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Abstract

In this paper we develop a deep learning method for optimal stopping problems which
directly learns the optimal stopping rule from Monte Carlo samples. As such, it is broadly
applicable in situations where the underlying randomness can efficiently be simulated. We
test the approach on three problems: the pricing of a Bermudan max-call option, the
pricing of a callable multi barrier reverse convertible and the problem of optimally stopping
a fractional Brownian motion. In all three cases it produces very accurate results in high-
dimensional situations with short computing times.

Keywords: optimal stopping, deep learning, Bermudan option, callable multi barrier
reverse convertible, fractional Brownian motion

1. Introduction

We consider optimal stopping problems of the form supτ E g(τ,Xτ ), where X = (Xn)
N
n=0

is an R
d-valued discrete-time Markov process and the supremum is over all stopping times

τ based on observations of X. Formally, this just covers situations where the stopping
decision can only be made at finitely many times. But practically all relevant continuous-
time stopping problems can be approximated with time-discretized versions. The Markov
assumption means no loss of generality. We make it because it simplifies the presentation
and many important problems already are in Markovian form. But every optimal stopping
problem can be made Markov by including all relevant information from the past in the
current state of X (albeit at the cost of increasing the dimension of the problem).

In theory, optimal stopping problems with finitely many stopping opportunities can
be solved exactly. The optimal value is given by the smallest supermartingale that domi-
nates the reward process – the so-called Snell envelope – and the smallest (largest) optimal
stopping time is the first time the immediate reward dominates (exceeds) the continuation
value; see, e.g., Peskir and Shiryaev (2006) or Lamberton and Lapeyre (2008). However,
traditional numerical methods suffer from the curse of dimensionality. For instance, the
complexity of standard tree- or lattice-based methods increases exponentially in the di-
mension. For typical problems they yield good results for up to three dimensions. To
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treat higher-dimensional problems, various Monte Carlo based have been developed over
the last years. A common approach consists in estimating continuation values to either
derive stopping rules or recursively approximate the Snell envelope; see, e.g., Tilley (1993),
Barraquand and Martineau (1995), Carriere (1996), Longstaff and Schwartz (2001), Tsit-
siklis and Van Roy (2001), Boyle et al. (2003), Broadie and Glasserman (2004), Bally et al.
(2005), Kolodko and Schoenmakers (2006), Egloff et al. (2007), Berridge and Schumacher
(2008), Jain and Oosterlee (2015), Belomestny et al. (2018) or Haugh and Kogan (2004) and
Kohler et al. (2010), which use neural networks with one hidden layer to do this. A different
strand of the literature has focused on approximating optimal exercise boundaries; see, e.g.,
Andersen (2000), Garćıa (2003) and Belomestny (2011). Based on an idea of Davis and
Karatzas (1994), a dual approach was developed by Rogers (2002) and Haugh and Kogan
(2004); see Jamshidian (2007) and Chen and Glasserman (2007) for a multiplicative ver-
sion and Andersen and Broadie (2004), Broadie and Cao (2008), Belomestny et al. (2009),
Rogers (2010), Desai et al. (2012), Belomestny (2013), Belomestny et al. (2013) and Lelong
(2016) for extensions and primal-dual methods. In Sirignano and Spiliopoulos (2018) op-
timal stopping problems in continuous time are treated by approximating the solutions of
the corresponding free boundary PDEs with deep neural networks.

In this paper we use deep learning to approximate an optimal stopping time. Our ap-
proach is related to policy optimization methods used in reinforcement learning (Sutton
and Barto, 1998), deep reinforcement learning (Schulman et al., 2015; Mnih et al., 2015;
Silver et al., 2016; Lillicrap et al., 2016) and the deep learning method for stochastic control
problems proposed by Han and E (2016). However, optimal stopping differs from the typical
control problems studied in this literature. The challenge of our approach lies in the imple-
mentation of a deep learning method that can efficiently learn optimal stopping times. We
do this by decomposing an optimal stopping time into a sequence of 0-1 stopping decisions
and approximating them recursively with a sequence of multilayer feedforward neural net-
works. We show that our neural network policies can approximate optimal stopping times
to any degree of desired accuracy. A candidate optimal stopping time τ̂ can be obtained by
running a stochastic gradient ascent. The corresponding expectation E g(τ̂ , Xτ̂ ) provides a
lower bound for the optimal value supτ E g(τ,Xτ ). Using a version of the dual method of
Rogers (2002) and Haugh and Kogan (2004), we also derive an upper bound. In all our
examples, both bounds can be computed with short run times and lie close together.

The rest of the paper is organized as follows: In Section 2 we introduce the setup
and explain our method of approximating optimal stopping times with neural networks. In
Section 3 we construct lower bounds, upper bounds, point estimates and confidence intervals
for the optimal value. In Section 4 we test the approach on three examples: the pricing of
a Bermudan max-call option on different underlying assets, the pricing of a callable multi
barrier reverse convertible and the problem of optimally stopping a fractional Brownian
motion. In the first two examples, we use a multi-dimensional Black–Scholes model to
describe the dynamics of the underlying assets. Then the pricing of a Bermudan max-
call option amounts to solving a d-dimensional optimal stopping problem, where d is the
number of assets. We provide numerical results for d = 2, 3, 5, 10, 20, 30, 50, 100, 200 and
500. In the case of a callable MBRC, it becomes a d+1-dimensional stopping problem since
one also needs to keep track of the barrier event. We present results for d = 2, 3, 5, 10, 15
and 30. In the third example we only consider a one-dimensional fractional Brownian
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motion. But fractional Brownian motion is not Markov. In fact, all of its increments are
correlated. So, to optimally stop it, one has to keep track of all past movements. To
make it tractable, we approximate the continuous-time problem with a time-discretized
version, which if formulated as a Markovian problem, has as many dimensions as there are
time-steps. We compute a solution for 100 time-steps.

2. Deep Learning Optimal Stopping Rules

Let X = (Xn)
N
n=0 be an R

d-valued discrete-time Markov process on a probability space
(Ω,F ,P), where N and d are positive integers. We denote by Fn the σ-algebra generated
by X0, X1, . . . , Xn and call a random variable τ : Ω → {0, 1, . . . , N} an X-stopping time if
the event {τ = n} belongs to Fn for all n ∈ {0, 1, . . . , N}.

Our aim is to develop a deep learning method that can efficiently learn an optimal policy
for stopping problems of the form

sup
τ∈T

E g(τ,Xτ ), (1)

where g : {0, 1, . . . , N} × R
d → R is a measurable function and T denotes the set of all

X-stopping times. To make sure that problem (1) is well-defined and admits an optimal
solution, we assume that g satisfies the integrability condition

E |g(n,Xn)| <∞ for all n ∈ {0, 1, . . . , N} ; (2)

see, e.g., Peskir and Shiryaev (2006) or Lamberton and Lapeyre (2008). To be able to derive
confidence intervals for the optimal value (1), we will have to make the slightly stronger
assumption

E
[

g(n,Xn)
2
]

<∞ for all n ∈ {0, 1, . . . , N} (3)

in Subsection 3.3 below. This is satisfied in all our examples in Section 4.

