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Abstract

Medical image quality assessment plays an important

role not only in the design and manufacturing processes of

image acquisition but also in the optimization of decision

support systems. This work introduces a new deep ordinal

learning approach for focus assessment in whole slide im-

ages. From the blurred image to the focused image there is

an ordinal progression that contains relevant knowledge for

more robust learning of the models. With this new method, it

is possible to infer quality without losing ordinal informa-

tion about focus since instead of using the nominal cross-

entropy loss for training, ordinal losses were used. Our

proposed model is contrasted against other state-of-the-art

methods present in the literature. A first conclusion is a

benefit of using data-driven methods instead of knowledge-

based methods. Additionally, the proposed model is found

to be the top-performer in several metrics. The best per-

forming model scores an accuracy of 94.4% for a 12 classes

classification problem in the FocusPath database.

1. Introduction

In the last few decades, there was a massive growth in the

amount of digital color image content in the medical field

due to the spread of advanced multimedia devices and digi-

tal services capable of doing acquisition, transmission, and

storage of digital data [8]. Digital Pathology images (Whole

slide images (WSI)) are about 10X bigger than Radiology

images, being over >1 GB in size in most cases, this type

of image requires better storage management through their

useful life cycle in clinical workflow [7, 30]. Thus, image

quality assessment (IQA) methods are crucial, working as a

filter in the first stage of acquisition, they can improve stor-

age management. In a second step, they can be used as an

optimizer of the decision support systems.

In the medical field image quality assessment method-

ologies are focused on two distinct processes: on the

one hand, the low-level notion of quality which includes

the measurement of distortions at a signal level such as

blur, noise, compression errors, and other types of distor-

tions [10]; on the other hand, the semantic complex con-

cepts such as the presence/absence of artifacts (e.g. tissue

folds or bubbles, the presence of coloration errors, among

others) [3]. Thus, the medical image quality assessment is,

in most cases, application-specific which requires vast do-

main knowledge in the respective medical area.

Focus quality assessment (FQA) is fundamental in the

normal WSIs acquisition workflow. Hence, it is essential

to develop and improve FQA methods capable of improv-

ing the quality of acquired WSIs and reduce the acquisition

time.

In the next Section 2, other work for focus quality assess-

ment in WSIs is reviewed. A brief summary of the problem

and the contributions of this work is done in subsection 3

The Section 4 describes the Data Pre-Processing steps, and

it also presents a brief introduction to Convolutional Neural

Networks, the used Network Architectures, and finally, the

losses used during the training. In Section 5 the experimen-

tal details are described followed by the results and discus-

sion in Section 6. The study finished with a Conclusions

Section 7.

2. Related Work

During the acquisition of WSI’s by the scanning plat-

forms, focus errors often occur. After the acquisition, man-

ual inspection of the slides is required to infer if it has

good quality to proceed with the analysis and diagnostic.

The manual inspection of the slides is a time-consuming

process and in most cases subjective to individual scores

which leads to inter/intra-variability issues between the ex-

perts [29]. This way, to automatize this process and im-

prove clinical workflow several focus quality assessment

approaches have been developed. They can be divided into

Knowledge-based focus quality assessment methods and

data-driven focus quality assessment methods.

Knowledge-based FQAs - These methods are based on

domain knowledge, with a large presence of this type of

algorithms in the literature. Knowledge-based FQAs can

be divided into 7 different categories: Derivative-Based Al-
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gorithms [32, 39], Statistics-Based Algorithms [26, 2, 13],

Histogram-Based Algorithms [11], Intuitive Algorithms

(based on thresholds) [28], microscopic optic models [16],

signal processing models [25, 14] and also human visual

system models [17, 18]. Most of the methods previously

mentioned methods require low computational power and

are more interpretable; however, compared with the most

recent data-driven methods, their performance is relatively

low in terms of precision and computation time.

MLV [2] and FQPATH [16] are two state-of-the-art

knowledge-based models in the literature. The MLV

method quantifies the image quality considering the maxi-

mum variation between each pixel and its eight neighbours.

