Deep Packet Inspection as a Service

Anat Bremler-Barr
School of Computer Science
The Interdisciplinary Center

Herzliya, Israel
bremler@idc.ac.il

David Hay
School of Computer Science and Engineering
The Hebrew University
Jerusalem, Israel
dhay@cs.huji.ac.il

ABSTRACT

Middleboxes play a major role in contemporary networks, as for-
warding packets is often not enough to meet operator demands, and
other functionalities (such as security, QoS/QoE provisioning, and
load balancing) are required. Traffic is usually routed through a
sequence of such middleboxes, which either reside across the net-
work or in a single, consolidated location. Although middleboxes
provide a vast range of different capabilities, there are components
that are shared among many of them.

A task common to almost all middleboxes that deal with L7 pro-
tocols is Deep Packet Inspection (DPI). Today, traffic is inspected
from scratch by all the middleboxes on its route. In this paper, we
propose to treat DPI as a service to the middleboxes, implying that
traffic should be scanned only once, but against the data of all mid-
dleboxes that use the service. The DPI service then passes the scan
results to the appropriate middleboxes. Having DPI as a service has
significant advantages in performance, scalability, robustness, and
as a catalyst for innovation in the middlebox domain. Moreover,
technologies and solutions for current Software Defined Networks
(SDN) (e.g., SIMPLE [41]) make it feasible to implement such a
service and route traffic to and from its instances.

1. INTRODUCTION

Inspired by current suggestions for Network Function Virtualiza-
tion (NFV) and the flexible routing capabilities of Software Defined
Networks (SDN), this paper calls for finding common tasks among
middleboxes and offering these tasks as services.

Specifically, we focus on Deep Packet Inspection (DPI), where
the payload of packets is inspected against a set of patterns. DPI
is a common task in many middleboxes. A partial list is shown in
Table 1. In many of these devices, DPI is the most time-consuming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CoNEXT’ 14, December 02-05, 2014, Sydney, Australia.

Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2674984.

271

Yotam Harchol
School of Computer Science and Engineering
The Hebrew University
Jerusalem, Israel
yotamhc@cs.huji.ac.il

Yaron Koral
School of Computer Science and Engineering
The Hebrew University
Jerusalem, Israel
ykoral@princeton.edu

L2-L4 Tr.
FW Shaper
l | = Swi-

(a) Without DPI service: Multiple mid-
dleboxes perform DPI on packets.

L2-L4| |sivke| | IDS AV Tr.
FW Instance Shaper|
= g o =
&l ==

(b) With DPI service: Packets go through DPI
once.

Figure 1: Examples of the chain of middleboxes (a.k.a. policy
chains [41]) with and without DPI as a service.

task and it may take most of the middlebox processing time.! Thus,
great effort was invested over the years in optimizing it.

As detailed in [41], and referenced therein, traffic nowadays goes
through a chain of middleboxes before reaching its destination.
This implies that traffic is scanned over and over again by middle-
boxes with a DPI component [39] (see Figure 1(a)). Alternatively,
an opposite trend is to consolidate middleboxes in a single location
(or even a hardware device) [4,45]. However, the different compo-
nents of this consolidated middlebox perform DPI separately, from
scratch.

Our proposed framework extracts the DPI engine from the dif-
ferent middleboxes and provides it as a service for various mid-
dleboxes in the network. This service is provided by deploying
one or more service instances around the network, all controlled
by a logically-centralized DPI Controller. Thus, a packet in such
network would go through a single DPI service instance and then

In an experiment we conducted on Snort IDS [48], DPI slows
packet processing by a factor of at least 2.9.

IDS1 W|th DPI

IDS2 with DPI

(a) Without a DPI Service

DPI Service Instance

'b
\° (\('e

%

\ .---."I l---ll"
IDS1 IDS2
no DPI no DPI

DPI Service Instance

(b) With a DPI Service

Figure 2: Pipelined middlebox scenario. With DPI Service, resources are used for running multiple instances of the service while
middleboxes do not have to re-scan the packets.

IDS1 with DPI

(a) Without a DPI Service

DPI Service
Instance

_
K i c BN
o4
Sy
DPI Service IDS2
Instance no DPI

(b) With a DPI Service

Figure 3: An example of multiple service chains scenario. With DPI Service, flows are multiplexed to multiple DPI Service instances.
This allows dynamic load balancing on the DPI engines without adding middleboxes.

[Middlebox [| DPI patterns | Examples
Intrusion Detection Malicious SNORT [48],
System activity BRO [10]
AntiVirus/SPAM Malicious activity | ClamAV [12]

L7 Firewall Malicious Linux L7-filter,
activity ModSecurity [34]

L7 Load Balancing Apps/URLs F5[37], A10 [35]

Leakage Prevention || Leakage Check Point DLP [11]

System activity

Network Analytic Protocol IDs Qosmos [13]

Traffic Shaper Applications Blue Coat

PacketShapper [8]

Table 1: DPI in different types of middleboxes.

272

visit middleboxes according to its policy chain.? Its payload would
not have to be scanned again as the results of the scan are pro-
vided along with the original packet (or instead without the origi-
nal packet if the latter is not needed anymore).> Upon receiving the
results from the DPI Service, each middlebox applies the rules cor-
responding to the matched patterns according to its internal logic.
Figures 2 and 3 show two configurations for using DPI as a service.
We elaborate on these scenarios and provide their corresponding
experimental results in Section 6.4.

It is important to note that while fields in a packet header might
be modified along the path of the packet, the payload is usually
not changed, and thus, the DPI service may be used even in policy
chains that contain NATs and other middleboxes that modify header
fields.

Our approach is shown to provide superior performance and also
reduces the memory footprint of the DPI engine data-structures.
The framework also allows dynamic resource sharing as the hard-
ware used for DPI is decoupled from the specific middlebox, as
shown in Section 6.4. Since DPI is performed once, the effect of
decompression or decryption, which usually takes place prior to the
DPI phase, may be reduced significantly, as these heavy processes
are executed only once for each packet.

ZWe assume that patterns are either not proprietary or can be dis-
closed to our service over a secure channel.

3Section 4.2 discusses this mechanism in detail.

We believe that having DPI and other shared functionalities as
network services also creates necessary room for innovation in the
middlebox domain, which is usually closed and proprietary. For
example, when consolidating DPI to a single piece of software,
one might find it beneficial to implement more advanced DPI func-
tionalities, such as decryption and decompression, or use special
hardware accelerators.

Moreover, as a central component, security devices, and specifi-
cally their DPI engines, are a preferred target for denial-of-service
attacks [50]. Recent works show that DPI components within the
NIDS (such as Snort [48] and Bro [10]) expose the entire system to
attacks that may knock down the device [1]. Having DPI as a ser-
vice is especially appealing in this case, since a developer is now
focused on strengthening the DPI only at a single implementation,
rather than tailoring the security solution for each middlebox that
uses DPI. Furthermore, as most DPI solutions nowadays use soft-
ware, one can easily deploy more and more instances of the DPI to
servers across the network, and thus mitigate attacks and uninten-
tional failures.