2.1. Expressing Stopping Times in Terms of Stopping Decisions

Any X-stopping time can be decomposed into a sequence of 0-1 stopping decisions. In
principle, the decision whether to stop the process at time n if it has not been stopped
before, can be made based on the whole evolution of X from time 0 until n. But to
optimally stop the Markov process X, it is enough to make stopping decisions according
to fn(Xn) for measurable functions fn : R

d → {0, 1}, n = 0, 1, . . . , N . Theorem 1 below
extends this well-known fact and serves as the theoretical basis of our method.

Consider the auxiliary stopping problems

Vn = sup
τ∈Tn

E g(τ,Xτ ) (4)

for n = 0, 1, . . . , N , where Tn is the set of all X-stopping times satisfying n ≤ τ ≤ N .
Obviously, TN consists of the unique element τN ≡ N , and one can write τN = NfN (XN )
for the constant function fN ≡ 1. Moreover, for given n ∈ {0, 1, . . . , N} and a sequence of
measurable functions fn, fn+1, . . . , fN : Rd → {0, 1} with fN ≡ 1,

τn =
N
∑

m=n

mfm(Xm)
m−1
∏

j=n

(1− fj(Xj)) (5)
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defines1 a stopping time in Tn. The following result shows that, for our method of recursively
computing an approximate solution to the optimal stopping problem (1), it will be sufficient
to consider stopping times of the form (5).

Theorem 1 For a given n ∈ {0, 1, . . . , N − 1}, let τn+1 be a stopping time in Tn+1 of the
form

τn+1 =

N
∑

m=n+1

mfm(Xm)

m−1
∏

j=n+1

(1− fj(Xj)) (6)

for measurable functions fn+1, . . . , fN : Rd → {0, 1} with fN ≡ 1. Then there exists a
measurable function fn : R

d → {0, 1} such that the stopping time τn ∈ Tn given by (5)
satisfies

E g(τn, Xτn) ≥ Vn −
(

Vn+1 − E g(τn+1, Xτn+1)
)

,

where Vn and Vn+1 are the optimal values defined in (4).

Proof Denote ε = Vn+1 − E g(τn+1, Xτn+1), and consider a stopping time τ ∈ Tn. By
the Doob–Dynkin lemma (see, e.g., Aliprantis and Border, 2006, Theorem 4.41), there
exists a measurable function hn : R

d → R such that hn(Xn) is a version of the conditional
expectation E

[

g(τn+1, Xτn+1) | Xn

]

. Moreover, due to the special form (6) of τn+1,

g(τn+1, Xτn+1) =
N
∑

m=n+1

g(m,Xm)1{τn+1=m} =
N
∑

m=n+1

g(m,Xm)1{fm(Xm)
∏m−1

j=n+1(1−fj(Xj))=1}

is a measurable function of Xn+1, . . . , XN . So it follows from the Markov property of X
that hn(Xn) is also a version of the conditional expectation E

[

g(τn+1, Xτn+1) | Fn

]

. Since
the events

D = {g(n,Xn) ≥ hn(Xn)} and E = {τ = n}
are in Fn, τn = n1D + τn+11Dc belongs to Tn and τ̃ = τn+11E + τ1Ec to Tn+1. It follows
from the definitions of Vn+1 and ε that E g(τn+1, Xτn+1) = Vn+1−ε ≥ E g(τ̃ , Xτ̃ )−ε. Hence,

E
[

g(τn+1, Xτn+1)1Ec

]

≥ E[g(τ̃ , Xτ̃ )1Ec ]− ε = E[g(τ,Xτ )1Ec ]− ε,

from which one obtains

E g(τn, Xτn) = E
[

g(n,Xn)ID + g(τn+1, Xτn+1)IDc

]

= E[g(n,Xn)ID + hn(Xn)IDc ]

≥ E[g(n,Xn)IE + hn(Xn)IEc ] = E
[

g(n,Xn)IE + g(τn+1, Xτn+1)IEc

]

≥ E[g(n,Xn)IE + g(τ,Xτ )IEc ]− ε = E g(τ,Xτ )− ε.

Since τ ∈ Tn was arbitrary, this shows that E g(τn, Xτn) ≥ Vn − ε. Moreover, one has
1D = fn(Xn) for the function fn : R

d → {0, 1} given by

fn(x) =

{

1 if g(n, x) ≥ hn(x)

0 if g(n, x) < hn(x)
.

1. In expressions of the form (5), we understand the empty product
∏n−1

j=n
(1− fj(Xj)) as 1.
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Therefore,

τn = nfn(Xn) + τn+1(1− fn(Xn)) =

N
∑

m=n

mfm(Xm)

m−1
∏

j=n

(1− fj(Xj)),

which concludes the proof.

Remark 2 Since for fN ≡ 1, the stopping time τN = fN (XN ) is optimal in TN , The-
orem 1 inductively yields measurable functions fn : R

d → {0, 1} such that for all n ∈
{0, 1, . . . , N − 1}, the stopping time τn given by (5) is optimal among Tn. In particular,

τ =

N
∑

n=1

nfn(Xn)

n−1
∏

j=0

(1− fj(Xj)) (7)

is an optimal stopping time for problem (1).

Remark 3 In many applications, the Markov process X starts from a deterministic initial
value x0 ∈ R

d. Then the function f0 enters the representation (7) only through the value
f0(x0) ∈ {0, 1}; that is, at time 0, only a constant and not a whole function has to be
learned.

2.2. Neural Network Approximation

Our numerical method for problem (1) consists in iteratively approximating optimal stop-
ping decisions fn : R

d → {0, 1}, n = 0, 1, . . . , N − 1, by a neural network fθ : Rd → {0, 1}
with parameter θ ∈ R

q. We do this by starting with the terminal stopping decision fN ≡ 1
and proceeding by backward induction. More precisely, let n ∈ {0, 1, . . . , N − 1}, and as-
sume parameter values θn+1, θn+2, . . . , θN ∈ R

q have been found such that fθN ≡ 1 and the
stopping time

τn+1 =

N
∑

m=n+1

mfθm(Xm)

m−1
∏

j=n+1

(1− fθj (Xj))

produces an expected value E g(τn+1, Xτn+1) close to the optimum Vn+1. Since fθ takes
values in {0, 1}, it does not directly lend itself to a gradient-based optimization method.
So, as an intermediate step, we introduce a feedforward neural network F θ : Rd → (0, 1) of
the form

F θ = ψ ◦ aθI ◦ ϕqI−1 ◦ aθI−1 ◦ · · · ◦ ϕq1 ◦ aθ1,
where

• I, q1, q2, . . . , qI−1 are positive integers specifying the depth of the network and the
number of nodes in the hidden layers (if there are any),

• aθ1 : R
d → R

q1 , . . . , aθI−1 : R
qI−2 → R

qI−1 and aθI : R
qI−1 → R are affine functions,

• for j ∈ N, ϕj : R
j → R

j is the component-wise ReLU activation function given by
ϕj(x1, . . . , xj) = (x+1 , . . . , x

+
j )
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• ψ : R → (0, 1) is the standard logistic function ψ(x) = ex/(1 + ex) = 1/(1 + e−x).

