
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Deep Policy Dynamic Programming for Vehicle Routing Problems

Kool, W.; van Hoof, H.; Gromicho, J.; Welling, M.
DOI
10.48550/arXiv.2102.11756
10.1007/978-3-031-08011-1_14
Publication date
2022
Document Version
Final published version
Published in
Integration of Constraint Programming, Artificial Intelligence, and Operations Research
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Kool, W., van Hoof, H., Gromicho, J., & Welling, M. (2022). Deep Policy Dynamic
Programming for Vehicle Routing Problems. In P. Schaus (Ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 19th International Conference,
CPAIOR 2022, Los Angeles, CA, USA, June 20-23, 2022 : proceedings (pp. 190–213).
(Lecture Notes in Computer Science; Vol. 13292). Springer.
https://doi.org/10.48550/arXiv.2102.11756, https://doi.org/10.1007/978-3-031-08011-1_14

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:01 Oct 2023

https://doi.org/10.48550/arXiv.2102.11756
https://doi.org/10.1007/978-3-031-08011-1_14
https://dare.uva.nl/personal/pure/en/publications/deep-policy-dynamic-programming-for-vehicle-routing-problems(f968db8d-5300-4567-b578-48ce1b301716).html
https://doi.org/10.48550/arXiv.2102.11756
https://doi.org/10.1007/978-3-031-08011-1_14

Deep Policy Dynamic Programming
for Vehicle Routing Problems

Wouter Kool1,2(B) , Herke van Hoof1 , Joaquim Gromicho1,2 ,
and Max Welling1

1 University of Amsterdam, Amsterdam, The Netherlands
w.w.m.kool@uva.nl

2 ORTEC, Zoetermeer, The Netherlands

Abstract. Routing problems are a class of combinatorial problems with
many practical applications. Recently, end-to-end deep learning methods
have been proposed to learn approximate solution heuristics for such
problems. In contrast, classical dynamic programming (DP) algorithms
guarantee optimal solutions, but scale badly with the problem size. We
propose Deep Policy Dynamic Programming (DPDP), which aims to
combine the strengths of learned neural heuristics with those of DP algo-
rithms. DPDP prioritizes and restricts the DP state space using a policy
derived from a deep neural network, which is trained to predict edges
from example solutions. We evaluate our framework on the travelling
salesman problem (TSP), the vehicle routing problem (VRP) and TSP
with time windows (TSPTW) and show that the neural policy improves
the performance of (restricted) DP algorithms, making them competi-
tive to strong alternatives such as LKH, while also outperforming most
other ‘neural approaches’ for solving TSPs, VRPs and TSPTWs with
100 nodes.

Keywords: Dynamic Programming · Deep Learning · Vehicle Routing

1 Introduction

Dynamic programming (DP) [7] is a powerful framework for solving optimization
problems by solving smaller subproblems through the principle of optimality [4].
Famous examples are Dijkstra’s algorithm [16] for the shortest route between
two locations, and the classic Held-Karp algorithm for the travelling salesman
problem (TSP) [5,26]. Despite their long history, dynamic programming algo-
rithms for vehicle routing problems (VRPs) have seen limited use in practice,
primarily due to their bad scaling performance. More recently, a line of research
has attempted the use of machine learning (especially deep learning) to auto-
matically learn heuristics for solving routing problems [6,9,36,50,64]. While the
results are promising, most learned heuristics are not (yet) competitive to ‘tra-
ditional’ algorithms such as LKH [27] and lack (asymptotic) guarantees on their
performance.
c© Springer Nature Switzerland AG 2022
P. Schaus (Ed.): CPAIOR 2022, LNCS 13292, pp. 190–213, 2022.
https://doi.org/10.1007/978-3-031-08011-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08011-1_14&domain=pdf
http://orcid.org/0000-0002-1837-1454
http://orcid.org/0000-0002-1583-3692
http://orcid.org/0000-0002-1467-6656
http://orcid.org/0000-0003-1484-2121
https://doi.org/10.1007/978-3-031-08011-1_14

Deep Policy Dynamic Programming for Vehicle Routing Problems 191

In this paper, we propose Deep Policy Dynamic Programming (DPDP) as a
framework for solving vehicle routing problems. The key of DPDP is to combine
the strengths of deep learning and DP, by restricting the DP state space (the
search space) using a policy derived from a neural network. In Fig. 1 it can be
seen how the neural network indicates promising parts of the search space as a
heatmap over the edges of the graph. This heatmap used by the DP algorithm
to find a good solution. DPDP is more powerful than some related ideas [8,25,
42,69,70] as it combines supervised training of a large neural network with just
a single model evaluation at test time, to enable running a large scale guided
search using DP. The DP framework is flexible as it can model a variety of
realistic routing problems with difficult practical constraints [22]. We illustrate
this by testing DPDP on the TSP, the capacitated VRP and the TSP with (hard)
time window constraints (TSPTW).

