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Abstract: We have developed a method to equip homodyne interferome-

ters with the capability to operate with constant high sensitivity over many

fringes for continuous real-time tracking. The method can be considered as

an extension of the “J1 . . .J4” methods, and its enhancement to deliver very

sensitive angular measurements through Differential Wavefront Sensing is

straightforward. Beam generation requires a sinusoidal phase modulation

of several radians in one interferometer arm. On a stable optical bench, we

have demonstrated a long-term sensitivity over thousands of seconds of

0.1 mrad/
√

Hz that correspond to 20 pm/
√

Hz in length, and 10 nrad/
√

Hz

in angle at millihertz frequencies.
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1. Introduction

Optical interferometers with sub-wavelength resolution are useful in many optical metrology

applications, such as, for example, length measurements, gravitational wave detection, wave-

front sensing, and surface profiling, among others. Our technique was developed in the context

of continuously measuring the position and orientation of a free-floating test mass for space-

based gravitational wave detection [1], although the method is useful for other applications as

well. Other techniques for the optical readout of free-floating test masses at millihertz frequen-

cies are currently under investigation, such as a polarizing heterodyne interferometer reaching

a sensitivity of about 300pm/
√

Hz [2], a compact homodyne interferometer with a sensitiv-

ity of 100pm/
√

Hz [3], and a robust implementation of an optical lever with a readout noise

level of 100pm/
√

Hz [4]. Another method to do this is heterodyne interferometry as devel-
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oped for LISA Pathfinder [5] with a sensitivity of better than 5pm/
√

Hz [6]. The method we

present here achieves an optical pathlength measurement sensitivity of the order of 20pm/
√

Hz,

and with an angular resolution better than 10nrad/
√

Hz, both above 3 mHz. The conversion

from real test mass motion to optical pathlength is given by the interferometer topology, and

is in our case about a factor of 2, which yields a test mass motion resolution of approximately

10pm/
√

Hz. Those interferometers with the highest accuracy, namely Fabry-Perot interferom-

eters on resonance or recycled Michelson interferometers on a dark fringe [7], have a dynamic

range of a small fraction of one fringe only. High resolution and wide dynamic range can be

simultaneously achieved by, e.g., active feedback or heterodyning, each of which has disadvan-

tages. Active feedback transfers the inherent non-linearity of the feedback actuator to the output

signal or requires another stabilized laser and a measurement of the high-frequency beat note.

Heterodyning, on the other hand, requires a complex setup to generate the two coherent beams

with a constant frequency difference, typically involving two acousto-optic modulators (AOMs)

with associated frequency generation and RF power amplification. Other methods to overcome

these limitations involve variations of sinusoidal phase shifting interferometry [8–13], report-

ing accuracies of the order of 1 nm. These methods are typically used in “single-shot” mode

for static applications such as surface profiling, whereas our method is designed for continuous

real-time, long-term tracking of a moving target with low noise at millihertz frequencies. In

particular, the so-called “J1 . . .J4” method [14–16], involves a sinusoidal phase modulation at

a fixed frequency fmod with modulation depths m ≈ 1 . . .5 in one arm of the interferometer. The

spectrum of the resulting photocurrent has components at integer multiples of fmod, with ampli-

tudes that can be written in terms of the Bessel functions Jn(m) (hence the name) and the phase

difference ϕ due to the optical pathlength difference. The methods then proceed to use analyti-

cal formulae to solve for the unknowns m and ϕ , after obtaining the harmonic amplitudes from

a spectrum analyzer or a Fast Fourier Transform (FFT) of the digitized time series. The accura-

cies reported are of order 10. . . 100 mrad (1.7 . . . 17 nm) for a laser wavelength of 1064 nm. We

generalize this approach by using a higher modulation index m (up to 10 or 20) and making use

of all harmonics up to an order N ≈ m. These are more observations than the four unknowns

(m, ϕ , modulation phase and a common factor), making an analytical solution impossible. In-

stead we use a numerical least-squares solution which allows consistency checks and improves

the signal-to-noise ratio. For our typical applications we keep m near constant at an optimal

value and take ϕ as useful output, achieving an accuracy of better than 0.12 mrad/
√

Hz that

correspond to 20 pm/
√

Hz in length, and 10 nrad/
√

Hz in angle at millihertz frequencies. As

compared to heterodyne interferometers, more complex data processing is necessary to recover

the optical pathlength from the measured photocurrent. However, with the availability of inex-

pensive processing power, this computational complexity is often preferable to additional optics

and electronics hardware needed for the optical heterodyning.