The components of the parameter θ ∈ R
q of F θ consist of the entries of the matrices

A1 ∈ R
q1×d, . . . , AI−1 ∈ R

qI−1×qI−2 , AI ∈ R
1×qI−1 and the vectors b1 ∈ R

q1 , . . . , bI−1 ∈
R
qI−1 , bI ∈ R given by the representation of the affine functions

aθi (x) = Aix+ bi, i = 1, . . . , I.

So the dimension of the parameter space is

q =

{

d+ 1 if I = 1

1 + q1 + · · ·+ qI−1 + dq1 + · · ·+ qI−2qI−1 + qI−1 if I ≥ 2,

and for given x ∈ R
d, F θ(x) is continuous as well as almost everywhere smooth in θ. Our

aim is to determine θn ∈ R
q so that

E

[

g(n,Xn)F
θn(Xn) + g(τn+1, Xτn+1)(1− F θn(Xn))

]

is close to the supremum supθ∈Rq E
[

g(n,Xn)F
θ(Xn) + g(τn+1, Xτn+1)(1− F θ(Xn))

]

. Once
this has been achieved, we define the function fθn : Rd → {0, 1} by

fθn = 1[0,∞) ◦ aθnI ◦ ϕqI−1 ◦ aθnI−1 ◦ · · · ◦ ϕq1 ◦ aθn1 , (8)

where 1[0,∞) : R → {0, 1} is the indicator function of [0,∞). The only difference between

F θn and fθn is the final nonlinearity. While F θn produces a stopping probability in (0, 1),
the output of fθn is a hard stopping decision given by 0 or 1, depending on whether F θn

takes a value below or above 1/2.
The following result shows that for any depth I ≥ 2, a neural network of the form (8) is

flexible enough to make almost optimal stopping decisions provided it has sufficiently many
nodes.

Proposition 4 Let n ∈ {0, 1, . . . , N − 1} and fix a stopping time τn+1 ∈ Tn+1. Then, for
every depth I ≥ 2 and constant ε > 0, there exist positive integers q1, . . . , qI−1 such that

sup
θ∈Rq

E

[

g(n,Xn)f
θ(Xn) + g(τn+1, Xτn+1)(1− fθ(Xn))

]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1, Xτn+1)(1− f(Xn))
]

− ε,

where D is the set of all measurable functions f : Rd → {0, 1}.

Proof Fix ε > 0. It follows from the integrability condition (2) that there exists a
measurable function f̃ : Rd → {0, 1} such that

E

[

g(n,Xn)f̃(Xn) + g(τn+1, Xτn+1)(1− f̃(Xn))
]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1, Xτn+1)(1− f(Xn))
]

− ε/4.
(9)
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f̃ can be written as f̃ = 1A for the Borel set A = {x ∈ R
d : f̃(x) = 1}. Moreover, by (2),

B 7→ E[|g(n,Xn)|1B(Xn)] and B 7→ E
[

|g(τn+1, Xτn+1)|1B(Xn)
]

define finite Borel measures on R
d. Since every finite Borel measure on R

d is tight (see,
e.g., Aliprantis and Border, 2006), there exists a compact (possibly empty) subset K ⊆ A
such that

E
[

g(n,Xn)1K(Xn) + g(τn+1, Xτn+1)(1− 1K(Xn))
]

≥ E

[

g(n,Xn)f̃(Xn) + g(τn+1, Xτn+1)(1− f̃(Xn))
]

− ε/4.
(10)

Let ρK : Rd → [0,∞] be the distance function given by ρK(x) = infy∈K ‖x− y‖2. Then

kj(x) = max {1− jρK(x),−1} , j ∈ N,

defines a sequence of continuous functions kj : R
d → [−1, 1] that converge pointwise to

1K − 1Kc . So it follows from Lebesgue’s dominated convergence theorem that there exists
a j ∈ N such that

E

[

g(n,Xn) 1{kj(Xn)≥0} + g(τn+1, Xτn+1)(1− 1{kj(Xn)≥0})
]

≥ E
[

g(n,Xn)1K(Xn) + g(τn+1, Xτn+1)(1− 1K(Xn))
]

− ε/4.
(11)

By Theorem 1 of Leshno et al. (1993), kj can be approximated uniformly on compacts by
functions of the form

r
∑

i=1

(vTi x+ ci)
+ −

s
∑

i=1

(wT
i x+ di)

+ (12)

for r, s ∈ N, v1, . . . , vr, w1, . . . , ws ∈ R
d and c1, . . . , cr, d1, . . . , ds ∈ R. So there exists a

function h : Rd → R expressible as in (12) such that

E
[

g(n,Xn) 1{h(Xn)≥0} + g(τn+1, Xτn+1)(1− 1{h(Xn)≥0})
]

≥ E

[

g(n,Xn) 1{kj(Xn)≥0} + g(τn+1, Xτn+1)(1− 1{kj(Xn)≥0})
]

− ε/4.
(13)

Now note that for any integer I ≥ 2, the composite mapping 1[0,∞) ◦ h can be written as a

neural net fθ of the form (8) with depth I for suitable integers q1, . . . , qI−1 and parameter
value θ ∈ R

q. Hence, one obtains from (9), (10), (11) and (13) that

E

[

g(n,Xn) f
θ(Xn) + g(τn+1, Xτn+1)(1− fθ(Xn))

]

≥ sup
f∈D

E
[

g(n,Xn)f(Xn) + g(τn+1, Xτn+1)(1− f(Xn))
]

− ε,

and the proof is complete.

We always choose θN ∈ R
q such that2 fθN ≡ 1. Then our candidate optimal stopping

time

τΘ =
N
∑

n=1

nfθn(Xn)
n−1
∏

j=0

(1− fθj (Xj)) (14)

2. It is easy to see that this is possible.
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is specified by the vector Θ = (θ0, θ1, . . . , θN−1) ∈ R
Nq. The following is an immediate

consequence of Theorem 1 and Proposition 4:

Corollary 5 For a given optimal stopping problem of the form (1), a depth I ≥ 2 and a
constant ε > 0, there exist positive integers q1, . . . , qI−1 and a vector Θ ∈ R

Nq such that the
corresponding stopping time (14) satisfies E g(τΘ, XτΘ) ≥ supτ∈T E g(τ,Xτ )− ε.

2.3. Parameter Optimization

We train neural networks of the form (8) with fixed depth I ≥ 2 and given numbers
q1, . . . , qI−1 of nodes in the hidden layers3. To numerically find parameters θn ∈ R

q yielding
good stopping decisions fθn for all times n ∈ {0, 1, . . . , N − 1}, we approximate expected
values with averages of Monte Carlo samples calculated from simulated paths of the process
(Xn)

N
n=0.