Fig. 1. Heatmap predictions (red) and solutions (colored) by DPDP (VRP depot edges
omitted for clarity). The heatmap indicates only a small fraction of all edges as promis-
ing, while including (almost) all edges from the solution. (Color figure online)

Fig. 2. DPDP for the TSP. A GNN creates a (sparse) heatmap indicating promising
edges, after which a tour is constructed using forward dynamic programming. In each
step, at most B solutions are expanded according to the heatmap policy, restricting
the size of the search space. Partial solutions are dominated by shorter (lower cost)
solutions with the same DP state: the same nodes visited (marked grey) and current
node (indicated by dashed rectangles).

192 W. Kool et al.

In more detail, the starting point of our proposed approach is a restricted
dynamic programming algorithm [22,46], which heuristically reduces the search
space by retaining at most B solutions per iteration. The selection process is
important as it defines the part of the DP state space considered and, thus, the
quality of the solution found (see Fig. 2). DPDP defines the selection using a
(sparse) heatmap of promising route segments, obtained by pre-processing the
problem instance using a (deep) graph neural network (GNN) [32]. This brings
the power of neural networks to DP, inspired by the success of neural networks
that improved tree search [57] or branch-and-bound algorithms [21,49].

In this work, we thus aim for a ‘neural boost’ of DP algorithms, by using
a GNN for scoring partial solutions. Prior work on ‘neural’ vehicle routing has
focused on auto-regressive models [6,15,36,64], but they have high computa-
tional cost when combined with (any form of) search, as the model needs to be
evaluated for each partial solution considered. Instead, we use a model to pre-
dict a heatmap indicating promising edges [32], and define the score of a partial
solution as the ‘heat’ of the edges it contains (plus an estimate of the ‘heat-to-go’
or potential of the solution). As the neural network only needs to be evaluated
once for each instance, this enables a much larger search (defined by B), making
a good trade-off between quality and computational cost. Additionally, we can
apply a threshold to the heatmap to define a sparse graph on which to run the
DP algorithm, reducing the runtime by eliminating many solutions.

Figure 2 illustrates DPDP. In Sect. 4, we show that DPDP significantly
improves over ‘classic’ restricted DP algorithms. Additionally, we show that
DPDP outperformes most other ‘neural’ approaches for TSP, VRP and TSPTW
and is competitive with the highly-optimized LKH solver [27] for VRP, while
achieving similar results much faster for TSP and TSPTW. For TSPTW, DPDP
also outperforms the best open-source solver we could find [12], illustrating the
power of DPDP to handle difficult hard constraints (time windows).

2 Related Work

DP [7] has a long history as an exact solution method for routing problems
[38,59], e.g. the TSP with time windows [17] and precedence constraints [48],
but is limited to small problems due to the curse of dimensionality. Restricted DP
(with heuristic policies) has been used to address, e.g., the time dependent TSP
[46], and has been generalized into a flexible framework for VRPs with different
types of practical constraints [22]. DP approaches have also been shown to be
useful in settings with difficult practical issues such as time-dependent travel
times and driving regulations [35] or stochastic demands [51]. For more examples
of DP for routing (and scheduling), see [28]. For sparse graphs, alternative, but
less flexible, formulations can be used [10].

Despite the flexibility, DP methods have not gained much popularity com-
pared to heuristic approaches such as R&R [56], ALNS [55], LKH [27], HGS
[62,63] or FILO [1], which, while effective, have limited flexibility as special
operators are needed for different types of problems. While restricted DP was

Deep Policy Dynamic Programming for Vehicle Routing Problems 193

shown to have superior performance on realistic VRPs with many constraints
[22], the performance gap of around 10% for standard (benchmark) VRPs (with
time windows) is too large to popularize this approach. We argue that the miss-
ing ingredient is a strong but computationally cheap policy for selecting which
solutions to consider, which is the motivation behind DPDP.