Our contribution in this paper is two-fold. First, we detail a
framework in which DPI is deployed as a service, including an
algorithm that combines DPI patterns from different sources. Sec-
ond, we implemented in Mininet over OpenFlow an SDN system
that enables deploying DPI as a service. This includes both the DPI
service itself and the control components required for the service to
work correctly. We show via experiments that our framework pro-
vides performance improvements of 67% and more.

This paper is organized as follows: In Section 2 we discuss re-
lated work. Section 3 provides the necessary background on mid-
dlebox design and DPI. Our proposed system overview is described
in Section 4, and algorithmic aspects of how to perform DPI simul-
taneously for multiple middleboxes are discussed in Section 5. Ex-
perimental results are presented in Section 6. Finally, we conclude
in Section 7.

2. RELATED WORK
2.1 Middlebox Design

Over the last few years, much effort was invested in redesign-
ing middlebox architecture. In this section, we go over some new
directions in this field, highlight the deficiencies they intended to
solve, and compare them with our work.

Forwarding traffic through policy chains: In traditional networks,
middleboxes are placed at strategic places along the traffic path, de-
termined by the network topology; traffic goes through the middle-
boxes as dictated by the regular routing mechanism. SDN makes
it possible to perform traffic steering, where routing through a chain
of middleboxes is determined using middlebox-specific routing con-
siderations that might differ significantly from traditional routing
schemes. Our paper uses this flexibility, as was shown in [41], to
route traffic to a DPI service when needed.

Virtualizing network functionalities: Recently, telecommunica-
tion vendors launched the Network Functions Virtualization (NFV)
initiative [16] that aims to virtualize network appliances at the oper-
ator. The main objective of NFV is to reduce the operational costs
of these appliances (which are traditionally implemented in middle-
boxes) by obtaining the same functionality in software that runs on
commodity servers. NFV provides easier management and mainte-
nance by eliminating the need to deal with multiple hardware types
and vendors; moreover, as NFV is implemented in software, it pro-
motes innovation in this domain. DPI is a significant example of an
appliance or functionality that may be virtualized [16].

273

There are several pioneer works on middlebox virtualization.
Rajagopalan et al. [44] present a mechanism to place a middlebox,
such as the Bro NIDS, in a virtual environment, where the VM
might migrate between different machines. Gember et al. [23] deal
with standardization of unified control to middleboxes, inspired by
the SDN paradigm. Nevertheless, virtualizing middleboxes raises
several issues that should be carefully dealt with, such as efficient
fault tolerance [26], availability [43], and management [22]. Our
work mostly addresses algorithmic aspects of virtualized DPI, which
are orthogonal to these works.

Middlebox consolidation and programmability: A different ap-
proach to tackle the problem raised by managing multiple middle-
boxes is to offer a consolidated solution [4, 14,25,45] consisting of
a single hardware, possibly programmable, that consolidates mul-
tiple logical middleboxes. DPI as a service may complement such
consolidated architectures to improve the overall performance, ei-
ther by extracting the DPI engine from these boxes to a virtual ser-
vice, or by using our algorithm to merge multiple DPI engines and
utilize shared hardware better. Note that in such a case, several
parts of our framework (such as message passing and routing be-
tween middleboxes) may be eliminated.

Outsourcing middlebox functionality: To reduce the high equip-
ment and operating costs of middleboxes, several works proposed
outsourcing middlebox functionalities [24,47] as a service [17] pro-
vided by an entity outside the network. Note that our suggestion is
that the DPI, as a critical building block, will be a service for the
middleboxes but would be placed in the same network.

2.2 Deep Packet Inspection

The classical algorithms for exact multiple string matching used
for DPI are those of Aho-Corasick [2] and Wu-Manber [51]. For
regular expression matching, two common solutions are using De-
terministic Finite Automata (DFA) or Nondeterministic Finite Au-
tomata (NFA) [6,28]. Efficient regular expression matching is still
an active area of research [7, 19,28,29,52].

There is extensive research on accelerating the DPI process, both
in hardware [5, 15, 33] and in software [19,28]. Most software-
based solutions [19, 28] accelerate the DPI process by optimizing
its underlying data structure (namely, its DFA). To the best of our
knowledge, no specific design for accelerating DPI in a virtual,
consolidated, or NFV environment has been proposed. The only
exception is an industrial product of QOSMOS [13], which spe-
cializes in protocol classification and does not deal with the gen-
eral DPI problem. Moreover, no details are disclosed on its im-
plementation. DPI optimization and acceleration are orthogonal to
this work, as they may be applied as a part of the DPI service, for
further acceleration. Multicore optimization may also benefit from
having DPI as a service, as instead of splitting the work between
cores, it may be split among instances running over different ma-
chines.

We are not aware of any work directly performed on combining
the data of several middleboxes’ DPI to a single service. However,
a similar concept was studied in the context of virtual IP-lookup,
where trie-based data structures are considered [21, 31,49]. This
research is not applicable to DPI as the underlying algorithms are
significantly different.

3. BACKGROUND

DPI lies at the core of many middlebox applications (see Ta-
ble 1), and is based on pattern matching, in which the payload
of the packet is compared against a predetermined set of patterns
(with either strings or regular expressions).

Figure 4: The Aho-Corasick Automata corresponding
to the pattern sets {E,BE,BD,BCD,BCAA,CDBCAB} and
{EDAE,BE,CDBA,CBD}. Solid edges are forward transitions
while dashed edges are other transitions. Non-forward transi-
tions to DFA depths 0 and 1 are omitted for brevity.

String matching is an essential building block of most contem-
porary DPI engines. In many implementations (such as Snort [48]
and our own implementation, discussed in Section 5), even if most
patterns are regular expressions, string matching is performed first
(namely, as a pre-filter) and constitutes most of the work performed
by the engine. Specifically, Snort extracts the strings that appeared
in the regular expressions (called anchors). Then, string matching
is performed over these anchors, and if all anchors originating from
a specific regular expression are matched, then a regular expression
matching of the corresponding expression is performed (e.g., using
PCRE [38]).

This is a common procedure since regular expression engines
work inefficiently on a large number of expressions. The afore-
mentioned DFA solutions suffer from memory explosion especially
when combining a few expressions into a single data structure,
while the NFA solutions suffer from lower performance due to mul-
tiple active state computation for each state transition. Efficient
regular expression matching is still an active area of research. Any
future novel regular expression matching algorithm may easily be
incorporated into our system.