2. Theory

The signal VPD(t) of a photodetector at the output of a phase-modulated homodyne interferom-

eter can be expressed as

VPD(t) = A [1+C cos(ϕ +mcos(ωm t +ψ)) ] , (1)

where ϕ is the interferometer phase, m is the modulation depth, ωm = 2π fm is the modulation

frequency, ψ is the modulation phase, C ≤ 1 is the contrast, and A combines nominally constant

factors such as light powers and photodiode efficiencies. The interferometer output is periodic

with fm and its signal waveform characteristically depends on the interferometer phase ϕ . Fig-

ure 1 illustrates typical waveforms obtained for various states of ϕ . The expression of Eq. (1)
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Fig. 1. Waveform of the obtained interferogram for different operating points of the inter-

ferometer phase ϕ with a modulation depth m = 6rad.

can be expanded into its harmonic components as:

VPD(t) = VDC(ϕ)+
∞

∑
n=1

an(m,ϕ)cos(n(ωmt +ψ)) (2)

with

an(m,ϕ) = k Jn(m) cos
(

ϕ +n
π

2

)
, and (3)

VDC(ϕ) = A(1+C J0(m)cosϕ) , (4)

where k = 2CA, and Jn(m) are the Bessel functions. Figure 2 shows the dependence of the

harmonic amplitudes an(m,ϕ) in terms of ϕ . Our technique is centered around these harmonic

amplitudes an(m,ϕ) which on the one hand can be directly measured by numerical Fourier

analysis of the photocurrent, and on the other hand have the above analytical relationships to

the unknowns ϕ , m, ψ , k. The technique we present here uses higher modulation depths m ≥ 6

to set up an overdimensioned system of equations that can be numerically solved for the four

sought parameters ϕ , m, ψ , and the common factor k by a least-squares fit algorithm. The

information of the harmonic amplitude a0(m,ϕ), corresponding to the DC component VDC(ϕ)
is not used by the fit algorithm, since it usually contains a higher noise level due to large

variations in environmental and equipment conditions such as room illumination and electronic

noise, among others. However, it is useful for computation of the interferometer visibility and

alignment signals.

3. Data processing

The signal VPD(t) measured at the photodetector is digitized after appropriate analog processing

and anti-alias filtering. The sampling rate fsamp is arranged to be coherent to the modulation

frequency fmod. The time series is split in segments of length NFFT samples that are processed

by a Discrete Fourier Transform in order to compute N = NFFT/2 complex amplitudes α̃n(m,ϕ).
A non-linear fit algorithm is applied to match the measured α̃n(m,ϕ) to the complex amplitudes

cn computed from the model

αn(m,ϕ) = an(m,ϕ)einψ . (5)
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Fig. 2. Dependence of the harmonics amplitudes an(m,ϕ) with respect to the interferometer

phase ϕ with a modulation depth m = 6rad.

There is a total of 2N equations that can be set up in two uncorrelated system of equations:

nψ = arctan

(
ℑ{αn(m,ϕ)}
ℜ{αn(m,ϕ)}

)
, n = 1, 2, 3 . . .N, (6)

an(m,ϕ) = αn(m,ϕ)e−inψ , n = 1, 2, 3 . . .N, (7)

where αn(m,ϕ)e−inψ is a real number. For the measured α̃n(m,ϕ)e−inψ , this is not exactly the

case due to noise and phase distortions introduced by the analog electronics. In order to solve

the system of equations, a Levenberg-Marquardt fit algorithm [17, 18] is applied to minimize

the least-squares expression

χ2 =
N

∑
n=1

(αn(m,ϕ)− α̃n(m,ϕ))2, (8)

where χ2 is a four dimensional function of m, ϕ , ψ , and k. In practice, these parameters barely

vary between consecutive segments of length NFFT, giving good starting values for a rapid

convergence of the fit. Only in the case this is not accomplished such as upon initialization or

after large disturbances, a modified version of the more robust Nelder-Mead Simplex algorithm

[19] is applied as initial step. In order to find best values of the modulation index m and the

number of bins N for optimum performance, we conducted a numerical analysis of the 4× 4

Hessian matrix of χ2 that is given by

H = (Hi j) =

(
∂ 2χ2

∂Ωi∂Ω j

)
, (9)

where Ω = {m,ϕ,ψ,k} are the four parameters. The inverse of the Hessian matrix H−1 =
(ηi j) yields information about the parameter estimates on the variances σ2 and correlation

coefficients ρi j:

