 1, L1, to be
between 700 and 1300 km. Although L1 is expected to vary geo-
graphically, depending notably on mesoscale activity and topo-
graphic scattering, we find that the critical mode number is
weakly sensitive on L1 (see Supplementary Note 4 and Supple-
mentary Figs. 4 and 5). On our global 1/2°-grid, mode 4 is found
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to be the critical mode. Although this method leads to a critical
mode that is grid-size-dependent by construction, 1/2° is typical
of climate-scale ocean models, and the critical mode can be
adjusted to fit different grid sizes. Note that this estimate of near-
field dissipation does not account for local breaking of low-mode
internal waves occurring at steep ridges, e.g., through lee-wave
radiation mechanisms37,38 or direct shear instability39, reinfor-
cing the conservatism of our approach.

The estimated rate of near-field dissipation may be used to
quantify q, the fraction of locally dissipated energy to local tidal
energy conversion. The definition q= E4−∞/E1−∞ is adopted
here. The geographical structure of q reflects the spatial variability
in the properties of seafloor topography (Fig. 5). Where high-
mode internal tide generation is substantial, e.g., over the Mid-
Atlantic Ridge and the East Pacific Rise, q is high and reaches
values in the range 0.8–1.0. In such regions, the contribution of
abyssal hills is critical to weight the conversion towards high
modes and reach high q values. In contrast, where low-modes are
preferentially generated, e.g., the Hawaiian Islands and other
Pacific archipelagos, q displays smaller values of 0.3–0.5. The
global-ocean probability density functions of seafloor area and M2

tidal energy conversion as a function of q (Fig. 5-inset) quantify
the geographically variable significance of near-field dissipation.
Although half of the global conversion occurs in regions where
0.35 < q < 0.62 (25th and 75th percentiles), half of the seafloor
area features 0.45 < q < 0.77 (25th and 75th percentiles). Hence,
viewed overall, our conservative, semi-analytical estimate of q
highlights the strong spatial variability of near-field dissipation,
and shows that, on average, q greatly exceeds the value of 1/3
generally assumed to date.

In situ observational estimates of turbulent dissipation. Our
model reveals that the generation of energetic high-mode internal
tides is widespread across the global ocean. These high modes are
characterised by a small group speed and a high vertical shear,
which make them prone to breaking close to their generation site.
We therefore expect a close relationship between the predicted
near-field dissipation of internal tides and the in situ dissipation of
turbulent kinetic energy. To evaluate this relationship, we com-
pared our theoretical estimate of near-field dissipation for the eight

principal tidal constituents, i.e., E4�1
all (see Methods), to in situ

estimates of turbulent energy dissipation from a finescale para-
meterisation applied to hydrographic measurements9 and from
microstructure observations8. Regions where the mean kinetic
energy or the eddy kinetic energy are elevated (>200 cm2 s−2,
visually chosen to discard western boundary currents, the Ant-
arctic Circumpolar Current and equatorial zonal jets) are excluded
from the comparison, since non-tidal processes (e.g., submesoscale
instabilities40,41) are expected to play an important role in dis-
sipation there (see Methods).

The two-dimensional histogram of finescale dissipation vs.
predicted near-field dissipation (Fig. 6) shows that there is a
strong relationship between the two variables that approaches 1:1
wherever the conversion is significant (>5 × 10−4Wm−2, typical
lower bound in regions where tidal energy conversion occurs24).
Indeed, r2= 0.96 for the linear regression on data binned in 0.1
log intervals. For smaller rates of conversion (shadowed area),
observed dissipation exceeds the theoretical estimate, which
suggests that turbulence in those areas is predominantly fuelled
by other local (e.g., wind-driven) or non-local (e.g., far-field
dissipation of low-mode internal tides11) processes. Note that in
regions of rough topography, the finescale parameterisation may
lose accuracy42 and so could be unsuitable to examine near-field
dissipation.

Microstructure profilers measure microscale turbulence, and
thus provide the most reliable estimates of the rate of turbulent
dissipation. We consider a subset of the microstructure-derived
dissipation estimates gathered by Waterhouse et al.8 relevant to
tidally induced mixing, and augmented with the more recent
RidgeMix22 and DoMORE43 data sets collected over the northern
and southern Mid-Atlantic Ridge, respectively. Only stations
where the predicted tidal conversion exceeds 5 × 10−4Wm−2 are
examined (Fig. 6). Pictograms and associated error bars indicate
the mean and standard deviation values for each cruise data set.
Error bars thus encode the spatial (horizontal and vertical error
bars) and temporal (vertical error bars) variability of turbulent
dissipation for each expedition, where some of the variability
likely stems from spring-neap cycle biases in sampling22 and
other low-frequency, non-tidal processes. This scatter plot
highlights the close connection between tidal energy conversion
into high modes and local energy dissipation, as the linear
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regression performed on logged data gives a proportionality
coefficient of 1.02 and r2= 0.83 (dashed line in Fig. 6).
Microstructure data thus brings a quantitative support to our
definition of the critical mode number.