The Aho-Corasick (AC) algorithm [2] is the de-facto standard
for contemporary network intrusion detection systems (NIDS). It
matches multiple strings simultaneously by first constructing a DFA
that represents the pattern set (also known as signature set); then,
with this DFA at its disposal, the algorithm scans the text in a single
pass.

The DFA construction is done in two phases. First, a tree of the
strings is built, where strings are added one by one from the root as
chains (each node in the tree corresponds to a DFA state). When
patterns share a common prefix, they also share the corresponding
set of states in the tree. The edges of the first phase are called
forward transitions. In the second phase, additional edges deal with
situations where, given an input symbol b and a state s, there is no
forward transition from s using b. Let the label of a state s, denoted
by L(s), be the concatenation of symbols along the path (of forward
transition) from the root to s. Furthermore, let the depth of a state s
be the length of the label L(s). The transition from s given symbol b
is to a state 5’, whose label L(s") is the longest suffix of L(s)b among
all other DFA states. For example, Figure 4 depicts two DFAs that
were constructed for pattern sets {E,BE,BD,BCD,BCAA,CDBCAB}
and { EDAE,BE,CDBA,CBD}.

The DFA is traversed starting from the root. Traversing to an
accepting state indicates that some patterns are a suffix of the in-

274

Traffic Steering
Application

Middlebox Chain
L2L4_FW-DPI3-IDS1

Policy Chain
. | L2L4_FW-DPI-IDS

Physical Sequence
S1S3 L2L4_FW S3 S2 DPI3 S2 S3 IDS1 S3 S4

o

. | DPI-IDS-AV-TS DPI3-IDS2-AVI-TS S1S2 DPI3 S2 S4 IDS2 S4 S2 AV1 S2 TS S2 S4

Figure 5: System Illustration. The DPI controller abstracts the
DPI process to other network elements and controls DPI service
instances across the network. Packets flow through the network
as dictated by policy chains.

put; one of these patterns always corresponds to the label of the
accepting state.

4. SYSTEM OVERVIEW

This section details the underlying architecture that supports DPI
as a service. The main idea is to insert the DPI service in the mid-
dlebox chain prior to any middlebox that requires DPI. The DPI
service scans the packet and logs all detected patterns as meta-data
to the packet. As the packet is forwarded, each middlebox on its
route retrieves the DPI scan results instead of performing the costly
DPI task. We assume an SDN environment with a Traffic Steering
Application (TSA) (e.g., SIMPLE [41]) that attaches policy chains
to packets and routes the packets appropriately across the network.
Naturally, our solution will negotiate with the TSA, so that policy
chains are changed to include DPI as a service (see Figure 1).

4.1 The DPI Controller

DPI service scalability is important since DPI is considered a
bottleneck for many types of middleboxes. Therefore, we envision
that DPI service instances will be deployed across the network. The
DPI controller is alogically centralized entity whose role is to man-
age the DPI process across the network and to communicate both
with the SDN controller and the TSA to realize the appropriate data
plane actions. Logically, the DPI controller resides at the SDN ap-
plication layer on top of the SDN controller as in Figure 5.

Two kinds of procedures take place between the DPI Controller
and the middleboxes, namely: registration and pattern set manage-
ment. The first task of the DPI controller is to register middleboxes
that use its service. Communication between the DPI Controller

and middleboxes is performed using JSON messages sent over a di-
rect (possibly secure) communication channel. Specifically, a mid-
dlebox registers itself to the DPI service using a registration mes-
sage . The DPI Controller address and the middlebox’s unique ID
and name are preconfigured (we have not deployed any bootstrap
procedures at the current stage). A middlebox may inherit the pat-
tern set of an already registered middlebox. A middlebox may state
that the DPI service it requires should maintain their state across the
packet boundaries of a flow, or that it operates in a read-only mode,
in which it performs no actions at the packet itself and it therefore
requires receiving only pattern matching results and may avoid un-
necessary routing of the packet itself. An IDS is an example of a
read-only middlebox as opposed to an IPS, which performs actions
over the packets.

Abstractly, middleboxes operate by rules that contain actions,
and conditions that should be satisfied to activate the actions. Some
of the conditions are based on patterns in the packet’s content. The
DPI service responsibility is only to indicate appearances of pat-
terns, while resolving the logic behind a condition and perform-
ing the action itself is the middlebox’s responsibility. Patterns are
added to and removed from the DPI controller using dedicated
messages from middleboxes to the controller. The DPI Controller
maintains a global pattern set with its own internal IDs. If two mid-
dleboxes register the same pattern (since each one of them has a
rule that depends on this pattern), it keeps track of each of the rule
IDs reported by each middlebox and associates them with its inter-
nal ID. For that reason, when a pattern removal request is received,
the DPI Controller removes the middlebox reference to the corre-
sponding pattern. Only if there are no other middleboxes referrals
to that pattern, is it removed.

One concern is the traffic incurred by transmitting the pattern
sets. However, as opposed to DPI DFAs, which are large, the pat-
tern sets themselves are compact: Recent versions of pattern sets
such as Bro or L7-Filter are 12KB and 14KB, respectively. Larger
pattern sets such as Snort or ClamAV are 2MB and 5MB, respec-
tively. Still, if the patterns are compressed, their size is no more
than two megabytes (55KB and 2MB, respectively). The construc-
tion of the data structure that represents the patterns is the respon-
sibility of the DPI instance, and therefore does not involve commu-
nication over the network.

The DPI controller also receives from the TSA the relevant pol-
icy chains (namely, all the sequences of middlebox types a packet
should traverse). It assigns each policy chain a unique identifier
that is used later by the DPI service instances to indicate which pat-
tern matching should be performed. Usually, the TSA pushes some
VLAN or MPLS tag in front of the packet to easily steer it over
the network ([41]). DPI service instances can then read these tags
in order to identify the set of patterns a packet should be matched
against. In case this tag is not available, the DPI controller can push
such a tag, for example using an OpenFlow directive.

Finally, the DPI controller is also responsible for initializing DPI
service instances (see Section 5.1), deployment of different DPI
service instances across the network (see Section 4.3), and advance
features that require a network-wide view (e.g., as described in Sec-
tion 4.3.1).