The final score is given by the standard deviation of the val-

ues found for each pixel, after applying a weighting func-

tion, which attributes more relevance to higher values, in-

creasing the difference of scores between focus and defocus

images. The FQPath method adopts a kernel with properties

similar to the human visual system as a sum of even deriva-

tive filters. This kernel is then applied to the image, out-

putting a feature map that is vectorized. Then only the val-

ues coding the most focus-relevant features are preserved,

ignoring features related with noise artifacts. Lastly the m-

th central moment of the remaining features is calculated

and the final score is given by the negative logarithm of this

value. The optimal value of m can be found through a grid

search.

Data-Driven FQAs - In the last few years, there was an

advance in data-driven approaches for FQA in WSIs. These

type of methods require a large number of data for the train-

ing, however, presents in most of the cases a boost in the

performance when compared to Knowledge-based FQAs.

Inside these types of models, literature presents two dif-

ferent categories: network adapted with minor adjustments

from pre-designed and well-known architectures [23, 5],

and on the other hand, architectures tailored from scratch

with application-specific features [37, 31, 33, 38]. There are

some open-source software applications available in the lit-

erature that try to apply some approaches for FQA in WSIs

derived from the methods mentioned above: HistoQC [22]

and CellPro [27]. Data-Driven approaches present very

good performances in WSIs focus assessment, however, the

high computational costs to train these models represent its

main drawbacks.

3. Brief Summary

Most of the current approaches to ordinal inference for

neural networks are found to not adequately take advantage

of the ordinal problem. In the case of FQA for WSIs, all the

data-driven approaches present in the literature discard the

ordinal information between the different focus classes.

In the present work, a novel model to infer focus qual-

ity in WSIs is proposed. This new model is developed on

the FocusPath dataset and uses a plethora of deep learning

architectures, with several ordinal losses. Our proposal is

also compared with the current state-of-the-art approaches

and surpasses them in several metrics.

4. Methods

4.1. Data preprocessing

Firstly, the dataset was divided into train, validation, and

test subsets (60-20-20%), maintaining the ratio among dif-

ferent classes. To feed the network, it was necessary to re-

size the patch images from 1024× 1024px to 224× 224px.

This process was done online during the training. It was

also done normalization to speed up the training, which con-

sists of a rescale of pixel values from the range of 0-255 to

0-1. To overcome the small amount of data in our dataset,

data augmentation was used. Therefore, during the train-

ing of the models, a series of random transformations were

done in each training epoch for every image. The trans-

formations applied included 10% of width and height shift,

10% of zoom, horizontal and vertical flips, and image ro-

tation. Figure 1 shows three different examples of random

transformations that were done online during the training

process of the models.

Figure 1. Examples of data augmentation on the FocusPath

database. From left to right: original image and three examples

of random transformations

4.2. Convolutional Neural Networks

A convolutional neural network (CNN) is a class of deep

learning algorithms that consecutively apply convolutions

of filters to the image. These filters are learned and consist

of quadrilateral patches that are convolved across the whole

input image – unlike previous fully-connected networks,

only local inputs are connected at each layer. Usually, each

convolution is intertwined with downsampling operations,

such as max-pooling, that progressively reduce the size of

the original input image.

The final layers are fully-connected and then the final

output is processed by a soft-max for the multi-class prob-

lems. Dropout was used to reduce overfitting by constrain-

ing these fully-connected layers [35]. This type of model

has the intrinsic ability to learn useful features directly from

the input images that are important for the task at hand.

4.3. Network Architectures

In this work a model for classification of focus qual-

ity in WSIs was trained and tested with seven differ-

ent convolutional network architectures: AlexNet [24],
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GoogLeNet [36], ResNet18 [15], MobileNet V2 [20],

ShuffleNet V2 X1 0 [40], SqueezeNet1 0 [21], and VGG-

16 [34]. The main goal of testing these different architec-

tures is to compare the performance of a non-ordinal loss

(CE) vs ordinal losses in a wide range of architectures.

These seven different architectures were chosen as they are

well known and often used in the literature. They came pre-

trained with PyTorch on ImageNet1.

The last block of each architecture was replaced by the

following layers: dropout with p=20%, 512-unit dense

layer with ReLU, dropout with p=20%, a 256-wide dense

layer with ReLU, followed by 12 output neurons.

4.4. Losses

In this work six different losses will be evaluated, Cross-

Entropy (CE) for the baseline model and five different

ordinal losses: Ordinal Encoding (OE), Binomial Uni-

modal (BU), CO, CO2, and also Ordinal Entropy Loss

Function (HO2).