In the machine learning community, deep neural networks (DNNs) have
recently boosted performance on various tasks [39]. After the first DNN model
was trained (using example solutions) to construct TSP tours [64], many
improvements have been proposed, e.g. different training strategies such as rein-
forcement learning (RL) [6,14,33,37] and model architectures, which enabled the
same idea to be used for other routing problems [15,18,36,45,50,54,67]. Most
constructive neural methods are auto-regressive, evaluating the model many
times to predict one node at the time, but other works have considered pre-
dicting a heatmap of promising edges at once [19,32,52], which allows a tour
to be constructed (using sampling or beam search) without further evaluat-
ing the model. An alternative to constructive methods is ‘learning to search’,
where a neural network is used to guide a search procedure such as local search
[9,20,29,30,34,41,43,66,68]. Scaling to instances beyond 100 nodes remains chal-
lenging [19,44].

The combination of machine learning with DP has been proposed in limited
settings [25,69,70]. Most related to our approach, a DP algorithm for TSPTW,
guided by an RL agent, was implemented using an existing solver [8], which is
less efficient than DPDP (see Sect. 4.3). Also similar to our approach, a neural
network predicting edges has been combined with tree search and local search
for maximum independent set (MIS) [42]. Whereas DPDP directly builds on the
idea of predicting promising edges [32,42], it uses these more efficiently through
a policy with potential function (see Sect. 3.2), and by using DP rather than
tree search or beam search, we exploit known problem structure in a principled
and general manner. As such, DPDP obtains strong performance without using
extra heuristics such as local search. For a wider view on machine learning for
routing problems and combinatorial optimization, see [3,47,61].

3 Deep Policy Dynamic Programming

DPDP uses an existing graph neural network [32], suitably adapted for VRP
and TSPTW, to predict a heatmap of promising edges. This heatmap is used
in the DP algorithm in two ways: 1) to exclude edges with a value below the
heatmap threshold of 10−5 from the graph and 2) to define a scoring policy
to select candidate solutions in each iteration. In more detail, as illustrated in
Fig. 2, the DP algorithm starts with a beam of a single initial (empty) solution,
and proceeds by iterating the following steps: (1) all solutions on the beam are
expanded, (2) dominated solutions are removed for each DP state, (3) the B best
solutions according to the scoring policy define the beam for the next iteration.
The objective function is used to select the best solution from the final beam.
The resulting algorithm is a beam search over the DP state space, with beam size

194 W. Kool et al.

B. This is different from a ‘standard’ beam search, which considers the solution
space by not removing dominated solutions. DPDP is asymptotically optimal
as using B = n · 2n for a TSP with n nodes guarantees optimal results, but by
choosing a smaller B, DPDP can trade off performance for computational cost.

DPDP is a generic framework that can be applied to different problems, by
defining the following ingredients: (1) the variables to track while constructing
solutions, (2) the initial solution, (3) feasible actions to expand solutions,
(4) rules to define dominated solutions and (5) the scoring policy, based on
the neural network, for selecting the B solutions to keep. A solution is always
defined by a sequence of actions, which allows the DP algorithm to construct
the final solution by backtracking. In the next sections, we describe the neural
network and define the DPDP ingredients for the TSP, VRP and TSPTW.

3.1 The Graph Neural Network

We use the original (pre-trained) model from [32] (which we describe in detail
in Appendix 1 for self-containment) for the TSP, but we modify the neural net-
work architecture and train new models to support the VRP and TSPTW, as
we describe in Sects. 3.3 and 3.4. In general, the resulting model uses problem-
specific node input features and edge input features, which get transformed
into initial representations of the nodes and edges. These representations then
get updated sequentially using a number of graph convolutional layers, which
exchange information between the nodes and edges. The final edge representa-
tion is used to make the prediction whether the edge is promising, i.e. whether
it has a high probability of being part of the optimal solution.