Let (xkn)
N
n=0, k = 1, 2, . . . be independent realizations of such paths. We choose θN ∈ R

q

such that fθN ≡ 1 and determine determine θn ∈ R
q for n ≤ N − 1 recursively. So, suppose

that for a given n ∈ {0, 1, . . . , N − 1}, parameters θn+1, . . . , θN ∈ R
q, have been found so

that the stopping decisions fθn+1 , . . . , f θN generate a stopping time

τn+1 =

N
∑

m=n+1

mfθm(Xm)

m−1
∏

j=n+1

(1− fθj (Xj))

with corresponding expectation E g(τn+1, Xτn+1) close to the optimal value Vn+1. If n =
N − 1, one has τn+1 ≡ N , and if n ≤ N − 2, τn+1 can be written as

τn+1 = ln+1(Xn+1, . . . , XN−1)

for a measurable function ln+1 : R
d(N−n−1) → {n+ 1, n+ 2, . . . , N}. Accordingly, denote

lkn+1 =

{

N if n = N − 1

ln+1(x
k
n+1, . . . , x

k
N−1) if n ≤ N − 2

.

If at time n, one applies the soft stopping decision F θ and afterward behaves according to
fθn+1 , . . . , fθN , the realized reward along the k-th simulated path of X is

rkn(θ) = g(n, xkn)F
θ(xkn) + g(lkn+1, x

k
lkn+1

)(1− F θ(xkn)).

For large K ∈ N,

1

K

K
∑

k=1

rkn(θ) (15)

approximates the expected value

E

[

g(n,Xn)F
θ(Xn) + g(τn+1, Xτn+1)(1− F θ(Xn))

]

.

3. For a given application, one can try out different choices of I and q1, . . . , qI−1 to find a suitable trade-off
between accuracy and efficiency. Alternatively, the determination of I and q1, . . . , qI−1 could be built
into the training algorithm.
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Since rkn(θ) is almost everywhere differentiable in θ, a stochastic gradient ascent method can
be applied to find an approximate optimizer θn ∈ R

q of (15). The same simulations (xkn)
N
n=0,

k = 1, 2, . . . can be used to train the stopping decisions fθn at all times n ∈ {0, 1, . . . , N − 1}.
In the numerical examples in Section 4 below, we employed mini-batch gradient ascent with
Xavier initialization (Glorot and Bengio, 2010), batch normalization (Ioffe and Szegedy,
2015) and Adam updating (Kingma and Ba, 2015).

Remark 6 If the Markov process X starts from a deterministic initial value x0 ∈ R
d, the

initial stopping decision is given by a constant f0 ∈ {0, 1}. To learn f0 from simulated paths
of X, it is enough to compare the initial reward g(0, x0) to a Monte Carlo estimate Ĉ of
E g(τ1, Xτ1), where τ1 ∈ T1 is of the form

τ1 =

N
∑

n=1

nfθn(Xn)

n−1
∏

j=1

(1− fθj (Xj))

for fθN ≡ 1 and trained parameters θ1, . . . , θN−1 ∈ R
q. Then one sets f0 = 1 (that is, stop

immediately) if g(0, x0) ≥ Ĉ and f0 = 0 (continue) otherwise. The resulting stopping time
is of the form

τΘ =

{

0 if f0 = 1

τ1 if f0 = 0.

3. Bounds, Point Estimates and Confidence Intervals

In this section we derive lower and upper bounds as well as point estimates and confidence
intervals for the optimal value V0 = supτ∈T E g(τ,Xτ ).

3.1. Lower Bound

Once the stopping decisions fθn have been trained, the stopping time τΘ given by (14) yields
a lower bound L = E g(τΘ, XτΘ) for the optimal value V0 = supτ∈T E g(τ,Xτ ). To estimate
it, we simulate a new set4 of independent realizations (ykn)

N
n=0, k = 1, 2, . . . ,KL, of (Xn)

N
n=0.

τΘ is of the form τΘ = l(X0, . . . , XN−1) for a measurable function l : RdN → {0, 1, . . . , N}.
Denote lk = l(yk0 , . . . , y

k
N−1). The Monte Carlo approximation

L̂ =
1

KL

KL
∑

k=1

g(lk, yklk)

gives an unbiased estimate of the lower bound L, and by the law of large numbers, L̂
converges to L for KL → ∞.

4. In particular, we assume that the samples (yk
n)

N
n=0, k = 1, . . . ,KL, are drawn independently from the

realizations (xk
n)

N
n=0, k = 1, . . . ,K, used in the training of the stopping decisions.

9
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3.2. Upper Bound

The Snell envelope of the reward process (g(n,Xn))
N
n=0 is the smallest5 supermartingale

with respect to (Fn)
N
n=0 that dominates (g(n,Xn))

N
n=0. It is given

6 by

Hn = ess supτ∈TnE[g(τ) | Fn], n = 0, 1, . . . , N ;

see, e.g., Peskir and Shiryaev (2006) or Lamberton and Lapeyre (2008). Its Doob–Meyer
decomposition is

Hn = H0 +MH
n −AH

n ,

where MH is the (Fn)-martingale given6 by

MH
0 = 0 and MH

n −MH
n−1 = Hn − E[Hn | Fn−1], n = 1, . . . , N,

and AH is the nondecreasing (Fn)-predictable process given6 by

AH
0 = 0 and AH

n −AH
n−1 = Hn−1 − E[Hn | Fn−1], n = 1, . . . , N.

Our estimate of an upper bound for the optimal value V0 is based on the following
variant7 of the dual formulation of optimal stopping problems introduced by Rogers (2002)
and Haugh and Kogan (2004).

Proposition 7 Let (εn)
N
n=0 be a sequence of integrable random variables on (Ω,F ,P). Then

V0 ≥ E

[

max
0≤n≤N

(

g(n,Xn)−MH
n − εn

)

]

+ E

[

min
0≤n≤N

(

AH
n + εn

)

]

. (16)

Moreover, if E[εn | Fn] = 0 for all n ∈ {0, 1, . . . , N}, one has

V0 ≤ E

[

max
0≤n≤N

(g(n,Xn)−Mn − εn)

]

(17)

for every (Fn)-martingale (Mn)
N
n=0 starting from 0.

Proof First, note that

E

[

max
0≤n≤N

(

g(n,Xn)−MH
n − εn

)

]

≤ E

[

max
0≤n≤N

(

Hn −MH
n − εn

)

]

= E

[

max
0≤n≤N

(

H0 −AH
n − εn

)

]

= V0 − E

[

min
0≤n≤N

(

AH
n + εn

)

]

,

which shows (16).
Now, assume that E[εn | Fn] = 0 for all n ∈ {0, 1, . . . , N}, and let τ be an X-stopping

time. Then

E ετ = E

[

N
∑

n=0

1{τ=n}εn

]

= E

[

N
∑

n=0

1{τ=n}E[εn | Fn]

]

= 0.

5. in the P-almost sure order
6. up to P-almost sure equality
7. See also the discussion on noisy estimates in Andersen and Broadie (2004).

10
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So one obtains from the optional stopping theorem (see, e.g., Grimmett and Stirzaker,
2001),

E g(τ,Xτ ) = E[g(τ,Xτ )−Mτ − ετ ] ≤ E

[

max
0≤n≤N

(g(n,Xn)−Mn − εn)

]

for every (Fn)-martingale (Mn)
N
n=0 starting from 0. Since V0 = supτ∈T E g(τ,Xτ ), this im-

plies (17).