The strength of our formulation of near-field dissipation is its
universality, despite the existence of seafloor topographies of very
different natures across the world’s oceans. For instance, it
predicts equally well the near-field dissipation over the rough,
small-scale topography of the Mid-Atlantic Ridge (BBTRE96,
BBTRE97, RidgeMix and DoMORE) and over the large-scale,
steep ridge of Hawaii (HOME). Indeed, segregating internal tides
by modes allows to take into account those differences
quantitatively.

Discussion
Our results unveil a widespread, intense generation of high-mode
internal tides tied up to strong near-field dissipation. We now
compare our estimate of near-field dissipation, E4�1

all , to two
parameterisations of near-field dissipation currently used in

climate-scale ocean models. Such parameterisations are con-
structed from maps of barotropic-to-baroclinic tidal energy
conversion for the eight principal tidal constituents. A fraction of
the energy conversion, usually taken to be uniform and equal to
1/3, is assumed to fuel dissipation within the local water column.
This dissipation is then distributed vertically, following an
exponential decay from the seafloor upward. In the following, we
ignore the vertical distribution within the water column, and
focus on the maps of energy conversion providing local dissipa-
tion. The NEMO model15 uses 1/3 of the global estimate of
energy conversion by Nycander24, and is hereafter denoted
ENEMO. The CCSM4 model14 uses the parameterisation of energy
conversion of Jayne and St. Laurent44, re-scaled as in Jayne2 to
produce 1 TW of dissipation below 1000m, and then multiplied
by 1/3. It is hereafter denoted ECCSM.

The three estimates of local dissipation, E4�1
all , ENEMO and

ECCSM, produce 606, 413, and 482 GW of energy dissipation at
seafloor depths exceeding 500 m, respectively. At seafloor depths
shallower than 2500 m, E4�1

all and ECCSM are very similar (391 vs.
381 GW), but ENEMO is weaker (261 GW). Differences become
more pronounced at seafloor depths deeper than 2500 m, where
E4�1
all represents 215 GW of dissipation, which is 41% larger than

ENEMO (152 GW) and 113% larger than ECCSM (101 GW). The
larger dissipation below 2500m is consistent with large q values
found over abyssal topography (Fig. 5).

The map of E4�1
all illustrates the near-field dissipation hotspots,

such as mid-ocean ridges featuring rough topography (Fig. 7b).
The ratio of our estimate to the others highlights two important
differences (Fig. 7c, d). In regions of rough topography, our
estimate gives higher levels of dissipation because of the high-
mode internal tide generation that is absent from ENEMO and
ECCSM. In contrast, over steep ridges and seamounts, mostly in
the Pacific basin, dissipation is comparatively weaker than for
ENEMO and ECCSM because modes 1–3 are excluded from our
estimate. We do not expect strong dissipation—relative to con-
version—at the latter generation hot spots, but rather a redis-
tribution by low modes contributing to far-field dissipation.

The patterns and magnitudes of near-field dissipation esti-
mated in the present work thus differ substantially from those
implied by current parameterisations. Implications are manifold.
First, our mode-partitioned internal tide generation estimate may
serve to improve the representation of wave drag, i.e., the energy
extracted locally from the barotropic tide, in barotropic tide
models45 and in climate-scale ocean models that include tidal
forcing46. Notably, our estimate takes into account the local
properties of seafloor topography, and should thereby reduce
known geographical biases in barotropic tide models45. Second,
our map of E4�1

all can provide the power input to the para-
meterisation of near-field internal tide-driven mixing. Its use in
place of preceding maps is expected to improve the representa-
tion of deep-ocean mixing in ocean models, potentially improving
the simulated overturning circulation by reconciling strong
abyssal transports with slow pycnocline mixing47 (Fig. 7a).
Overall, our revised estimate of internal tide-driven dissipation
will help narrow down unknowns in the rates and energy path-
ways of deep-ocean mixing, and represents a significant step
toward the closure of oceanic energy and diapycnal mixing
budgets in observations and models.