The model is trained using a large training dataset of problem instances with
optimal (or high-quality) solutions, obtained using an existing solver. While it
takes a significant amount of resources to create this dataset and train the model
(each of which can take up to a number of days on a single machine), training
of the model is, in principle, only required once given a specific distribution
of problem instances. We consider only instances with n = 100 nodes, but the
model can handle instances of different graph sizes, although good generalization
may be limited to graphs with sizes close to the size trained for [33,36].

3.2 Travelling Salesman Problem

We implement DPDP for Euclidean TSPs with n nodes on a (sparse) graph,
where the cost for edge (i, j) is given by cij , the Euclidean distance between the
nodes i and j. The objective is to construct a tour that visits all nodes (and
returns to the start node) and minimizes the total cost of its edges.

For each partial solution, defined by a sequence of actions a, the variables
we track are cost(a), the total cost (distance), current(a), the current node,
and visited(a), the set of visited nodes (including the start node). Without
loss of generality, we let 0 be the start node, so we initialize the beam at step
t = 0 with the empty initial solution with cost(a) = 0, current(a) = 0 and
visited(a) = {0}. At step t, the action at ∈ {0, ..., n − 1} indicates the next
node to visit, and is a feasible action for a partial solution a = (a0, ..., at−1)

Deep Policy Dynamic Programming for Vehicle Routing Problems 195

if (at−1, at) is an edge in the graph and at �∈ visited(a), or, when all nodes are
visited, if at = 0 to return to the start node. When expanding the solution to
a′ = (a0, ..., at), we can compute the tracked variables incrementally as:

cost(a′) = cost(a) + ccurrent(a),at , current(a′) = at, visited(a′) = visited(a) ∪ {at}.
(1)

A (partial) solution a is a dominated solution if there exists a (dominating)
solution a∗ such that visited(a∗) = visited(a), current(a∗) = current(a) and
cost(a∗) < cost(a). We refer to the tuple (visited(a), current(a)) as the DP state,
so removing all dominated partial solutions, we keep exactly one minimum-cost
solution for each unique DP state1. A solution can only dominate other solutions
with the same set of visited nodes, so we only need to remove dominated solutions
from sets of solutions with the same number of actions. This is why the DP
algorithm can be executed in iterations (as explained): at step t all solutions in
the beam have t actions and t + 1 visited nodes (including the start node). The
resulting memory need is thus limited to O(B) states, with B the beam size.

We define the scoring policy using the pretrained model from [32], which
takes as input node coordinates and edge distances to predict a raw heatmap
value ĥij ∈ (0, 1) for each edge (i, j). The model was trained to predict optimal
solutions, so ĥij can be seen as the probability that edge (i, j) is in the optimal
tour. We force the heatmap to be symmetric thus we define hij = max{ĥij , ĥji}.
The policy is defined using the heatmap values, in such a way to select the
(partial) solutions with the largest total heat, while also taking into account the
(heat) potential for the unvisited nodes. The policy thus selects the B solutions
which have the highest score, defined as score(a) = heat(a)+potential(a), with
heat(a) =

∑t−1
i=1 hai−1,ai

, i.e. the sum of the heat of the edges, which can be
computed incrementally when expanding a solution. The potential is added as
an estimate of the ‘heat-to-go’ (similar to the heuristic in A∗ search) for the
remaining nodes, and avoids the ‘greedy pitfall’ of selecting the best edges while
skipping over nearby nodes, which would prevent good edges from being used
later. It is defined as potential(a) = potential0(a) +

∑
i�∈visited(a) potentiali(a)

with potentiali(a) = wi

∑
j �∈visited(a)

hji∑n−1
k=0 hki

, where wi is the node potential

weight given by wi = (maxj hji) · (1 − 0.1(ci0
maxj cj0

− 0.5)). By normalizing the
heatmap values for incoming edges, the (remaining) potential for node i is ini-
tially equal to wi but decreases as good edges become infeasible due to neighbors
being visited. The node potential weight wi is equal to the maximum incoming
edge heatmap value (an upper bound to the heat contributed by node i), which
gets multiplied by a factor 0.95 to 1.05 to give a higher weight to nodes closer to
the start node, which we found helps to encourage the algorithm to keep edges
that enable to return to the start node. The overall heat + potential function
identifies promising partial solutions and is computationally cheap. It is a heuris-

1 If we have multiple partial solutions with the same state and cost, we can arbitrarily
choose one to dominate the other(s), for example the one with the lowest index of
the current node.