σ2
Ωi

∝ ηii, (10)
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ρi j =
ηi j√

ηii
√

η j j

. (11)

An excursion of ϕ over the range [0,2π] –which corresponds to one interferometer fringe– was

conducted in 64 steps by fixed N and m in order to compute the best, worst and average values

of the standard deviation σΩi
(N,m,ϕ), which are shown in Fig. 3. Assuming worst case values

of the variances

σ̂2
Ωi

(N,m) = max
ϕ∈[0,2π]

σ2
Ωi

(N,m,ϕ), (12)

we run a similar analysis varying N and m to evaluate for best resolution of any value of ϕ ,

which is our main measurement and often not entirely under control. The results are shown

in Fig. 4. This analysis revealed useful parameter estimates for 3 ≤ m ≤ N, and possible best

Fig. 3. Ideal resolution in ϕ as function of the modulation index m for N = 10, for the best

and worst ϕ as well as the average for all ϕ ∈ [0,2π].

values of m for minimum σϕ in the cases of m = 6,N ≥ 8 and m = 9,N ≥ 10, suggesting best

resolutions of ϕ . These results are only rough guidelines, since they do not take into account

real instrument noise. We have chosen N = 10 bins and a modulation index m ≈ 9.7 to set

up a test system for real optical length measurements. Some error sources have been analyzed

in References [8] and [10]. We have characterized the error experimentally, as discussed in

Section 5 below.

4. Experimental setup

We have applied this technique to a very stable interferometer, namely the engineering model of

the LISA Pathfinder (LPF) optical bench [5], which consists of a 20 cm×20 cm Zerodur R© base-

plate with optical components fixed by hydroxide-catalysis bonding [20]. This optical bench

has been extensively characterized as part of ground testing campaigns for the optical metrol-

ogy of the LISA Pathfinder mission [21], and its optical pathlength stability has been measured

to be better than 5 pm/
√

Hz above 1 mHz. A non-planar ring oscillator (NPRO) Nd:YAG laser

producing 300 mW at 1064 nm was used as light source. For the experimental test, we chose a

two-beam Mach-Zehnder interferometer, using self-assembled fiber-coupled phase modulators

consisting of single-mode fiber optics coiled around ring piezo-electric transducers (RPZT) in

order to reach high modulation depths (up to 10 or 20). Figure 5 shows a schematic overview
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Fig. 4. Ideal resolution in ϕ as function of the modulation index m for different orders N,

for the worst value of ϕ at each point of each curve.

of the setup. The laser beam is split into two equal parts at the first beamsplitter BS1. A RPZT

Fig. 5. Schematic overview of the experiment.

driven by a sinusoidal voltage of approximately 4.5 Vpp at fmod = 280Hz, produces a phase

modulation of modulation depth m ≈ 9.7 in one of the two beams. This portion of the opti-

cal setup denoted as modulation bench, contains the first beamsplitter BS1, phase modulator,

and corresponding fiber coupling devices which are all mounted on a standard metal optical

breadboard. A single-mode fiber feed-through is used to bring the main laser beam into a

vacuum chamber where both, the modulation bench and the optical bench reside. The LISA

Pathfinder optical bench is a set of four non-polarizing Mach-Zehnder interferometers, three

of which have been used in these experiments. The first one –denoted M– measures distance

fluctuations between two mirrors mounted on 3-axes piezo-electric actuators [6]. A second one

–denoted R– serves as phase reference to cancel common-mode pathlength fluctuations that

arise at the modulation bench, such as in metal mounts, phase modulator, and fiber optics. The
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third interferometer –denoted F– has an intentionally large optical pathlength difference of

approximately 38 cm, and is used to measure laser frequency fluctuations. If we denote by sM

and sR the optical pathlengths of the measurement and reference interferometer, respectively,

the phases emerging from the fit algorithm are given by

ϕM = 2π
λ {(s1 + sM)− (s2 + s3)} = 2π

λ {(sM − s3)+Δ} , (13)

ϕR = 2π
λ {(s1 + sR)− (s2 + s4)} = 2π

λ {(sR − s4)+Δ} , (14)

where λ = 1064 nm is the laser wavelength, sx are the optical paths outlined in Fig. 5, and

Δ = s1 − s2 represents the common-mode pathlength difference between the two beams that

includes everything starting from the first beamsplitter BS1, the modulator, fiber optics up to

the beamsplitters on the stable optical bench. Typically, the fluctuations of Δ are several µm on