Methods
Semi-analytical model of tidal energy conversion. The barotropic-to-baroclinic
tide energy conversion model was formulated by Bell19,20, and is based on two
main assumptions that enable derivation of a linear theory. First, the topographic
slope, |∇h|, is assumed to be smaller than the slope of a radiated internal wave

beam, ½ðω2 � f 2Þ=ðN2
b � ω2Þ�1=2 , where ω is the tidal frequency, f is the Coriolis

frequency and Nb is the buoyancy frequency near the seafloor. The ratio of the
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topographic slope to the slope of a radiated beam defines the steepness parameter:

γ ¼
j∇hj

½ðω2 � f 2Þ=ðN2
b � ω2Þ�1=2

: ð1Þ

When γ < 1 (γ > 1), the topography is referred to as subcritical (supercritical).
Second, the tidal excursion, u0/ω, where u0 is the barotropic tide velocity, is
assumed to be small compared to the topographic scale 1/k, where k is a char-
acteristic wavenumber of the underlying topography. In the deep ocean, i.e.,
excluding continental shelves, the major topographic structures generating internal
tides are mid-ocean ridges. The assumptions of subcritical topography and small
tidal excursion are valid on most of the areas covered by these structures, due to
weak barotropic tidal currents [u0=O(1) cm s−1] and weak stratification that
allows beams to propagate in a direction close to the vertical.

We used St. Laurent and Garrett’s21 formulation of tidal energy conversion, Eω,
at a fundamental tidal frequency ω:

EωðK; θÞ ¼
1
2 ρ0

ðN2
b
�ω2Þðω2�f 2Þ½ �

1=2

ω

´ u2e cos
2 θ þ v2e sin

2 θ
� �

KϕðK; θÞ:
ð2Þ

In this equation, Nb is the buoyancy frequency close to the bottom computed from
the World Ocean Atlas 2013 (WOA1348,49); ue (ve) is the barotropic tidal velocity
amplitude from TPXO850, in the direction of the semimajor (semiminor) axis of

the tidal ellipse [(xe, ye) coordinate system]; K ¼ ðk2x þ k2yÞ
1=2 is the total horizontal

wavenumber, with kx and ky being the horizontal wavenumbers in the (xe, ye)
coordinate system; and θ= arctan(ky/kx). The two-dimensional power spectrum of
topography, ϕ, is computed from the Shuttle Radar Topography Mission dataset
(SRTM30_PLUS51). SRTM30_PLUS is a global bathymetry dataset at a 30-s
resolution based on the 1-min Smith and Sandwell52 bathymetry, and incorporates
higher-resolution data from ship soundings wherever available. ϕ is normalised to

satisfy
R 2π
0

R1
0 ϕðK; θÞK dK dθ ¼ h2 , where h2 is the mean square height of

topography.
The equivalent wavenumber of mode j is

Kj ¼
jπðω2 � f 2Þ1=2

N0b
: ð3Þ

N0 and b are parameters of an exponential fit to the buoyancy frequency N=N0

exp(z/b). This enables computation of the energy flux into mode j as

Ej
ω ¼

Z 2π

0

Z KjþδK=2

Kj�δK=2

EωðK; θÞK dK dθ ðWm�2Þ; ð4Þ

where δK= K2− K1. The total energy flux is then

Et
ω ¼

Z 2π

0

Z 1

K1

Ef ðK; θÞK dK dθ ðWm�2Þ; ð5Þ

where the lower boundary of integration in wavenumber space is the mode-1
equivalent wavenumber, K1, to take into account the finite depth of the ocean.

We computed Eω for ω∈ {M2, S2, K1} on a global grid of 1/2° resolution. A
supercritical-slope correction was made a posteriori (see Supplementary Note 1).
We only considered the points where the bathymetry is deeper than 500 m. At
shallower ocean depths, topographic slopes are more likely to be supercritical due
to enhanced stratification, and tidal currents are stronger due to mass continuity,
hence potentially violating the small tidal excursion assumption.

Barotropic tide energy dissipation. The dissipation rate of the barotropic tide,
Dω, at the tidal frequency ω can be computed as53

Dω ¼ W � ∇ � P ½Wm�2�; ð6Þ

where W is the work done by the barotropic tide, and P is the barotropic tide
energy flux. P is defined as

P ¼ ρ0ghUζi; ð7Þ

where ζ is the tidal elevation, and U is the barotropic tide volume transport, both
extracted from TPXO8. W is defined as

W ¼ ρ0g U � ∇ðζ eq þ ζ salÞ
D E

; ð8Þ

where ζeq is the equilibrium tidal elevation, and ζsal is the tidal elevation induced by
the tide’s self-attraction and loading54.