196 W. Kool et al.

tic estimate of the total heat of the complete solution, but it is not an estimate
of the cost objective (which has a different unit), neither it is a bound on the
total heat or cost objective.

3.3 Vehicle Routing Problem

For the VRP, we add a special depot node dep to the graph. Node i has a
demand di, and the goal is to minimize the cost for a set of routes that visit all
nodes. Each route must start and end at the depot, and the total demand of its
nodes cannot exceed the vehicle capacity denoted by capacity.

Additionally to the TSP variables cost(a), current(a) and visited(a), we
keep track of capacity(a), which is the remaining capacity in the current
route/vehicle. A solution starts at the depot, so we initialize the beam at step
t = 0 with the empty initial solution with cost(a) = 0, current(a) = dep,
visited(a) = ∅ and capacity(a) = capacity. For the VRP, we do not consider
visiting the depot as a separate action. Instead, we define 2n actions, where
at ∈ {0, ..., 2n − 1}. The actions 0, ..., n − 1 indicate a direct move from the
current node to node at, whereas the actions n, ..., 2n − 1 indicate a move to
node at − n via the depot. Feasible actions are those that move to unvisited
nodes via edges in the graph and obey the following constraints. For the first
action a0 there is no choice and we constrain (for convenience of implementation)
a0 ∈ {n, ..., 2n − 1}. A direct move (at < n) is only feasible if dat

≤ capacity(a)
and updates the state similar to TSP but reduces remaining capacity by dat

. A
move via the depot is always feasible (respecting the graph edges and assuming
di ≤ capacity ∀i) as it resets the vehicle capacity before subtracting demand,
but incurs the ‘via-depot cost’ cdepij = ci,dep + cdep,j . When all nodes are visited,
we allow a special action to return to the depot. This somewhat unusual way
of representing a VRP solution has desirable properties similar to the TSP for-
mulation: at step t we have exactly t nodes visited, and we can run the DP in
iterations, removing dominated solutions at each step t.

For VRP, a partial solution a is a dominated solution dominated by a∗

if visited(a∗) = visited(a) and current(a∗) = current(a) (i.e. a∗ corresponds
to the same DP state) and cost(a∗) ≤ cost(a) and capacity(a∗) ≥ capacity(a),
with at least one of the two inequalities being strict. This means that for each DP
state, given by the set of visited nodes and the current node, we do not only keep
the (single) solution with lowest cost (as in the TSP algorithm), but keep the
complete set of pareto-efficient solutions in terms of cost and remaining vehicle
capacity. This is because a higher cost partial solution may still be preferred if
it has more remaining vehicle capacity, and vice versa.

For the VRP scoring policy, we modify the model [32] (described in
Appendix 1) to include the depot node and demands. We mark the depot as a
special node type, which affects the initial node representation similarly to edge
types, and we add additional edge types for connections to the depot. Addition-
ally, each node gets an extra input (next to its coordinates) corresponding to
di/capacity (where we set ddep = 0). The model is trained on example solutions
from LKH [27] (see Sect. 4.2), which are not optimal, but still provide a useful

Deep Policy Dynamic Programming for Vehicle Routing Problems 197

training signal. Compared to TSP, the definition of the heat is slightly changed
to accommodate for the ‘via-depot actions’ and is best defined incrementally
using the ‘via-depot heat’ hdep

ij = hi,dep · hdep,j · 0.1, where multiplication is used
to keep heat values interpretable as probabilities and in the range (0, 1). The
additional penalty factor of 0.1 for visiting the depot encourages the algorithm
to minimize the number of vehicles/routes. The heat of the initial state is 0 and
when expanding a solution a to a′ using action at, the heat is incremented with
either hcurrent(a),at

(if at < n) or hdep

current(a),at−n (if at ≥ n). The potential is
defined similarly to TSP, replacing the start node 0 by dep.

3.4 Travelling Salesman Problem with Time Windows

For the TSPTW, we also have a special depot/start node 0. The goal is to create
a single tour that visits each node i in a time window defined by (li, ui), where
the travel time from i to j is equal to the cost/distance cij , i.e. we assume a speed
of 1 (w.l.o.g. as we can rescale time). It is allowed to wait if arrival at node i is
before li, but arrival cannot be after ui. We minimize the total cost (excluding
waiting time), but to minimize makespan (including waiting time), we only need
to train on different example solutions. Due to the hard constraints, TSPTW is
typically considered more challenging than plain TSP, for which every solution
is feasible.