4.2 Passing Pattern Matching Results

Passing the pattern matches results to the middleboxes should
take into account the following three considerations: First, it should
be oblivious to the switches and not interfere with forwarding the
packet through the chain of middleboxes and then to its destination.
Second, the meta-data is of a variable size as the number of matches
varies and is not known in advance. Third, the process should be

275

oblivious to the middleboxes (and hosts) that are not aware of the
DPI service. Having these considerations in mind, we suggest three
solutions that may suit different network conditions:

e Adding match result information as an additional layer of
information prior to the packet’s payload. This allows max-
imal flexibility and the best performance. Publicly available
frameworks such as Network Service Header (NSH) [42] and
Cisco’s vPath [46] may be used to encapsulate match data,
also in an SDN setting [27]. Several commercial vendors
support this method in service chain scenarios (e.g. Qos-
mos [13]). The downside of this approach is that middle-
boxes that refer to the payload on the service chain should be
aware of this additional layer of information. However, if all
middleboxes that use the DPI service are grouped and placed
right after the DPI service instance in the service chain, the
last middlebox can simply remove this layer and forward the
original packet.

e An option that does not require reordering of service chains
relies on using some flexible pushing and pulling of tags
(e.g., MPLS labels, VLAN tags, PBB tags). This method
is supported in current OpenFlow-based SDN networks [20].
A similar alternative is to use the FlowTags mechanism [18].
The downside of the tagging option is that it might be messy
as each matching result may require several such tags, which
in turn must not collide with other tags used in the system.

e When middleboxes on the service chain are all in read-only
mode, where the middlebox requires only the DPI results
rather than the packet itself, it may be appealing to send only
the match results using a dedicated packet without the packet
itself. As most packets do not contain matches at all, this
option may dramatically reduce traffic load over the middle-
box service chain. For example, in Big Switch Networks’
Big Tap [36] fabric, the traffic is tapped from production net-
works to a separate monitoring network, where monitoring is
done while the original packet is forwarded at the production
network regardless of the monitoring results.

In all three options one may use a single bit in the header to
mark whether patterns were matched. Specifically, a packet with
no matches is always forwarded as is without any modification.

As our experimental environment is based on Mininet over Open-
Flow 1.0, which supports neither NSH nor MPLS, in our imple-
mentation we passed the matching results using dedicated packets.

4.3 Deployment of DPI Service Instances

The DPI controller abstracts the DPI service for the TSA, SDN
controller, and the middleboxes. Hence, one of its most impor-
tant tasks is to deploy the DPI instances across the network. There
might be many considerations for such deployment and in this sec-
tion we discuss only a few.

First, we emphasize that not all DPI instances need to be the
same. Thus, a common deployment choice is to group together
similar policy chains and to deploy instances that support only one
group and not all the policy chains in the system. The DPI con-
troller will then instruct the TSA to send the traffic to the right in-
stance. Alternatively, one might group the middlebox types by the
traffic they inspect. For example, sets of patterns that correspond
to HTTP traffic may be allocated to some DPI service instances,
while a set of patterns that corresponds to FTP is allocated to other
DPI service instances.

Additionally, the DPI controller should manage the DPI instance
resources, so that an instance is not overwhelmed by traffic, and

therefore, performs poorly. Thus, the DPI controller should col-
lect performance metrics from the working DPI instances and may
decide to allocate more instances, to remove service instances, or
to migrate flows between instances. This should be done exactly
in the same manner as suggested in [44]. Notice that, in general,
performing operations on the DPI service instances rather than the
middleboxes themselves is easier as most of the flow’s state is typi-
cally kept within the middlebox, while the DPI instance keeps only
the current DFA state and an offset within the packet.* Finally,
we note that allocation, de-allocation, and migration affect the way
packets are forwarded in the network. Thus, the DPI controller
should collaborate with the TSA (and the SDN controller) to real-
ize the changes and take into account other network considerations
(such as bandwidth and delay).

The ability to dynamically control the DPI service instances and
to scale out provides the DPI controller great flexibility, which can
be used for powerful operations. Section 4.3.1 shows how this abil-
ity is used to enhance the robustness of the DPI service and its per-
formance.

4.3.1 Enhancing Robustness and Security

DPI engines, as a core building block of many security appli-
ances, are known to be the target of attacks [1,32]. A recently-
suggested architecture, called MCA? [1], mitigates such attacks by
deploying several copies of DPI engines over multiple cores of the
same machine. The key operation of MCAZ? is to detect and isolate
the heavy packets that cause the degraded performance, and divert
them to a dedicated set of cores. Moreover, the dedicated cores
may run a different AC implementation (other than the full-table
AC described in Section 3) that is more suitable for handling this
kind of traffic (see [1,9] for more details).

MCA? can be implemented as-is in each DPI service instance,
provided it runs on a multi-core machine. In addition, our architec-
ture may implement MCAZ2, while scaling out to many DPI service
instances. As in the original MCA? design, each DPI service in-
stance should perform ongoing monitoring and export telemetries
that might indicate attack attempts. In the MCA? design, these
telemetries are sent to a central stress monitor entity. Here, the DPI
controller, described in Section 4.1, takes over this role. This is il-
lustrated in Figure 6: Under normal traffic, all DPI service instances
work regularly. Whenever the DPI controller detects an attack on
one of the instances, it sets some of the instances as ‘dedicated’,
and migrates the heavy flows, which are suspected to be malicious,
to those dedicated DPI instances (these instances might also use
a different DPI algorithm that is tailored for heavy traffic). Flow
migration is performed as described in Section 4.3, and requires
close cooperation with the traffic steering application. Moreover,
dedicated DPI instances can be dynamically allocated as an attack
becomes more intense, or deallocated as its significance decreases.

S. DPI SERVICE INSTANCE IMPLEMEN-
TATION

This section describes the implementation of a DPI service in-
stance. At the core of the implementation, we present a virtual
DPI algorithm that handles multiple pattern sets. We first focus on
string matching and then extend it to handle regular expressions.

5.1 [Initialization

We first show how to combine multiple pattern sets, originating

#Notice that flow migration might require some packet buffering at
the source instance, until the process is completed.

276

== Data flows

Telemetries / Controller Directives

== Flow migration

Traffic

DPI
Steering Controller”

DPI Service
I Instance #1

DPI Service
Instance #10"

Figure 6: MCA? system design for virtual DPI environment.

from different middleboxes such that each packet is scanned only
once.

Each middlebox type has a unique identifier and it registers its
own pattern set with the DPI controller (see details in Section 4).
As the DPI controller is a logically-centralized entity that allocates
the identifiers, we may assume identifiers are sequential numbers
in {1,...,n}, where n is the number of middlebox types registered
to the DPI service. Let P; be the pattern set of middlebox type i.

Upon instantiation, the DPI controller passes to the DPI instance
the pattern sets and the corresponding middlebox identifiers. Along
with these sets, the DPI controller may pass additional informa-
tion, such as a stopping condition for each middlebox (namely, how
deep into L7 payload the DPI instance should look>), or whether
the middlebox is stateless (scans each packet separately) or state-
ful (considers the entire flow, and therefore, should carry the state
of the scan between successive packets). Moreover, the DPI con-
troller passes the mapping between policy chain identifiers and the
corresponding middlebox identifiers in the chain.