For every (Fn)-martingale (Mn)
N
n=0 starting from 0 and each sequence of integrable error

terms (εn)
N
n=0 satisfying E[εn | Fn] = 0 for all n, the right side of (17) provides an upper

bound8 for V0, and by (16), this upper bound is tight if M =MH and ε ≡ 0. So we try to
use our candidate optimal stopping time τΘ to construct a martingale close to MH . The
closer τΘ is to an optimal stopping time, the better the value process9

HΘ
n = E

[

g(τΘn , XτΘn
) | Fn

]

, n = 0, 1, . . . , N,

corresponding to

τΘn =
N
∑

m=n

mfθm(Xm)
m−1
∏

j=n

(1− fθj (Xj)), n = 0, 1, . . . , N,

approximates the Snell envelope (Hn)
N
n=0. The martingale part of (HΘ

n )Nn=0 is given by
MΘ

0 = 0 and

MΘ
n −MΘ

n−1 = HΘ
n −E

[

HΘ
n | Fn−1

]

= fθn(Xn)g(n,Xn) + (1− fθn(Xn))C
Θ
n −CΘ

n−1, n ≥ 1,
(18)

for the continuation values10

CΘ
n = E[g(τΘn+1, XτΘn+1

) | Fn] = E[g(τΘn+1, XτΘn+1
) | Xn], n = 0, 1, . . . , N − 1.

Note that CΘ
N does not have to be specified. It formally appears in (18) for n = N . But

(1 − fθN (XN )) is always 0. To estimate MΘ, we generate a third set11 of independent
realizations (zkn)

N
n=0, k = 1, 2, . . . ,KU , of (Xn)

N
n=0. In addition, for every zkn, we simulate J

continuation paths z̃k,jn+1, . . . , z̃
k,j
N , j = 1, . . . , J , that are conditionally independent12 of each

8. Note that for the right side of (17) to be a valid upper bound, it is sufficient that E[εn | Fn] = 0 for all
n. In particular, ε0, ε1, . . . , εN can have any arbitrary dependence structure.

9. Again, since HΘ
n , MΘ

n and CΘ
n are given by conditional expectations, they are only specified up to

P-almost sure equality.
10. The two conditional expectations are equal since (Xn)

N
n=0 is Markov and τΘ

n+1 only depends on
(Xn+1, . . . , XN−1).

11. The realizations (zkn)
N
n=0, k = 1, . . . ,KU , must be drawn independently of (xk

n)
N
n=0, k = 1, . . . ,K, so that

our estimate of the upper bound does not depend on the samples used to train the stopping decisions.
But theoretically, they can depend on (yk

n)
N
n=0, k = 1, . . . ,KL, without affecting the unbiasedness of the

estimate Û or the validity of the confidence interval derived in Subsection 3.3 below.

12. More precisely, the tuples (z̃k,jn+1, . . . , z̃
k,j

N ), j = 1, . . . , J , are simulated according to pn(z
k
n, ·), where pn

is a transition kernel from R
d to R

(N−n)d such that pn(Xn, B) = P[(Xn+1, . . . , XN ) ∈ B | Xn] P-almost
surely for all Borel sets B ⊆ R

(N−n)d. We generate them independently of each other across j and k.
On the other hand, the continuation paths starting from zkn do not have to be drawn independently of
those starting from zkn′ for n 6= n′.

11
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other and of zkn+1, . . . , z
k
N . Let us denote by τk,jn+1 the value of τΘn+1 along z̃k,jn+1, . . . , z̃

k,j
N .

Estimating the continuation values as

Ck
n =

1

J

J
∑

j=1

g

(

τk,jn+1, z̃
k,j

τk,jn+1

)

, n = 0, 1, . . . , N − 1,

yields the noisy estimates

∆Mk
n = fθn(zkn)g(n, z

k
n) + (1− fθn(zkn))C

k
n − Ck

n−1

of the increments MΘ
n −MΘ

n−1 along the k-th simulated path zk0 , . . . , z
k
N . So

Mk
n =

{

0 if n = 0
∑n

m=1∆M
k
m if n ≥ 1

can be viewed as realizations of MΘ
n + εn for estimation errors εn with standard deviations

proportional to 1/
√
J such that E[εn | Fn] = 0 for all n. Accordingly,

Û =
1

KU

KU
∑

k=1

max
0≤n≤N

(

g
(

n, zkn

)

−Mk
n

)

,

is an unbiased estimate of the upper bound

U = E

[

max
0≤n≤N

(

g(n,Xn)−MΘ
n − εn

)

]

,

which, by the law of large numbers, converges to U for KU → ∞.

3.3. Point Estimate and Confidence Intervals

Our point estimate of V0 is the average

L̂+ Û

2
.

To derive confidence intervals, we assume that g(n,Xn) is square-integrable13 for all n.
Then

g(τ θ, XτΘ) and max
0≤n≤N

(

g(n,Xn)−MΘ
n − εn

)

are square-integrable too. Hence, one obtains from the central limit theorem that for large
KL, L̂ is approximately normally distributed with mean L and variance σ̂2L/KL for

σ̂2L =
1

KL − 1

KL
∑

k=1

(

g(lk, yklk)− L̂
)2
.

13. See condition (3).
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So, for every α ∈ (0, 1],
[

L̂− zα/2
σ̂L√
KL

, ∞
)

is an asymptotically valid 1 − α/2 confidence interval for L, where zα/2 is the 1 − α/2
quantile of the standard normal distribution. Similarly,

(

−∞ , Û + zα/2
σ̂U√
KU

]

with σ̂2U =
1

KU − 1

KU
∑

k=1

(

max
0≤n≤N

(

g
(

n, zkn

)

−Mk
n

)

− Û

)2

,

is an asymptotically valid 1−α/2 confidence interval for U . It follows that for every constant
ε > 0, one has

P

[

V0 < L̂− zα/2
σ̂L√
KL

or V0 > Û + zα/2
σ̂U√
KU

]

≤ P

[

L < L̂− zα/2
σ̂L√
KL

]

+ P

[

U > Û + zα/2
σ̂U√
KU

]

≤ α+ ε

as soon as KL and KU are large enough. In particular,
[

L̂− zα/2
σ̂L√
KL

, Û + zα/2
σ̂U√
KU

]

(19)

is an asymptotically valid 1− α confidence interval for V0.

4. Examples

In this section we test14 our method on three examples: the pricing of a Bermudan max-
call option, the pricing of a callable multi barrier reverse convertible and the problem of
optimally stopping a fractional Brownian motion.

4.1. Bermudan Max-Call Options

Bermudan max-call options are one of the most studied examples in the numerics literature
on optimal stopping problems (see, e.g., Longstaff and Schwartz, 2001; Rogers, 2002; Garćıa,
2003; Boyle et al., 2003; Haugh and Kogan, 2004; Broadie and Glasserman, 2004; Andersen
and Broadie, 2004; Broadie and Cao, 2008; Berridge and Schumacher, 2008; Belomestny,
2011, 2013; Jain and Oosterlee, 2015; Lelong, 2016). Their payoff depends on the maximum
of d underlying assets.