Cross-Entropy (CE): One of the most used losses in deep

learning problems, where a model perform multi-class clas-

sification by minimizing cross-entropy (equation 1), aver-

aged over the training set:

CE(yn, ŷn) = −

K∑

k=1

ynk log(ŷnk) (1)

Cross-entropy is a suitable approach for nominal data.

Nonetheless, for ordinal data, where the order between

classes gives relevant insights, this information must be ex-

plored by the loss to further regularize learning.

Ordinal Encoding (OE): In ordinal encoding, which is

an agnostic way to introduce ordinality, classes are en-

coded using a cumulative distribution – the indicator func-

tion used is ✶(k < k⋆) so that ynm is represented by 1 if

k < k⋆
n

and 0 otherwise. Each output represents the incre-

mental neighbor probability, and the inverse operation (dur-

ing inference) is performed by summing up these outputs,

pnk =
∑

K−1
m=1 ynm [12, 6].

Binomial Unimodal (BU): Constraining discrete ordinal

probability distributions to be unimodal using binomial

probability distributions is another technique to promote or-

dinality in classification problems. Thus, it is necessary to

constrain the output of the network directly under a regres-

sion setting. This method predicts a single output (as the

final layer) representing the probability along the classes,

with yn = 0 representing k⋆
n
= 1 and yn = 1 representing

k⋆
n
= K [9, 4].

CO and CO2 Ordinal losses - In this loss, a regularization

term that penalizes the deviations from the unimodal setting

is added to CE [1].

1https://pytorch.org/docs/stable/torchvision/

models.html

Defining ✶(x) as the indicator function of x and

ReLU(x) = x✶(x > 0) = max(0, x), a possible fix for

an order-aware loss could be

CO(yn, ŷn) = CE(yn, ŷn)

+ λ

K−1∑

k=1

✶(k ≥ k⋆
n
)ReLU(ŷn(k+1) − ŷn(k))

+ λ

K−1∑

k=1

✶(k ≤ k⋆
n
)ReLU(ŷn(k) − ŷn(k+1)), (2)

where λ ≥ 0 controls the relative influence of the extra

terms favoring unimodal distributions.

The additional terms, although promoting uni-modality,

still allow flat distributions. A generalization of the previous

idea is to add a margin of δ > 0 to the ReLU, imposing that

the difference between consecutive probabilities is at least

δ [1]. This leads us to a second CE loss, CO2, suitable for

ordinal classes:

CO2(yn, ŷn) = CE(yn, ŷn)

+ λ

K−1∑

k=1

✶(k ≥ k⋆
n
)ReLU(δ + ŷn(k+1) − ŷn(k))

+ λ

K−1∑

k=1

✶(k ≤ k⋆
n
)ReLU(δ + ŷn(k) − ŷn(k+1)). (3)

A value of δ = 0.05 has been empirically found to provide

a sensible margin.

Ordinal Entropy Loss Function (HO2) This loss arises to

mitigate some negative aspects of the CE in the CO and

CO2 losses since the CE term by itself is only trying to

maximize the probability estimated in the true output class

(while ignoring the remaining probabilities). The ordinal

terms in CO and CO2 are promoting unimodality but not

penalizing (almost) flat distributions. A softer assumption

is that the distribution should have a low entropy [1].

This leads us to the ordinal entropy loss, HO2, for ordi-

nal data as

HO2(yn, ŷn) = H(ŷn)

+ λ

K−1∑

k=1

✶(k ≥ k⋆
n
)ReLU(δ + ŷn(k+1) − ŷn(k))

+ λ

K−1∑

k=1

✶(k ≤ k⋆
n
)ReLU(δ + ŷn(k) − ŷn(k+1)), (4)

where H(p) denotes the entropy of the distribution p.
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5. Experimental Details

5.1. Dataset

In this work, it was used a public histopathological

database named FocusPath dataset 2, which contains im-

age quality annotations [19]. The FocusPath dataset con-

tains 8640 patches of 1024 x 1024 images. These images

were extracted from nine different stained slides from di-

verse human organs. The original Whole Slide Images were

scanned by Huron TissueScope LE1.2. It uses a 40X optics

lens at 0.25 µm/pixel resolution. There are 14 absolute z-

level scores corresponding to the ground-truth class for the

focus level. In Table 1 it is possible to see several examples

from each class present in the FocusPath dataset. Due to the

low number of examples of images in the more defocused

classes (12 and 13), the label was changed to belong to class

11. This way, the dataset was grouped into 12 different fo-

cus classes.