Our simple algorithm works in two steps. First, we construct
the AC automaton as if the pattern set was |J; P;. Note that the
number of accepting states in the resulting DFA, denoted by f, is
|U; Pi], as there is an accepting state for each pattern, no matter
whether it originates in one or more middlebox. Further note that
the state identifier in the DFA is meaningless; we use this degree of
freedom and map the identifiers of the accepting states to the range
{0,..., f}; this will make the resolution stage for matched patterns
more efficient in terms of time and space.

The second step is to determine, for each accepting state, which
middleboxes have registered the pattern and what the identifier of
the pattern is within the middlebox pattern set. This is done by
storing a pre-computed direct-access array match of f entries such

5The stopping condition is useful, for example, when middleboxes
only care about specific application-layer headers with a fixed or
bounded length.

match table
(0,E)
(0,E),(1,EDAE)
(0,E), (0, BE), (1,BE)
(0,BD)
(0, BEAA)
(0,BCD)
(0,CDBCAB)
0,BD),(1,CBD)
{1,CDBA)

PN B W — O

O Pattern set 1
O Pattern set 2
O Both sets

Figure 7: The DFA and match table for Py = {E,BE,BD,BCD,
BCAA,CDBCAB} and P; = {EDAE,BE,CDBA,CBD} (as in Fig-
ure 4). States common to both sets are marked in gray. White
accepting states are marked with bitmap 10, gray accepting
states with bitmap 01, and striped accepting states with bitmap
11. Non-forward transitions to sy, 50,59, and s13 are omitted
for brevity.

that its ith entry holds the information corresponding to the pattern
of accepting state i, as a sorted list of (middlebox id, pattern id)
pairs. It is important to note that if we have a pattern i (e.g., DEF)
that is a suffix of another pattern j (e.g., ABCDEF), we should add

all the pairs corresponding to pattern i also to the jth entry.

Furthermore, traditional DFA implementations mark accepting
state using one bit; when n is relatively small, it is beneficial to
mark the accepting state by a bitmap of the middlebox identifiers
in its corresponding list; in such a case, a simple bitwise-AND op-
eration can indicate if we need to check the table at all, or may
continue scanning the packets, since the matching pattern is not
relevant to the packet. In our implementation, it is also possible to
check whether the state ID is less than a predefined constant whose
value is the number of accepting states in the automaton.

An example of the resulting DFA and the match table is depicted
in Figure 7.

We also store in a separate table the mapping between a pol-
icy chain identifier and the corresponding middlebox identifiers.
Another table holds the mapping between a middlebox identifier
and its properties (namely, its stopping condition and whether it is
stateless or stateful). Finally, if at least one of the middleboxes is
stateful, we will initialize an empty data structure of active ﬂows,6
which will hold the state and offset of scans done on that flow up
until now.

5.2 Packet Inspection

Packets should be compared with several (but, in general, not
all) pattern sets. The relevant identifiers for pattern set selection
are marked at the packet header (as explained in Section 4.1), and
the DPI service uses them to determine which pattern sets apply
to each packet. Hence, upon packet arrival, the DPI service first
resolves (using the mapping saved in the initialization phase) what
the relevant middlebox identifiers are (we shall call them the active
middleboxes for the packet). Moreover, the stopping condition for

5The set of active flows is maintained in the same manner as for
stateful middleboxes today, and is outside the scope of this paper.

277

the packet is determined as the most conservative condition among
all active middleboxes and an empty match-list for each active mid-
dlebox is initialized, as well as a global counter variable cnt (which
counts the number of bytes scanned so far). When r is sufficiently
small, a bitmap of size n is constructed such that the ith bit is set if
and only if middlebox i is active.

Finally, if the packet is part of a flow that has already been
scanned, its DFA state is restored. The offset of the packet within
the flow is stored in another variable, called offset (in case of
stateless scan, offset=0).

Then, the packet is scanned against the combined DFA, while
maintaining the value of cnt. When reaching an accepting state j,
the bitmap of the packet is compared against the bitmap stored at
the state; if a match is found then all pattern identifiers correspond-
ing to active middleboxes inmatch | j] are added to the correspond-
ing match-lists, along with the value of cnt. In the end of the scan,
irrelevant matches are deleted from the match-lists: For stateful
active middleboxes, a match is deleted if the value of cnt+offset
exceeds the stopping condition of the specific middlebox. For state-
less middleboxes, in which the packet scan should have started at
Sgtart but instead started at the restored state for the stateful middle-
boxes, we delete patterns whose length is smaller than their value
of cnt, 7 as well as patterns whose stopping condition is smaller
than the value of cnt.

After the packet scan is finished, the match-lists are sent to the
corresponding active middleboxes as described in Section 4; along
with the pattern identifier, we pass the value of either cnt (for state-
less middleboxes) or cnt+offset (for stateful middleboxes). If at
least one active middlebox is stateful, the state of the DFA in the
end of the scan is recorded and offset is incremented by cnt.

5.3 Dealing with Regular Expressions

As explained in Section 3, we take an approach similar to the one
implemented in Snort NIDS and use a string matching process as
pre-filtering for regular expression matching. Specifically, for each
regular expression, we first extract sufficiently long strings (which
we call anchors) from each regular expression. These anchors must
be matched for the entire regular expression to be matched. Short
strings of length less than 4 characters are not extracted. For exam-
ple, in the regular expression “regular\s*expression\s*\d+”,
the anchors “reqgular” and “expression” are extracted. We add
the anchors extracted from the regular expressions of middlebox i
to pattern set P;. In addition, we hold a mapping between the reg-
ular expression and its anchors. The packet is scanned as before
(with the DFA obtained by the new pattern set). Upon completion,
we check if there are regular expressions of an active middlebox
for which all anchors were found. If there are, an off-the-shelf reg-
ular expression engine (e.g., PCRE [38]) is invoked on these reg-
ular expressions (one by one). Otherwise, no further operation is
needed. Note that ideally, if a regular expression can be matched
by only relying on its anchors, it is recommended to add it as an
exact string matching rule rather than as a regular expression. In
Snort, for example, 57% of the rules are regular expression rules,
99.7% of which invoke PCRE only if all of its underlying anchors
were matched. The remaining 0.3% rules could have been written
as exact string matching rules at the first place.

Finally, we note that sometimes there are middleboxes whose
regular expressions contain almost no anchors (or, alternatively,
very short anchors). In such a case, we use a regular expression

"This implies that the pattern has started in the previous packet,
and therefore should be ignored in a stateless DPI

matching algorithm (e.g., as suggested in [28] and references therein),

and run it in parallel to our string matching algorithm.

6. EXPERIMENTAL RESULTS

In this section we evaluate the feasibility and performance of our
virtual DPI algorithm.