The variables we track and initial solution are equal to TSP except that
we add time(a) which is initially 0 (= l0). Feasible actions at ∈ {0, ..., n − 1}
are those that move to unvisited nodes via edges in the graph such that the
arrival time is no later than uat

and do not directly eliminate the possibility to
visit other nodes in time2. Expanding a solution a to a′ using action at updates
the time as time(a′) = max{time(a) + ccurrent(a),at

, lat
}.

For each DP state, we keep all efficient solutions in terms of cost and time, so a
partial solution a is a dominated solution dominated by a∗ if a∗ has the same
DP state (visited(a∗) = visited(a) and current(a∗) = current(a)) and is strictly
better in terms of cost and time, i.e. cost(a∗) ≤ cost(a) and time(a∗) ≤ time(a),
with at least one of the two inequalities being strict.

The model [32] for the scoring policy is adapted to include the time windows
(li, ui) as node features (scaled to correspond to a speed of 1 for the input
distances and coordinates, which are scaled to the range [0, 1]), and we use a
special embedding for the depot similar to VRP. Due to the time dimension, a
TSPTW solution is directed, and edge (i, j) may be good whereas (j, i) may be
not, so we adapt the model to enable predictions hij �= hji (see Appendix 1).
We generated example training solutions using (heuristic) DP with a large beam
size, which was faster than LKH. Given the heat predictions, the score (heat +
potential) is exactly as for TSP.

2 E.g., arriving at node i at t = 10 is not feasible if node j has uj = 12 and cij = 3.

198 W. Kool et al.

4 Experiments

We implement DPDP using PyTorch [53] to leverage GPU computation. For
details, see Appendix 2. Our code is publicly available.3 DPDP has very few
hyperparameters, but the heatmap threshold of 10−5 and details like the func-
tional form of e.g. the scoring policy are ‘educated guesses’ or manually tuned on
a few validation instances and can likely be improved. The runtime is influenced
by implementation choices which were tuned on a few validation instances.

4.1 Travelling Salesman Problem

In Table 1 we report our main results for DPDP with beam sizes of 10K (10
thousand) and 100K, for the TSP with 100 nodes on a commonly used test set of
10000 instances [36]. We report cost and gap to the optimal solution found using
Concorde [2] (following [36]) and compare against LKH [27] and Gurobi [24], as
well as recent results of the strongest methods using neural networks (‘neural
approaches’) from literature. Running times for solving 10000 instances after
training should be taken as rough indications as some are on different machines,
typically with 1 GPU or a many-core CPU (8 - 32). The costs indicated with
* are not directly comparable due to slight dataset differences [19]. Times for
generating heatmaps (if applicable) is reported separately (as the first term)
from the running time for MCTS [19] or DP. DPDP achieves close to optimal
results, strictly outperforming the neural baselines achieving better results in
less time (except the Attention Model trained with POMO [37], see Sect. 4.2).

4.2 Vehicle Routing Problem

For the VRP, we train the model using 1 million instances of 100 nodes, generated
according to the distribution described by [50] and solved using one run of LKH
[27]. We train using a batch size of 48 and a learning rate of 10−3 (selected as
the result of manual trials to best use our GPUs), for (at most) 1500 epochs
of 500 training steps (following [32]) from which we select the saved checkpoint
with the lowest validation loss. We use the validation and test sets by [36].

Table 1 shows the results, where the gap is relative to Hybrid Genetic Search
(HGS)4, a SOTA heuristic VRP solver [62,63]. HGS is faster and improves
around 0.5% over LKH [27], which is typically considered the baseline in related
work. We present the results for LKH, as well as the strongest neural approaches
and DPDP with beam sizes up to 1 million. Some results used 2000 (different)
instances [43] and cannot be directly compared5. DPDP outperforms all other
neural baselines, except the Attention Model trained with POMO [37], which
delivers good results very quickly by exploiting symmetries in the problem.