5.2. Training

All the losses were tested on the CNN model represented

on Figure 2.

Figure 2. Schematic representation of the model architecture.

The model had as input the RGB WSIs patches from the

FocusPath database. The model output consists of the mul-

ticlass classification (12 classes) of focus quality (0-focus

patch to 11-defocus patch)

During the training initialization, the weights of the ar-

chitectures previously mentioned were initialized based on

ImageNet pre-training. The optimizer used was ADAM,

2https://zenodo.org/record/3926181#.YPFgluhKjIU

starting with a learning rate of 10−4. The learning rate

is reduced by 10% whenever the loss is stagnant for 10

epochs using a specific scheduler. The training process is

completed after 200 epochs. The training process was con-

ducted on a single Nvidia GTX 1080ti (11GB) GPU.

In the case of the Ordinal Entropy Loss Function, the

hyperparameter λ is tuned by doing nested k-fold cross-

validating using the training set (with k=5) to create an un-

biased validation set.

5.3. Evaluation Metrics

To evaluate the performance of the different models,

three different metrics were adopted: accuracy, mean abso-

lute error, and also Kendall’s τ rank correlation coefficient.

One of the most popular metrics used in classification

problems is accuracy (Acc). For N observations, taking ki
and k̂i to be the label and prediction of the n-th observation,

respectively, then Acc = 1
N

∑
N

n=1 ✶(k̂
⋆
n
= k⋆

n
), where ✶ is

the indicator function.

However, this metric treats all class errors as equal,

whether the error is between adjacent classes or between

classes in the extreme. If we have K classes represented by

a set C = {C(1), C(2), . . . , C(K)}, then accuracy will treat

an error between C(1) and C(2) with the same magnitude

as an error between C(1) and C(K) which is clearly worse.

For that reason, a popular metric for ordinal classification is

the Mean Absolute Error (MAE), MAE = 1
N

∑
i
|k⋆

i
− k̂⋆

i
|.

This metric is not perfect since it treats an ordinal variable

as a cardinal variable. An error between classes C(1) and

C(3) will be treated as two times worse than an error be-

tween classes C(1) and C(2). Naturally, the assumption of

cardinality is not always warranted.

Kendall’s τ rank correlation coefficient (Kendal Tau)

is a non-parametric evaluation of relationships between

columns of ranked data, so it is a measure of ordinal asso-

ciation between data. The τ correlation coefficient returns

a value that ranges from -1 to 1, with 0 being no correlation

and 1 perfect correlation.

6. Results and Discussion

The performance of the seven different architectures are

presented in Tables 2–3, and 4, for 12-class classification

problem, with the six different learning losses – conven-

tional Cross-Entropy (CE), Binomial Unimodal (BU) [9],

Ordinal Encoding (OE) [6], CO, CO2 and Ordinal Entropy

Loss Function (HO2) [1]. The best models are shown in

bold.

Table 2 shows the accuracy results for 12-class focus

classification problem. Regarding this metric, it is possible

to infer the difference in the results between nominal and

ordinal losses. OE loss performance was better for 4 dif-

ferent architectures against 2 for nominal CE. This can be

explained by the lower role of ordinality in the CE loss, as
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Table 1. Image examples of the 14 Different patch focus Classes in the FocusPath dataset.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Focus Level - focus(0) → defocus(13)

Table 2. Results in terms of Accuracy (%) for 12 class problem

(higher is better).

CE BU OE CO CO2 HO2

alexnet 72.4 69.7 66.8 64.9 62.7 62.9
googlenet 92.2 87.2 91.1 92.4 87.0 78.1
resnet18 88.7 86.8 87.2 83.3 82.7 86.6
mobilenet v2 92.2 82.9 94.4 89.3 86.0 86.0
shufflenet v2 x1 0 84.7 81.9 86.0 84.3 76.1 80.8
squeezenet1 0 73.4 71.5 74.2 31.1 63.9 62.9
vgg16 87.2 84.9 89.1 62.1 84.3 80.6
Avg 84.4 80.7 84.1 72.5 77.5 76.8

Winners 2 0 4 1 0 0

Table 3. Results in terms of Mean Absolute Error (MAE) for 12

class problem (lower is better).