10. . . 1000 second time scales and thus much larger than what we want to measure. However,

the optical pathlengths sR, s3 and s4 are confined to the stable optical bench and have only

negligible fluctuations. By measuring both ϕM and ϕR and computing their difference

ϕ = ϕM −ϕR =
2π

λ
{sM − (sR + s3 − s4)} (15)

it is possible to cancel the common-mode fluctuations Δ and to obtain a measurement that

is dominated by the fluctuations of sM as desired. All photodetectors are indium gallium ar-

senide (InGaAs) quadrant diodes with 5 mm diameter. The photocurrent of each quadrant is

converted to a voltage with a low-noise transimpedance amplifier, filtered with a 9-pole 8 kHz

Tschebyscheff anti-aliasing filter and digitized at a rate fsamp = 20kHz by a commercial 16-

channel, 16-bit analog-to-digital converter (ADC) card installed in a standard PC running

Linux. The time series are split in segments of NFFT = 1000 samples and transformed by a

FFT algorithm [22]. The N = 10 complex amplitudes of bins 1. . . 10 of fmod at frequencies

280 . . .2800 Hz are then fitted. This configuration allows us to reach a real-time phase measure-

ment rate fϕ = fsamp/NFFT = 20Hz.

5. Noise investigations

During test and debugging experiments, two main noise sources were identified to limit the in-

terferometer sensitivity with this technique, which are laser frequency noise, and the frequency

response (transfer function) of the data acquisition system (DAQ) analog electronics, including

photodiode transimpedance amplifiers and anti-aliasing filters. In the following we explain the

coupling mechanism of these noise sources, and the mitigation strategies we implemented to

counteract them.

5.1. Laser frequency noise

Laser frequency noise translates into phase readout noise in any interferometer, whose path-

length difference Δs between the two interfering beams is not exactly zero. In the case of

the LPF optical bench, this pathlength mismatch has been determined to be approximately

10mm [5]. The free-running frequency noise δν of an unstabilized Nd:YAG NPRO laser at

10mHz has been measured to be of the order of 2×106 Hz/
√

Hz [23]. The conversion factor

from laser frequency fluctuations δν into phase fluctuations δϕ is given by the difference in

time of travel between the two beams Δs/c, such that an estimate of the noise level can be

calculated as

δϕ = 2π
Δs

c
δν ≈ 2π

10−2m

3×108 m/s
2×106 Hz = 0.4mrad/

√
Hz, (16)
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which limits the interferometer optical pathlength resolution δ s to

δ s =
λ

2π
δϕ =

1064nm

2π
0.4mrad/

√
Hz = 68pm/

√
Hz. (17)

We implemented two mitigations strategies to correct for this effect and improve the length

resolution. Both methods worked similarly well and allowed suppression of this error below

the other noise terms. The first one is based on the active laser frequency stabilization, for

which we have used a commercial iodine-stabilized Nd:YAG laser. The second method uses

the third interferometer F (mentioned above) to independently measure a phase proportional

to the amplified laser frequency fluctuations, and applies a noise subtraction technique [6, 24,

25] that properly estimates the coupling factor and removes the contribution from the final

data stream. The phase of this interferometer was read out with the same deep modulation

method as the main channels, and is dominated by laser frequency fluctuations due to its large

pathlength difference (≈ 38cm). A third method can also be easily implemented as an active

stabilization loop by feeding back to the laser over a digital-to-analog converter the output of a

digital controller that uses the difference phase extracted from interferometers F and R as error

signal.

5.2. Frequency response of data acquisition system

The dominant error was identified to be the frequency response of the analog electronics of

the data acquisition system, in particular the contribution of the photodiode transimpedance

amplifiers and the anti-aliasing filters. The transfer function (TF) of this analog portion of the

DAQ shows small ripples in its magnitude of the order of 0.9 dB. The desired parameter ϕ is

essentially determined by running a fit onto the relative amplitudes of the 10 measured har-

monic components α̃n(m,ϕ). The ripples are, however, large enough to alter the ratio between

the harmonic amplitudes, such that the fit algorithm is disturbed, resulting in a high noise level.

We removed this error by separately measuring the transfer function of each channel of the

analog front end, fitting it to a model, and correcting accordingly the measured complex ampli-

tudes α̃n(m,ϕ) before entering the fit routine. Thus, we obtained the corresponding TF complex

values βn = bn eiθn for the 10 frequency bins of interest 280− 2800 Hz. Hence, the measured

complex amplitudes α̃n(m,ϕ) were corrected as

α̃ ′
n(m,ϕ) =

α̃n(m,ϕ)

βn

, (18)

By using complex numbers, this correction also accounts for the TF phase shift, and improves

the estimation capability of the modulation phase ψ .