3 https://github.com/wouterkool/dpdp.
4 https://github.com/vidalt/HGS-CVRP.
5 The running time of 4000 h (167 days) is estimated from 24 min/instance [43].

https://github.com/wouterkool/dpdp
https://github.com/vidalt/HGS-CVRP

Deep Policy Dynamic Programming for Vehicle Routing Problems 199

Table 1. Mean cost, gap and total time to solve 10000 TSP/VRP test instances.

Problem TSP100 VRP100

Method Cost Gap Time Cost Gap Time

Concorde [2] 7.765 0.000% 6m

Hybrid Genetic Search [62,63] 15.563 0.000% 6h11m

Gurobi [24] 7.776 0.151% 31m

LKH [27] 7.765 0.000% 42m 15.647 0.536% 12h57m

GNN Heatmap + Beam Search [32] 7.87 1.39% 40m

Learning 2-opt heuristics [11] 7.83 0.87% 41m

Merged GNN Heatmap + MCTS [19] 7.764* 0.04% 4m + 11m

Attention Model + Sampling [36] 7.94 2.26% 1h 16.23 4.28% 2h

Step-wise Attention Model [67] 8.01 3.20% 29s 16.49 5.96% 39s

Attn. Model + Coll. Policies [34] 7.81 0.54% 12h 15.98 2.68% 5h

Learning improv. heuristics [66] 7.87 1.42% 2h 16.03 3.00% 5h

Dual-Aspect Coll. Transformer [45] 7.77 0.09% 5h 15.71 0.94% 9h

Attention Model + POMO [37] 7.77 0.14% 1m 15.76 1.26% 2m

NeuRewriter [9] 16.10 3.45% 1h

Dynamic Attn. Model + 2-opt [54] 16.27 4.54% 6h

Neur. Lrg. Neighb. Search [30] 15.99 2.74% 1h

Learn to improve [43] 15.57* - 4000h

DPDP 10K 7.765 0.009% 10m + 16m 15.830 1.713% 10m + 50m

DPDP 100K 7.765 0.004% 10m + 2h35m 15.694 0.843% 10m + 5h48m

DPDP 1M 15.627 0.409% 10m + 48h27m

However, as it cannot (easily) improve further with additional runtime, we con-
sider this contribution orthogonal to DPDP. DPDP is competitive to LKH (see
also Sect. 4.4).

More Realistic Instances. We also train the model and run experiments with
instances with 100 nodes from a more realistic and challenging data distribution
[60]. This distribution, commonly used in the routing community, has greater
variability, in terms of node clustering and demand distributions. LKH failed to
solve two of the test instances, which is because LKH by default uses a fixed
number of routes equal to a lower bound, given by

⌈∑n−1
i=0 di

capacity

⌉
, which may be infea-

sible6. Therefore we solve these instances by rerunning LKH with an unlimited
number of allowed routes (which gives worse results, see Sect. 4.4).

DPDP was run on a machine with 4 GPUs, but we also report (estimated)
runtimes for 1 GPU (1080Ti), and we compare against 16 or 32 CPUs for HGS
and LKH. In Table 2 it can be seen that the difference with LKH is, as expected,
6 For example, three nodes with a demand of two cannot be assigned to two routes

with a capacity of three.

200 W. Kool et al.

slightly larger than for the simpler dataset, but still below 1% for beam sizes of
100K–1M. We also observed a higher validation loss, so it may be possible to
improve results using more training data. Nevertheless, finding solutions within
1% of the specialized SOTA HGS algorithm, and even closer to LKH, is impres-
sive for these challenging instances, and we consider the runtime (for solving
10K instances) acceptable, especially when using multiple GPUs.

Table 2. Mean cost, gap and total time to solve 10000 realistic VRP100 instances.

Method Cost Gap Time (1 GPU or 16 CPUs) Time (4 GPUs or 32 CPUs)

HGS [62,63] 18050 0.000% 7h53m 3h56m

LKH [27] 18133 0.507% 25h32m 12h46m

DPDP 10K 18414 2.018% 10m + 50m 2m + 13m

DPDP 100K 18253 1.127% 10m + 5h48m 2m + 1h27m

DPDP 1M 18168 0.659% 10m + 48h27m 2m + 12h7m

4.3 TSP with Time Windows

For the TSP with hard time window constraints, we use the data distribution by
[8] and use their set of 100 test instances with 100 nodes. These were generated
with small time windows, resulting in a small feasible search space, such that even
with very small beam sizes, our DP implementation solves these instances opti-
mally, eliminating the need for a policy. Therefore, we also consider a more dif-
ficult distribution similar to [12], which has larger time windows which are more
difficult as the feasible search space is larger7 [17]. For details, see Appendix 1.
For both distributions, we generate training data and train the model exactly as
we did for the VRP.