Mode-1 M2 energy fluxes from satellite altimetry. Mode-1 M2 internal-tide
horizontal energy flux at a horizontal resolution of 1/10° from Zhao et al.27 was
used in this study to quantify the generation of M2 internal tides. A two-
dimensional plane wave fit method is applied to extract internal tides from satellite
SSH, and perform a modal decomposition that enables inference of mode-1
internal tide pressure from SSH. Assuming that the energy partition between
potential and kinetic energy components depends only on latitude and tidal fre-
quency, the internal tide velocity is also estimated from SSH. Finally, the vertically
integrated horizontal energy flux, F1M2

, is computed. Positive divergence of the

horizontal energy flux, denoted as ð∇ � F1M2
Þþ in the article, indicates regions of

mode-1 internal tide generation22.
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Global HYCOM simulation. HYCOM (Hybrid Coordinate Ocean Model) is the
operational ocean forecast model used by the United States Navy55. The simulation
considered in this study was run with realistic atmospheric forcing from the NAVy
Global Environmental Model (NAVGEM56) and astronomical tidal forcing. The
model was run in a forward (non-data-assimilative) mode at 1/25 degree (4 km)
nominal horizontal resolution, with 41 layers in the vertical, using a hybrid vertical
coordinate that is isopycnal in the open ocean, uses z-layers in the mixed layer, and
transitions to terrain-following in shallow water. Hourly 3-d fields were saved from
September 2016; 15 days of this period were analysed for this paper. Data were
interpolated to 25-m depth intervals in the vertical and harmonic fits were applied
to extract the M2 component of the baroclinic velocities and potential density at
each depth level. Vertical normal modes were computed from the time-averaged
stratification profile by solving the Sturm-Liouville problem. The 4 km model
resolution effectively limits the resolved modes to the first 5 baroclinic modes.
Modal barotropic-to-baroclinic conversion values were computed from the modal
perturbation pressure amplitudes, bathymetry, and barotropic velocity57.

Theoretical estimate of near-field energy dissipation. We computed the
internal tide generation for the M2, S2 and K1 tides, which together account for 90%
of the total energy conversion summed over the eight principal constituents24 (M2,
S2, N2, K2, K1, O1, P1, Q1). Patterns of internal tide generation barely change for
tides at close frequencies26. We therefore used EM2

and ES2 as proxies for EN2
and

EK2
, respectively, and EK1

as a proxy for EO1
, EP1 and EQ1

. We then applied a

scaling factor set by the power ratios58 to obtain the near-field energy dissipation of
the principal eight components:

E4�1
all ¼ 1:05 ´ E4�1

M2
þ 1:09 ´E4�1

S2
þ 1:70 ´E4�1

K1
ð9Þ

Finescale parameterisation of energy dissipation. We used the finescale para-
meterisation of the rate of energy dissipation, ε (W kg−1), computed by Kunze9,
and available at ftp://ftp.nwra.com/outgoing/kunze/iwturb. The parameterisation is
based on vertical strain applied to 27,218 hydrographic profiles. We discarded
profiles covering <80% of the water column, which corresponds to 35% of the
database. ε was then integrated vertically and multiplied by ρ0= 1025 kg m−3 to
give εz (W m−2), used in Fig. 6. Only 0.4% of the profiles cover depths shallower
than 100 m so we can reasonably assume that mixed-layer processes do not
interfere in the dissipation signal.

Microstructure estimates of energy dissipation. We used the microstructure
estimates of energy dissipation ε (W kg−1) from different cruises gathered by
Waterhouse et al.8 and available at https://microstructure.ucsd.edu. We only
considered data relevant to tidally induced mixing, i.e., we removed data collected
in regions of insignificant internal tide generation, and we added data from the
RidgeMix22 and DoMORE43 cruises. We discarded profiles covering <60% of the
water column (32% of the whole dataset), which leaves us with 476 profiles. ε was
vertically integrated from the deepest point to the base of the mixed layer, defined
by a drop of temperature of 0.2 °C from the temperature at 10 m depth, following
de Boyer Montégut et al.59 Finally, we multiplied each vertically integrated value by
ρ0= 1025 kg m−3 to give εz (W m−2) used in Fig. 6.

Mean and eddy kinetic energy from satellite altimetry. Mean and eddy kinetic
energy (MKE and EKE) were computed from surface geostrophic velocity derived
from the Absolute Dynamic Topography (ADT) measured by satellite altimetry.
Velocity fields were downloaded from https://www.aviso.altimetry.fr/en/home.
html. MKE ¼ 1

2 ð�u
2 þ �v2Þ was computed from the mean velocity (�u;�v) over the

period 2000–2014, and EKE ¼ 1
2 ðu′

2 þ v′2Þ was computed from the eddy velocity
(u′; v′ ¼ u� �u; v � �v).

Data availability
The tidal energy conversion from the semi-analytical model is available upon request.

Code availability
The code for the barotropic-to-baroclinic tidal energy conversion model is available upon
request.
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