6. Optical length and attitude measurements

The experimental setup of Fig. 5 was used to conduct long-term interferometric length measure-

ments on the LPF optical bench. Figure 6 shows the results obtained in form of linear spectral

densities. The dashed curve with crosses is the sensitivity obtained initially with this method,

without applying any of the noise mitigation strategies explained in Section 5. The dashed curve

is the sensitivity achieved after applying the complex value correction of the DAQ frequency

response to the measured harmonic amplitudes α̃n(m,ϕ) [as given by Eq. (18)], resulting in a

sensitivity improvement of about one order of magnitude. The solid curve is the measurement

length sensitivity reached upon subtraction of laser frequency noise, which increases the length

resolution in an additional factor of approximately 3.5 at 10 mHz. The measured optical path-

length sensitivity of this technique is of the order of 20pm/
√

Hz (0.1mrad/
√

Hz) above 3 mHz
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Fig. 6. Sensitivity of real optical pathlength measurements. Dashed curve with crosses:

initial sensitivity prior to noise correction techniques. Dashed curve: sensitivity upon cor-

rection of DAQ frequency response. Solid curve: sensitivity reach after application of noise

mitigation strategies -laser frequency noise and DAQ frequency response-.

and approximately a factor of 2 above the performance required to the LPF interferometry,

which has been plotted for comparison purposes. As mentioned above, all photodetectors at the

interferometer outputs on the LPF optical bench are quadrant cell diodes. The phases extracted

from each individual quadrant cell are processed by a differential wavefront sensing (DWS) al-

gorithm [26,27], in order to measure the interferometer alignment with high angular resolution.

The results of this measurement are shown on Fig. 7 as a linear spectral density. As it can be

read from the plot, this technique reaches an angular sensitivity better than 10nrad/
√

Hz above

3 mHz, meeting with sufficient margin the requirements set to the LPF interferometry that have

been also included in the graph as a comparison.

7. Comparison with other techniques

The only method known to the authors that allows length and angular measurements at arbi-

trary operating points with low noise at millihertz frequencies is heterodyne interferometry as

described in Ref. [5]. The deep phase modulation method presented here needs, in comparison,

much simpler beam generation hardware, namely one low-frequency phase modulator like a

piezo-electric transducer, as opposed to two AOMs with RF driving electronics. On the other

hand, the data processing for phase extraction is more complicated, which, however, becomes a

smaller disadvantage with cheap processing power. The heterodyne method typically requires

additional stabilization loops [28,29] to reach noise levels at pm/
√

Hz, e.g. for the laser power

and certain common-mode pathlengths (see Ref. [5]). The experiments described above in Sec-

tion 4 show that these stabilizations are not required for the deep phase modulation technique.
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Fig. 7. Angular resolution obtained by applying a DWS algorithm to the phases extracted

from individual cells of a quadrant photodetector.

8. Conclusions

We have presented an interferometry technique for high sensitivity length and angular optical

measurements. This technique is based on the deep phase modulation (over several radians)

of one interferometer arm and can be considered as an extension of the well-known “J1 . . .J4”

method [14–16]. The harmonic amplitudes are used to numerically solve an overdimensioned

system of equations to extract the interferometer phase and other useful interferometer vari-

ables. This technique has been applied to experiments conducted on a very stable interferometer

(the engineering model of the LISA Pathfinder optical bench), achieving an optical pathlength

readout sensitivity of the order of 20pm/
√

Hz (0.1mrad/
√

Hz in phase, which translates to

10pm/
√

Hz for free-floating test mass displacement), and alignment measurements with an

angular resolution better than 10nrad/
√

Hz in the millihertz frequency band. This performance

is comparable to the best heterodyne interferometers, and, e.g., only a factor of 2 above the

LISA Pathfinder pathlength measurement requirements. Two main noise sources were identi-

fied, namely laser frequency fluctuations and the frequency response of the analog portion of

the data acquisition system, which both were completely mitigated by appropriate data process-

ing methods, hence improving the performance of this technique by over a factor 35. Unlike

other interferometry techniques, no additional control loops, for instance, to actively stabilize

the optical pathlength difference or laser power fluctuations, have been implemented or are re-

quired to reach the current sensitivity. Nonetheless, this could easily be done, in order to further

improve the performance of this method.
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