6.1 Implementation

We implemented a complete system with a simple controller and
tested it inside a Mininet [30] virtual machine. The code is avail-
able at https://github.com/DeepnessLab/moly. Our basic ex-
perimental topology includes two user hosts, two middlebox hosts,
and a DPI service instance host that can utilize multiple cores. All
hosts are connected through a single switch and the TSA, imple-
mented as a POX [40] module, steering traffic from one user host
to the other according to the defined policy chains.

Our experimental DPI service instance receives match rules in
JSON format and builds an AC DFA as described in Section 5. If a
packet matches one or more rules, the DPI service instance marks
it so that middleboxes will know it has matches (we use the IP ECN
field for this purpose) and constructs a result packet that is sent right
after the marked data packet.

We decided to send match information in our experiments as a
separate packet since POX only implements OpenFlow version 1.0,
which does not support the other methods suggested in Section 4.2.
We also find it easier to debug and trace.

In addition, we implemented a sample virtual middlebox appli-
cation that receives traffic from the DPI service instance and if
necessary, buffers packets until their corresponding results or data
packet arrives. This sample implementation only counts the total
number of rules that were reported to it.

We compare our design to a system where middleboxes perform
DPI and counting of rules (and possibly much more). To do so, we
also implement an application that does both and use it as a baseline
for comparison.

In the URL above we also provide a prototype implementation
for a Snort 2.9.6.2 plugin that parses DPI Service results instead
of scanning the packets using Snort’s traditional pattern matching
engines. The plugin itself requires less than 100 lines of code and
in order to use it, only six lines of code were added to existing
Snort code files, in addition to our plugin files. A similar plugin
can be written for other software middleboxes with the appropriate
adaptations for the internals of each middlebox’s DPI module.

6.2 Experimental Environment

Experiments were performed on a machine with Intel Sandy-
bridge Core 17 2600 CPU, quad-core, each core having two hard-
ware threads, 32 KB L1 data cache (per core), 256 KB L2 cache
(per core), and 8 MB L3 cache (shared among cores). The system
runs Linux Ubuntu 11.10, on which we run one or more instances
of a Linux Ubuntu virtual machine using VMWare Player. We
use exact-match patterns of length eight characters or more from
Snort [48] (up to 4,356 patterns) and Clam-AV [12] (31,827 pat-
terns). As input traffic we used two traces: a campus wireless net-
work tapped trace of about 9GB, and a 170MB HTTP traffic trace
crawled from most popular websites [3]%. Our code provided com-
parable results on both traces and thus, unless specifically noted,
results shown are of the second trace.

Note that we did not use Mininet for performance testing as it
incurs major overheads and we found the variance between results

8This trace contains various website data such as HTML,
JavaScript, images, etc. In some cases we repeated the trace to
create a longer experiment.

278

2500

T : :
—e— Stand-alone machine
- * -Single VM
a0\ —4--4 VMs (average)
2000f o
\

15001

o

S

=]
T

Throughput [Mbps]

500

3000 4000 5000 6000

Number of patterns

0 1000 2000 7000

Figure 8: The effect of virtualization and number of patterns
on the throughput of the AC algorithm.

| Sets |[Patterns | Space | Throughput |
Snortl 2169 36.73 MB | 981 Mbps
Snort2 2187 37.69 MB 931 Mbps
Snortl+Snort2 4356 71.18 MB | 768 Mbps

Table 2: Comparing the performance of two middleboxes, one
running on pattern sets of Snortl and the other on pattern sets
of Snort2, to one virtual DPI instance with the combined pat-
tern sets of Snortl and Snort2.

to be too high. We verified our solution in Mininet and then tested
each component by feeding it with the appropriate traffic and mea-
suring its performance.

6.3 Virtual DPI Performance

As a first step, we evaluate the impact of the virtualization envi-
ronment on DPI in order to ensure that DPI is suitable to run as a
VM. This test is done on the original AC algorithm (and not our vir-
tual DPI algorithm). We run three different scenarios: first, when
the DPI runs on a stand-alone machine; second, when the DPI runs
on a VM while the other cores are idle; third, when four instances
of the DPI are running, each of them on a separate VM that uses
a separate core (such that they occupy all cores of the machine),
and throughput is calculated as the average throughput of the four
cores. The tests were done for different numbers of patterns. Figure
8 shows that virtualization has a minor impact on DFA throughput.
The number of patterns has a major impact. From here on, we will
focus on running our virtual DPI algorithm as an instance, where
the instance runs on a VM in all our experiments.

In addition to the virtual DPI instance, we always have one or
more instances of a virtual middlebox application that receives the
results from the DPI instances, counts and reports them. In our
experiments, these applications operate much faster than the vir-
tual DPI instances and thus are not a bottleneck in the system. For
this reason, the overhead of buffering and reordering packets in
these applications do not impose significant delays or any through-
put degradation.

6.4 Comparison to Different Middlebox Con-
figurations
Next, we check and evaluate the benefit of our algorithm. In

order to evaluate the savings of our mechanism, we took the pat-
terns of Snort and randomly divided them into two sets, Snortl

3500

—=— Two Virtual DPI Instances (combined DP

3000+ —e— Two Separate Middleboxes |

25001]

2000 1

15007 ®~_ 1

Throughput [Mbps]

5001 1

2000 3000 4000 5000 6000 7000 8000 9000
Total number of patterns

(a) Snortl and Snort2

2500 T T T
—=— Two Virtual DPI Instances (combined DP
—e— Two Separate Middleboxes
20001 1
‘o
&
S 15007 1
5
[}
<
(=2
3 1000} 1
<
=
500+ 1
0 . . .
0 1 2 3 4

Total number of patterns

(b) Full Snort and ClamAV

x 10

Figure 9: Comparing the throughput that can be handled by two pipelined middleboxes, and by our Virtual DPI.

20001

—— Virtual DPI Throughput RegionJ
n

18001 - - - - Separate DPI Throughput Regi

1600
1400
1200
1000
800
600

400 !

Maximal Throughput of Snort2 [Mbps]

200

0 500 1000 1500 2000

Maximal Throughput of Snort1 [Mbps]
(a) Snortl and Snort2

20001
1800
1600

— Virtual DPI Throughput Region
- - - - Separate DPI Throughput Region

14001
1200
1000
800
600
400

Maximal Throughput of ClamAV [Mbps]

200

0 500 1000 1500 2000

Maximal Throughput of Snort [Mbps]
(b) Full Snort and ClamAV

Figure 10: Actual achievable throughput for two separate middleboxes that handle different traffic (see red, dashed rectangle),
compared to the theoretical achievable throughput of our combined instances of virtual DPI (see blue, solid triangle).

and Snort2, simulating a configuration where we have two stand-
alone middleboxes, Snortl and Snort2. Table 2 shows the space
requirement and throughput of each of the middleboxes when us-
ing a regular DPI process, compared with a single virtual DPI that
runs the DPI for the combined set of patterns Snort! and Snort2.
The throughput of the combined machine is just 12% less than that
of each separate machine. As we previously showed, this is mainly
due to the impact of the number of patterns.