Assume the risk-neutral dynamics of the assets are given by a multi-dimensional Black–
Scholes model15

Si
t = si0 exp

(

[r − δi − σ2i /2]t+ σiW
i
t

)

, i = 1, 2, . . . , d, (20)

14. All computations were performed in single precision (float32) on a NVIDIA GeForce GTX 1080 GPU
with 1974 MHz core clock and 8 GB GDDR5X memory with 1809.5 MHz clock rate. The underlying
system consisted of an Intel Core i7-6800K 3.4 GHz CPU with 64 GB DDR4-2133 memory running
Tensorflow 1.11 on Ubuntu 16.04.

15. We make this assumption so that we can compare our results to those obtained with different methods in
the literature. But our approach works for any asset dynamics as long as it can efficiently be simulated.
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for initial values si0 ∈ (0,∞), a risk-free interest rate r ∈ R, dividend yields δi ∈ [0,∞),
volatilities σi ∈ (0,∞) and a d-dimensional Brownian motion W with constant instan-
taneous correlations16 ρij ∈ R between different components W i and W j . A Bermudan

max-call option on S1, S2, . . . , Sd has payoff
(

max1≤i≤d S
i
t −K

)+
and can be exercised at

any point of a time grid 0 = t0 < t1 < · · · < tN . Its price is given by

sup
τ

E

[

e−rτ

(

max
1≤i≤d

Si
τ −K

)+
]

,

where the supremum is over all S-stopping times taking values in {t0, t1, . . . , tN} (see, e.g.,
Schweizer, 2002). Denote Xi

n = Si
tn , n = 0, 1, . . . , N , and let T be the set of X-stopping

times. Then the price can be written as supτ∈T E g(τ,Xτ ) for

g(n, x) = e−rtn

(

max
1≤i≤d

xi −K

)+

,

and it is straight-forward to simulate (Xn)
N
n=0.

In the following we assume the time grid to be of the form tn = nT/N , n = 0, 1, . . . , N ,
for a maturity T > 0 and N + 1 equidistant exercise dates. Even though g(n,Xn) does
not carry any information that is not already contained in Xn, our method worked more
efficiently when we trained the optimal stopping decisions on Monte Carlo simulations of
the d + 1-dimensional Markov process (Yn)

N
n=0 = (Xn, g(n,Xn))

N
n=0 instead of (Xn)

N
n=0.

Since Y0 is deterministic, we first trained stopping times τ1 ∈ T1 of the form

τ1 =
N
∑

n=1

nfθn(Yn)

n−1
∏

j=1

(1− fθj (Yk))

for fθN ≡ 1 and fθ1 , . . . , f θN−1 : Rd+1 → {0, 1} given by (8) with I = 2 and q1 = q2 = d+40.
Then we determined our candidate optimal stopping times as

τΘ =

{

0 if f0 = 1

τ1 if f0 = 0

for a constant f0 ∈ {0, 1} depending17 on whether it was optimal to stop immediately at
time 0 or not (see Remark 6 above).

It is straight-forward to simulate from model (20). We conducted 3,000+d training steps,
in each of which we generated a batch of 8,192 paths of (Xn)

N
n=0. To estimate the lower

bound L we simulated KL = 4,096,000 trial paths. For our estimate of the upper bound U ,
we produced KU = 1,024 paths (zkn)

N
n=0, k = 1, . . . ,KU , of (Xn)

N
n=0 and KU ×J realizations

(vk,jn )Nn=1, k = 1, . . . ,KU , j = 1, . . . , J , of (Wtn −Wtn−1)
N
n=1 with J = 16,384. Then for all

n and k, we generated the i-th component of the j-th continuation path departing from zkn
according to

z̃i,k,jm = zi,kn exp
(

[r − δi − σ2i /2](m− n)∆t+ σi[v
i,k,j
n+1 + · · ·+ vi,k,jm ]

)

, m = n+ 1, . . . , N.

16. That is, E[(W i
t −W i

s)(W
j
t −W i

s)] = ρij(t− s) for all i 6= j and s < t.
17. In fact, in none of the examples in this paper it is optimal to stop at time 0. So τΘ = τ1 in all these

cases.
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Symmetric case

We first considered the special case, where si0 = s0, δi = δ, σi = σ for all i = 1, . . . , d, and
ρij = ρ for all i 6= j. Our results are reported in Table 1.

Asymmetric case

As a second example, we studied model (20) with si0 = s0, δi = δ for all i = 1, 2, . . . , d,
and ρij = ρ for all i 6= j, but different volatilities σ1 < σ2 < · · · < σd. For d ≤ 5, we
chose the specification σi = 0.08 + 0.32× (i− 1)/(d− 1), i = 1, 2, . . . , d. For d > 5, we set
σi = 0.1 + i/(2d), i = 1, 2, . . . , d. The results are given in Table 2.

4.2. Callable Multi Barrier Reverse Convertibles

A MBRC is a coupon paying security that converts into shares of the worst-performing of
d underlying assets if a prespecified trigger event occurs. Let us assume that the price of
the i-th underlying asset in percent of its starting value follows the risk-neutral dynamics

Si
t =

{

100 exp
(

[r − σ2i /2]t+ σiW
i
t

)

for t ∈ [0, Ti)

100(1− δi) exp
(

[r − σ2i /2]t+ σiW
i
t

)

for t ∈ [Ti, T ]
(21)

for a risk-free interest rate r ∈ R, volatility σi ∈ (0,∞), maturity T ∈ (0,∞), dividend
payment time Ti ∈ (0, T ), dividend rate δi ∈ [0,∞) and a d-dimensional Brownian motion
W with constant instantaneous correlations ρij ∈ R between different components W i and
W j .

Let us consider a MBRC that pays a coupon c at each of N time points tn = nT/N ,
n = 1, 2, . . . , N , and makes a time-T payment of

G =

{

F if min1≤i≤dmin1≤m≤M Si
um

> B or min1≤i≤d S
i
T > K

min1≤i≤d S
i
T if min1≤i≤dmin1≤m≤M Si

um
≤ B and min1≤i≤d S

i
T ≤ K,

where F ∈ [0,∞) is the nominal amount, B ∈ [0,∞) a barrier, K ∈ [0,∞) a strike price
and um the end of the m-th trading day. Its value is

N
∑

n=1

e−rtnc+ e−rT
EG (22)

and can easily be estimated with a standard Monte Carlo approximation.
A callable MBRC can be redeemed by the issuer at any of the times t1, t2, . . . , tN−1 by

paying back the notional. To minimize costs, the issuer will try to find a {t1, t2, . . . , T}-
valued stopping time such that

E

[

τ
∑

n=1

e−rtnc+ 1{τ<T}e
−rτF + 1{τ=T}e

−rTG

]

is minimal.
Let (Xn)