CE BU OE CO CO2 HO2

alexnet 0.29 0.32 0.34 0.37 0.42 0.40
googlenet 0.08 0.13 0.09 0.08 0.13 0.22
resnet18 0.12 0.13 0.13 0.19 0.19 0.14
mobilenet v2 0.08 0.18 0.06 0.12 0.15 0.16
shufflenet v2 x1 0 0.16 0.19 0.16 0.16 0.25 0.20
squeezenet1 0 0.30 0.29 0.27 1.04 0.43 0.42
vgg16 0.14 0.15 0.11 0.43 0.17 0.23
Avg 0.17 0.20 0.17 0.34 0.25 0.25

Winners 2 0 4 1 0 0

Table 4. Results in terms of Kendall’s τ for 12 class problem

(higher is better).

CE BU OE CO CO2 HO2

alexnet 93.8 93.5 93.3 92.2 91.5 91.7
googlenet 98.4 97.2 98.0 98.3 97.3 95.7
resnet18 97.4 97.1 97.4 95.8 96.0 96.8
mobilenet v2 98.3 96.6 98.8 97.5 96.9 96.2
shufflenet v2 x1 0 96.3 95.8 96.3 96.3 95.0 96.0
squeezenet1 0 92.8 94.2 94.1 75.0 90.7 91.3
vgg16 97.2 97.1 97.9 89.9 96.2 94.8
Avg 96.3 95.9 96.5 92.1 94.8 94.7

Winners 2 1 3 1 0 0

also confirmed by the MAE results. This means that when

misclassification occurs, ordinal losses tend to classify the

focus quality in the WSI patches as being closer to the real

class.

Table 3 presents the results for MAE, which confirm the

influence of ordinal losses in promoting ordinality when

comparing to nominal loss (CE). OE loss achieved the best

performance across the different architectures. Across the

different architectures, ordinal losses won nominal CE in 5

against 2.

In Figure 3 is presented the confusion matrix of our best

model (MobileNet v2 trained with Ordinal Encoding). It

is possible to infer that the misclassified images were very

close to the main diagonal of the confusion matrix, which

reveals that the ordinal loss helps to reduce the distance be-

tween the true class vs predicted class when the model clas-

sifies wrongly as mentioned before.

Figure 3. Confusion Matrix of our best model - MobileNet v2 -

using Ordinal Encoding as loss.

Going a step further and comparing the results with other

works featuring focus quality assessment in the FocusPath

database, it is clear that the evaluation metrics are above

the state-of-the-art results, especially on the Spearman’s

rank correlation coefficient (SRCC) and Pearson correla-
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tion coefficient (PLCC) metrics. Wang et.al [37] present

a data-driven work with better results in all the metrics, in

contrast to knowledge-based methods (MLV [2] and FQ-

PATH [16]). However, in his approach, the model is fed

with random crops (235 x 235 px) of the WSIs patches.

Thus, it loses some relevant spatial information about the

focus (e.g. when exists in the same patch focus and defocus

zones).

This comparison of metrics between our proposed

method and the literature works is presented in Table 5.

Table 5. Comparison of our proposal with literature models

SRCC PLCC Time (sec)

MLV [2] 0.8623 0.8528 0.482

FQPATH [16] 0.8395 0.8295 0.269

FOCUSLITENN [37] 0.8931 0.8857 0.019

Proposal 0.9969 0.9970 0.047

7. Conclusions and Future Work

Comparing the different deep learning approaches on

WSIs patches, the models trained with ordinal losses

achieved better results when comparing with the nominal

cross-entropy loss. Thus, a new model has been proposed

for multi-class FQA in WSIs based on convolutional neural

networks and respecting the ordinal progression among the

different focus levels. The model was trained in a dataset

with several color spectrums and tissue structures, these fac-

tors contributed to a robust training of the model. This new

model demonstrated to be competitive with state-of-the-art

results and surpass them in some metrics.

Furthermore, another important outcome is that those

data-driven methods obtained significantly better results

than knowledge-based methods in terms of precision and

performance.

For future works, since this model is a prototype of an

FQA system, the architecture should suffer some changes

and multi-processing must be used to reduce the processing

time per patch in a real-time acquisition system for WSIs.
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