To understand the gain from the virtual DPI, we simulate two
scenarios: in the first scenario, shown in Figure 2, traffic should
go through a pipeline of two middleboxes, one with pattern set A
and the other with pattern set B (for example, Snort! and Snort2, or
full Snort and ClamAYV). In the second scenario, shown in Figure 3
there are two service chains, for example for two types of traffic:
one should be handled by a middlebox with pattern set A and the
other by a middlebox with pattern set B. In both cases we compare
the naive solution of two instances, where each instance runs the
DPI with different sets of patterns (A or B), to the case of using two
instances of our virtual DPI solution.

Figure 9 shows the throughput in the first scenario and compares
it to a setup of two virtual DPI instances that run on both machines
simultaneously, where the load is equally distributed between them.

279

It is clear that our virtual DPI solution is at least 86% faster in the
first case, and more than 67% faster in the second case.

Figure 10 evaluates the savings in the second scenario. The
dashed rectangle is the actual achieved throughput region of traf-
fic that the naive DPI solution can handle, given that each pattern
set is handled by a single middlebox. The triangle is the theoreti-
cal achievable throughput region that our virtual DPI solution can
handle, given that both machines run our virtual DPI, based on the
actual achieved throughput in our experiments.

Consider two such middleboxes as appear in Figure 10(a). The
motivation to use virtual DPI in this scenario is that most of the time
not all middleboxes handle full load, and thus combined virtual DPI
machines could make use of free resources from one middlebox to
provide higher capacity for another middlebox. This can be seen
in the figure as the areas inside the triangle but outside the rectan-
gle. For example, in Figure 10(b), if Snort is under-utilized and
Clam-AV faces high load, Clam-AV could actually exceed 100%
of its original capacity without adding more resources (see blue tri-
angular area above the red rectangle), and the same is true for the
opposite situation where Clam-AV is under-utilized and Snort is
over-utilized.

Since the DPI is now a service, additional throughput can be
gained by deploying additional virtual DPI instances. This can be

90

80

70F

60

501

401

Edy

20

Cumulative percentage of non-empty results [%]

L L L
500 600 700

.
200 00 0 800
Result size [bytes]

Figure 11: Cumulative distribution of non-empty match report
size per packet.

done dynamically as it only requires starting another virtual ma-
chine and steering some of the traffic to it. Moreover, DPI service
instances can be quickly migrated to specific points in the network
to handle transient loads in specific areas.

6.5 Analysis of Match Report Size

A single match can be reported with up to 4 bytes. Occasionally,
when a pattern consists of the same character one or more times,
and this character appears in a packet multiple times sequentially,
multiple matches of the same pattern (or set of patterns) should
be reported. For these cases we also allow reporting ranges of
matches, with a given starting position and length. Such ranges
can be reported with up to 6 bytes.

Figure 11 shows the cumulative distribution of non-empty match
reports in the campus network trace, when using 6 bytes per match
report (to allow faster encoding and decoding of both regular and
range reports). Note that in both traces we used, more than 90% of
the packets have no matches, but the figure refers only to packets
that do have matches. The average report size is 34 bytes, while
most of the packets are smaller than that, and only 1% of the reports
are above 120 bytes.

7. CONCLUSIONS

Middleboxes and monitoring tools have been known as closed,
expensive and hard-to-manage boxes, though very widely deployed
in all kinds of networks due to their important roles.

Virtualization, NFV, and SDN promise a revolution in the way
middleboxes and monitoring tools are designed and managed. Many
monitoring applications share a wide range of common tasks. We
believe that these tasks should be provided as services, managed
by a logically-centralized control, to allow enhanced performance,
lower costs, flexible and scalable design, and easy innovation for
monitoring applications.

This paper focuses on Deep Packet Inspection, which is one
of the heaviest tasks of contemporary middleboxes. We design a
framework for making DPI a service: each packet that requires a
DPI by any of the middleboxes on its policy chain is forwarded
to the DPI service, where it is inspected only once. Then, the in-
spection results (namely, the patterns that were matched) are com-
municated to the corresponding middleboxes, either on the same
packet (e.g., using NSH) or on a different packet. Our framework
relies heavily on virtualization and therefore includes both a vir-
tual DPI service, which is instantiated across the network, and a

280

DPI controller, whose role is to orchestrate the different DPI ser-
vice instances. Making DPI a service has implications not only
for the architecture and the system design of a middlebox that uses
DPI, but also for the algorithmic aspects of the DPI engine (which
is implemented by the virtual DPI service) itself. Specifically, this
work presents one such tailor-made algorithm that benefits from the
flexibility of a virtual environment.

Finally, we provide an SDN implementation for our framework
and experiments to show that these ideas are realized into perfor-
mance improvements and much more flexible and scalable design.
In future work, we plan to investigate the possibility of also turning
other common tasks, such as flow tagging and session reconstruc-
tion, into services.

Acknowledgements

This work was supported by the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-
2013)/ERC Grant agreement no 259085, and by the Chief Scientist
Office of the Israeli Ministry of Industry, Trade and Labor within
the “Neptune” consortium.

8.
(1]

REFERENCES

Yehuda Afek, Anat Bremler-Barr, Yotam Harchol, David
Hay, and Yaron Koral. MCAZ: multi-core architecture for
mitigating complexity attacks. In ANCS, pages 235-246,
2012.

Alfred V. Aho and Margaret J. Corasick. Efficient string
matching: An aid to bibliographic search. Commun. of the
ACM, 18(6):333-340, 1975.

Alexa: The web information company, 2013.
http://www.alexa.com/topsites.

James W. Anderson, Ryan Braud, Rishi Kapoor, George
Porter, and Amin Vahdat. xXOMB: extensible open
middleboxes with commodity servers. In ANCS, pages
49-60, 2012.

Zachary K. Baker and Viktor K. Prasanna. Time and area
efficient pattern matching on FPGAs. In FPGA, pages
223-232,2004.

Michela Becchi and Patrick Crowley. A hybrid finite
automaton for practical deep packet inspection. In CoONEXT,
page 1, 2007.

Michela Becchi and Patrick Crowley. An improved algorithm
to accelerate regular expression evaluation. In ANCS, pages
145-154, 2007.

Blue coat packet shapper.
http://www.bluecoat.com/products/packetshaper.
Anat Bremler-Barr, Yotam Harchol, and David Hay.
Space-time tradeoffs in software-based deep packet
inspection. In HPSR, pages 1-8, 2011.

The Bro Network Security Monitor. http://bro-ids.org.
CheckPoint. Check Point DLP software blade.
http://www.checkpoint.com/products/dlp-
software-blade/.

Clam AntiVirus. http://www.clamav.net.