N
n=1 be the d+1-dimensional Markov process given by Xi

n = Si
tn for i = 1, . . . , d,

and

Xd+1
n :=

{

1 if the barrier has been breached before or at time tn

0 else.
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d s0 L̂ tL Û tU Point est. 95% CI Literature

2 90 8.072 28.7 8.075 25.4 8.074 [8.060, 8.081] 8.075
2 100 13.895 28.7 13.903 25.3 13.899 [13.880, 13.910] 13.902
2 110 21.353 28.4 21.346 25.3 21.349 [21.336, 21.354] 21.345

3 90 11.290 28.8 11.283 26.3 11.287 [11.276, 11.290] 11.29
3 100 18.690 28.9 18.691 26.4 18.690 [18.673, 18.699] 18.69
3 110 27.564 27.6 27.581 26.3 27.573 [27.545, 27.591] 27.58

5 90 16.648 27.6 16.640 28.4 16.644 [16.633, 16.648] [16.620, 16.653]
5 100 26.156 28.1 26.162 28.3 26.159 [26.138, 26.174] [26.115, 26.164]
5 110 36.766 27.7 36.777 28.4 36.772 [36.745, 36.789] [36.710, 36.798]

10 90 26.208 30.4 26.272 33.9 26.240 [26.189, 26.289]
10 100 38.321 30.5 38.353 34.0 38.337 [38.300, 38.367]
10 110 50.857 30.8 50.914 34.0 50.886 [50.834, 50.937]

20 90 37.701 37.2 37.903 44.5 37.802 [37.681, 37.942]
20 100 51.571 37.5 51.765 44.3 51.668 [51.549, 51.803]
20 110 65.494 37.3 65.762 44.4 65.628 [65.470, 65.812]

30 90 44.797 45.1 45.110 56.2 44.953 [44.777, 45.161]
30 100 59.498 45.5 59.820 56.3 59.659 [59.476, 59.872]
30 110 74.221 45.3 74.515 56.2 74.368 [74.196, 74.566]

50 90 53.903 58.7 54.211 79.3 54.057 [53.883, 54.266]
50 100 69.582 59.1 69.889 79.3 69.736 [69.560, 69.945]
50 110 85.229 59.0 85.697 79.3 85.463 [85.204, 85.763]

100 90 66.342 95.5 66.771 147.7 66.556 [66.321, 66.842]
100 100 83.380 95.9 83.787 147.7 83.584 [83.357, 83.862]
100 110 100.420 95.4 100.906 147.7 100.663 [100.394, 100.989]

200 90 78.993 170.9 79.355 274.6 79.174 [78.971, 79.416]
200 100 97.405 170.1 97.819 274.3 97.612 [97.381, 97.889]
200 110 115.800 170.6 116.377 274.5 116.088 [115.774, 116.472]

500 90 95.956 493.4 96.337 761.2 96.147 [95.934, 96.407]
500 100 116.235 493.5 116.616 761.7 116.425 [116.210, 116.685]
500 110 136.547 493.7 136.983 761.4 136.765 [136.521, 137.064]

Table 1: Summary results for max-call options on d symmetric assets for parameter values
of r = 5%, δ = 10%, σ = 20%, ρ = 0, K = 100, T = 3, N = 9. tL is the number
of seconds it took to train τΘ and compute L̂. tU is the computation time for
Û in seconds. 95% CI is the 95% confidence interval (19). The last column lists
values calculated with a binomial lattice method by Andersen and Broadie (2004)
for d = 2–3 and the 95% confidence intervals of Broadie and Cao (2008) for d = 5.
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d s0 L̂ tL Û tU Point est. 95% CI Literature

2 90 14.325 26.8 14.352 25.4 14.339 [14.299, 14.367]
2 100 19.802 27.0 19.813 25.5 19.808 [19.772, 19.829]
2 110 27.170 26.5 27.147 25.4 27.158 [27.138, 27.163]

3 90 19.093 26.8 19.089 26.5 19.091 [19.065, 19.104]
3 100 26.680 27.5 26.684 26.4 26.682 [26.648, 26.701]
3 110 35.842 26.5 35.817 26.5 35.829 [35.806, 35.835]

5 90 27.662 28.0 27.662 28.6 27.662 [27.630, 27.680] [27.468, 27.686]
5 100 37.976 27.5 37.995 28.6 37.985 [37.940, 38.014] [37.730, 38.020]
5 110 49.485 28.2 49.513 28.5 49.499 [49.445, 49.533] [49.155, 49.531]

10 90 85.937 31.8 86.037 34.4 85.987 [85.857, 86.087]
10 100 104.692 30.9 104.791 34.2 104.741 [104.603, 104.864]
10 110 123.668 31.0 123.823 34.4 123.745 [123.570, 123.904]

20 90 125.916 38.4 126.275 45.6 126.095 [125.819, 126.383]
20 100 149.587 38.2 149.970 45.2 149.779 [149.480, 150.053]
20 110 173.262 38.4 173.809 45.3 173.536 [173.144, 173.937]

30 90 154.486 46.5 154.913 57.5 154.699 [154.378, 155.039]
30 100 181.275 46.4 181.898 57.5 181.586 [181.155, 182.033]
30 110 208.223 46.4 208.891 57.4 208.557 [208.091, 209.086]

50 90 195.918 60.7 196.724 81.1 196.321 [195.793, 196.963]
50 100 227.386 60.7 228.386 81.0 227.886 [227.247, 228.605]
50 110 258.813 60.7 259.830 81.1 259.321 [258.661, 260.092]

100 90 263.193 98.5 264.164 151.2 263.679 [263.043, 264.425]
100 100 302.090 98.2 303.441 151.2 302.765 [301.924, 303.843]
100 110 340.763 97.8 342.387 151.1 341.575 [340.580, 342.781]

200 90 344.575 175.4 345.717 281.0 345.146 [344.397, 346.134]
200 100 392.193 175.1 393.723 280.7 392.958 [391.996, 394.052]
200 110 440.037 175.1 441.594 280.8 440.815 [439.819, 441.990]

500 90 476.293 504.5 477.911 760.7 477.102 [476.069, 478.481]
500 100 538.748 504.6 540.407 761.6 539.577 [538.499, 540.817]
500 110 601.261 504.9 603.243 760.8 602.252 [600.988, 603.707]

Table 2: Summary results for max-call options on d asymmetric assets for parameter values
of r = 5%, δ = 10%, ρ = 0, K = 100, T = 3, N = 9. tL is the number of seconds
it took to train τΘ and compute L̂. tU is the computation time for Û in seconds.
95% CI is the 95% confidence interval (19). The last column reports the 95%
confidence intervals of Broadie and Cao (2008).
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Then the issuer’s minimization problem can be written as

inf
τ∈T

E g(τ,Xτ ), (23)

where T is the set of all X-stopping times and

g(n, x) =

{

∑n
m=1 e

−rtmc+ e−rtnF if 1 ≤ n ≤ N − 1 or xd+1 = 0
∑N

m=1 e
−rtmc+ e−rtNh(x) if n = N and xd+1 = 1,

where

h(x) =

{

F if min1≤i≤d x
i > K

min1≤i≤d x
i if min1≤i≤d x

i ≤ K.