Intel Corp. Service-aware network architecture based on
SDN, NFV, and network intelligence, 2014. http:
//www.gosmos . com/wp-content/uploads/2014/01/
Intel_Qosmos_SDN_NFV_329290-002US-secured.pdf.
Crossbeam. Virtualized security: The next generation of
consolidation, 2012. http://www.computerlinks.ch/
FMS/14322.virtualized_security_en_.pdf.

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]
(11]

[12]
(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

Sarang Dharmapurikar, John Lockwood, and Member Ieee.
Fast and scalable pattern matching for network intrusion
detection systems. IEEE Journal on Selected Areas in
Communications, 24:2006, 2006.

ETSI. Network functions virtualisation - introductory white
paper, 2012.
http://portal.etsi.org/NFV/NFV_White_Paper.pdf.
Seyed Kaveh Fayazbakhsh, Michael K Reiter, and Vyas
Sekar. Verifiable network function outsourcing:
requirements, challenges, and roadmap. In HotMiddlebox,
pages 25-30, 2013.

Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and
Jeffrey C. Mogul. FlowTags: enforcing network-wide
policies in the presence of dynamic middlebox actions. In
HotSDN, pages 19-24, 2013.

Domenico Ficara, Stefano Giordano, Gregorio Procissi,
Fabio Vitucci, Gianni Antichi, and Andrea Di Pietro. An
improved DFA for fast regular expression matching.
Computer Communication Review, 38(5):29-40, 2008.
Open Networking Foundation. Openflow switch
specification version 1.4.0, October 2013.
https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/
openflow/openflow-spec-vl.4.0.pdf.

Jing Fu and Jennifer Rexford. Efficient IP-address lookup
with a shared forwarding table for multiple virtual routers. In
CoNEXT, page 21, 2008.

Aaron Gember, Anand Krishnamurthy, Saul St. John, Robert
Grandl, Xiaoyang Gao, Ashok Anand, Theophilus Benson,
Aditya Akella, and Vyas Sekar. Stratos: A network-aware
orchestration layer for middleboxes in the cloud. CoRR,
abs/1305.0209, 2013.

Aaron Gember, Prathmesh Prabhu, Zainab Ghadiyali, and
Aditya Akella. Toward software-defined middlebox
networking. In HotNets, pages 7-12, 2012.

Glen Gibb, Hongyi Zeng, and Nick Mckeown. Outsourcing
network functionality. In HotSDN, pages 73-78, 2012.
Lukas Kekely, Viktor Pus, and Jan Korenek. Software
defined monitoring of application protocols. In INFOCOM,
pages 1725-1733, 2014.

Junaid Khalid and Josh Slauson. Fault tolerant middleboxes.
Technical report, University of Wisconsin - Madison, 2012.
Pritesh Kothari. Network Service Header support for OVS.
OVS Code Patch, September 2013.
http://openvswitch.org/pipermail/dev/2013~
September/032036.html.

Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick
Crowley, and Jonathan Turner. Algorithms to accelerate
multiple regular expressions matching for deep packet
inspection. In SIGCOMM, pages 339-350, 2006.

Sailesh Kumar, Jonathan Turner, and John Williams.
Advanced algorithms for fast and scalable deep packet
inspection. In ANCS, pages 81-92, 2006.

Bob Lantz, Brandon Heller, and Nick McKeown. A network
in a laptop: Rapid prototyping for software-defined
networks. In Hotnets-IX, pages 19:1-19:6, 2010.

Hoang Le, Thilan Ganegedara, and Viktor K Prasanna.
Memory-efficient and scalable virtual routers using FPGA.
In FPGA, pages 257-266, 2011.

Wenke Lee, Jodo B. D. Cabrera, Ashley Thomas, Niranjan
Balwalli, Sunmeet Saluja, and Yi Zhang. Performance

281

(33]

(34]
[35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

(49]

(50]

[51]

adaptation in real-time intrusion detection systems. In RAID,
pages 252-273, 2002.

Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and
Alex X. Liu. Fast regular expression matching using small
TCAMs for network intrusion detection and prevention
systems. In USENIX Security, pages 88, 2010.
ModSecurity. http://www.modsecurity.org.

A10 Networks. aFleX advanced scripting for layer 4-7 traffic
management.
http://www.alOnetworks.com/products/axseries-
aflex_advanced_scripting.php.

Big Switch Networks. Big tap monitoring fabric, 2014.
http://www.bigswitch.com/products/big-tap-
monitoring-fabric.

F5 Networks. Local traffic manager. https:
//£5.com/products/modules/local-traffic-manager.
PCRE - Perl Compatible Regular Expressions.
http://www.pcre.org/.

Personal communication with several networking and
security companies.

Pox controller, 2013.
http://www.noxrepo.org/pox/about-pox.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao,
Vyas Sekar, and Minlan Yu. SIMPLE-fying middlebox
policy enforcement using SDN. In SIGCOMM, pages 27-38,
2013.

Paul Quinn, Puneet Agarwal, Rajeev Manur, Rex Fernando,
Jim Guichard, Surendra Kumar, Abhishek Chauhan, Michael
Smith, Navindra Yadav, and Brad McConnell. Network
service header. IETF Internet-Draft, February 2014. https:
//datatracker.ietf.org/doc/draft-quinn-sfc-nsh.
Shriram Rajagopalan, Dan Williams, and Hani Jamjoom.
Pico replication: a high availability framework for
middleboxes. In SoCC, pages 1:1-1:15, 2013.

Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and
Andrew Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In NSDI, pages 227-240,
2013.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K
Reiter, and Guangyu Shi. Design and implementation of a
consolidated middlebox architecture. In NSDI, pages 24-38,
2012.

Nisarg Shah. Cisco vPath technology enabling best-in-class
cloud network services, August 2013.
http://blogs.cisco.com/datacenter/cisco-vpath-
technology-enabling-best-in-class-cloud-
network-services/.

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind
Krishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. Making
middleboxes someone else’s problem: network processing as
a cloud service. In SIGCOMM, pages 13-24, 2012.

Snort. http://www.snort.org.

Haoyu Song, Murali Kodialam, Fang Hao, and

TV Lakshman. Building scalable virtual routers with trie
braiding. In INFOCOM, pages 1-9, 2010.

Sony Ericsson Latest Victim of SQL Injection Attack, 2011.
http://www.eweek.com/c/a/Security/Sony-Data-
Breach-Was-Camouflaged-by-Anonymous—-DDoS—
Attack-807651.

Sun Wu and Udi Manber. A fast algorithm for multi-pattern

searching. Technical report, Chung-Cheng University,
University of Arizona, 1994.

[52] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and
Randy H. Katz. Fast and memory-efficient regular expression
matching for deep packet inspection. In ANCS, pages
93-102, 2006.

282