Since the issuer cannot redeem at time 0, we trained stopping times of the form

τΘ =
N
∑

n=1

nfθn(Yn)
n−1
∏

j=1

(1− fθj (Yk)) ∈ T1

for fθN ≡ 1 and fθ1 , . . . , fθN−1 : Rd+1 → {0, 1} given by (8) with I = 2 and q1 = q2 = d+40.
Since (23) is a minimization problem, τΘ yields an upper bound and the dual method a
lower bound.

We simulated the model (21) like (20) in Subsection 4.1 with the same number of trials
except that here we used the lower number J = 1,024 to estimate the dual bound. Numerical
results are reported in Table 3.

4.3. Optimally Stopping a Fractional Brownian Motion

A fractional Brownian motion with Hurst parameter H ∈ (0, 1] is a continuous centered
Gaussian process (WH

t )t≥0 with covariance structure

E[WH
t W

H
s ] =

1

2

(

t2H + s2H − |t− s|2H
)

;

see, e.g., Mandelbrot and Van Ness (1968) or Samoradnitsky and Taqqu (1994). For H =
1/2, WH is a standard Brownian motion. So, by the optional stopping theorem, one

has EW
1/2
τ = 0 for every W 1/2-stopping time τ bounded above by a constant; see, e.g.,

Grimmett and Stirzaker (2001). However, forH 6= 1/2, the increments ofWH are correlated
– positively for H ∈ (1/2, 1] and negatively for H ∈ (0, 1/2). In both cases, WH is neither a
martingale nor a Markov process, and there exist bounded WH -stopping times τ such that
EWH

τ > 0; see, e.g., Kulikov and Gusyatnikov (2016) for two classes of simple stopping
rules 0 ≤ τ ≤ 1 and estimates of the corresponding expected values EWH

τ .

To approximate the supremum

sup
0≤τ≤1

EWH
τ (24)
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d ρ L̂ tL Û tU Point est. 95% CI Non-callable

2 0.6 98.235 24.9 98.252 204.1 98.243 [98.213, 98.263] 106.285
2 0.1 97.634 24.9 97.634 198.8 97.634 [97.609, 97.646] 106.112
3 0.6 96.930 26.0 96.936 212.9 96.933 [96.906, 96.948] 105.994
3 0.1 95.244 26.2 95.244 211.4 95.244 [95.216, 95.258] 105.553
5 0.6 94.865 41.0 94.880 239.2 94.872 [94.837, 94.894] 105.530
5 0.1 90.807 41.1 90.812 238.4 90.810 [90.775, 90.828] 104.496
10 0.6 91.568 71.3 91.629 300.9 91.599 [91.536, 91.645] 104.772
10 0.1 83.110 71.7 83.137 301.8 83.123 [83.078, 83.153] 102.495
15 0.6 89.558 94.9 89.653 359.8 89.606 [89.521, 89.670] 104.279
15 0.1 78.495 94.7 78.557 360.5 78.526 [78.459, 78.571] 101.209
30 0.6 86.089 158.5 86.163 534.1 86.126 [86.041, 86.180] 103.385
30 0.1 72.037 159.3 72.749 535.6 72.393 [71.830, 72.760] 99.279

Table 3: Summary results for callable MBRCs with d underlying assets for F = K = 100,
B = 70, T = 1 year (= 252 trading days), N = 12, c = 7/12, δi = 5%, Ti = 1/2,
r = 0, σi = 0.2 and ρij = ρ for i 6= j. tU is the number of seconds it took to
train τΘ and compute Û . tL is the number of seconds it took to compute L̂. The
last column lists fair values of the same MBRCs without the callable feature. We
estimated them by averaging 4,096,000 Monte Carlo samples of the payoff. This
took between 5 (for d = 2) and 44 (for d = 30) seconds.

over all WH -stopping times 0 ≤ τ ≤ 1, we denote tn = n/100, n = 0, 1, 2, . . . , 100, and
introduce the 100-dimensional Markov process (Xn)

100
n=0 given by

X0 = (0, 0, . . . , 0)

X1 = (WH
t1 , 0, . . . , 0)

X2 = (WH
t2 ,W

H
t1 , 0, . . . , 0)

...

X100 = (WH
t100 ,W

H
t99 , . . . ,W

H
t1 ).

The discretized stopping problem

sup
τ∈T

E g(Xτ ), (25)

where T is the set of all X-stopping times and g : R100 → R the projection (x1, . . . , x100) 7→
x1, approximates (24) from below.

We computed estimates of (25) for H ∈ {0.01, 0.05, 0.1, 0.15, . . . , 1} by training networks
of the form (8) with depth I = 2, d = 100 and q1 = q2 = 140. To simulate the vector Y =
(WH

tn )
100
n=0, we used the representation Y = BZ, where BBT is the Cholesky decomposition

of the covariance matrix of Y and Z a 100-dimensional random vector with independent
standard normal components. We carried out 6,000 training steps with a batch size of
2,048. To estimate the lower bound L we generated KL = 4,096,000 simulations of Z.
For our estimate of the upper bound U , we first simulated KU = 1,024 realizations vk,
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k = 1, . . . ,KU of Z and set wk = Bvk. Then we produced another KU × J simulations
ṽk,j , k = 1, . . . ,KU , j = 1, . . . , J , of Z, and generated for all n and k, continuation paths
starting from

zkn = (wk
n, . . . , w

k
1 , 0, . . . , 0)

according to

z̃k,jm = (w̃k,j
m , . . . , w̃k,j

n+1, w
k
n, . . . , w

k
1 , 0 . . . , 0), m = n+ 1, . . . , 100,

with

w̃k,j
l =

n
∑

i=1

Bliv
k
i +

l
∑

i=n+1

Bliṽ
k,j
i , l = n+ 1, . . . ,m.

For H ∈ {0.01, ..., 0.4} ∪ {0.6, ..., 1.0}, we chose J = 16,384, and for H ∈ {0.45, 0.5, 0.55},
J = 32,768. The results are listed in Table 4 and depicted in graphical form in Figure 1.
Note that for H = 1/2 and H = 1, our 95% confidence intervals contain the true values,
which in these two cases, can be calculated exactly. As mentioned above,W 1/2 is a Brownian

motion, and therefore, EW
1/2
τ = 0 for every (W

1/2
tn )100n=0-stopping time τ . On the other hand,

one has18 W 1
t = tW 1

1 , t ≥ 0. So, in this case, the optimal stopping time is given18 by

τ =

{

1 if W 1
t1 > 0

t1 if W 1
t1 ≤ 0,

and the corresponding expectation by

EW 1
τ = E

[

W 1
1 1

{

W 1
t1
>0

} −W 1
t11

{

W 1
t1
≤0

}

]

= 0.99E
[

W 1
1 1{W 1

1>0}
]

= 0.99/
√
2π = 0.39495...

Moreover, it can be seen that for H ∈ (1/2, 1), our estimates are up to three times higher
than the expected payoffs generated by the heuristic stopping rules of Kulikov and Gusy-
atnikov (2016). For H ∈ (0, 1/2), they are up to five times higher.
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