Table 3 shows the results for both data distributions, which are reported in
terms of the difference to General Variable Neighborhood Search (GVNS) [12],
the best open-source solver for TSPTW we could find8, using 30 runs. For the
small time window setting, both GVNS and DPDP find optimal solutions for
all 100 instances in just 7 s (in total, either on 16 CPUs or a single GPU). LKH
fails to solve one instance, but finds close to optimal solutions, but around 50
times slower. BaB-DQN* and ILDS-DQN* [8], methods combining an existing
solver with an RL trained neural policy, take around 15 min per instance (orders
of magnitudes slower) to solve most instances to optimality. Due to complex set-
up, we were unable to run BaB-DQN* and ILDS-DQN* ourselves for the setting
with larger time windows. In this setting, we find DPDP outperforms both LKH
(where DPDP is orders of magnitude faster) and GVNS, in both speed and
solution quality. This illustrates that DPDP, due to its nature, is especially well
suited to handle constrained problems.
7 Up to a limit, as making the time windows infinite size reduces the problem to plain

TSP.
8 https://github.com/sashakh/TSPTW.

https://github.com/sashakh/TSPTW

Deep Policy Dynamic Programming for Vehicle Routing Problems 201

Table 3. Mean cost, gap and total time to solve TSPTW100 instances.

Problem Small time windows [8] (100 inst.) Large time windows [12] (10K inst.)

Method Cost Gap Fail Time Cost Gap Fail Time

GVNS 30x [12] 5129.58 0.000% 7s 2432.112 0.000% 37m15s

GVNS 1x [12] 5129.58 0.000% <1s 2457.974 1.063% 1m4s

LKH 1x [27] 5130.32 0.014% 1.00% 5m48s 2431.404 −0.029% 34h58m

BaB-DQN* [8] 5130.51 0.018% 25h

ILDS-DQN* [8] 5130.45 0.017% 25h

DPDP 10K 5129.58 0.000% 6s + 1s 2431.143 −0.040% 10m + 8m7s

DPDP 100K 5129.58 0.000% 6s + 1s 2430.880 −0.051% 10m + 1h16m

4.4 Ablations

Scoring Policy. To evaluate the value of different components of DPDP’s GNN
Heat + Potential scoring policy, we compare against other variants. GNN
Heat is the version without the potential, whereas Cost Heat + Potential
and Cost Heat are variants that use a ‘heuristic’ ĥij = cij

maxk cik
instead of the

GNN. Cost directly uses the current cost of the solution, and can be seen as
‘classic’ restricted DP. Finally, BS GNN Heat + Potential uses beam search
without dynamic programming, i.e. without removing dominated solutions. To
evaluate only the scoring policy, each variant uses the fully connected graph
(no heatmap threshold). Figure 3a shows the value of DPDP’s potential func-
tion, although even without it results are still significantly better than ‘classic’
heuristic DP variants using cost-based scoring policies. Also, it is clear that using
DP significantly improves over a standard beam search (by removing dominated
solutions). Lastly, the figure illustrates how the time for generating the heatmap
using the neural network, despite its significant value, only makes up a small
portion of the total runtime.

(a) Different scoring poli-
cies, as well as ‘pure’ beam
search, for beam sizes 1, 10,
100, 1000, 10K, 100K.

(b) Beam sizes 10K, 25K,
50K, 100K, 250K, 500K,
1M, 2.5M compared against
LKH(U) with 1, 2, 5 and 10
runs.

(c) Sparsities with heatmap
thresholds 0.9, 0.5, 0.2, 0.1,
10−2, 10−3, 10−4, 10−5 and
knn = 5, 10, 20, 50, 99.
Beam size 100K.

Fig. 3. DPDP ablations on 100 validation instances of VRP with 100 nodes.

202 W. Kool et al.

Beam Size. With DPDP, we can trade off the performance vs. the runtime using
the beam size B (and the graph sparsity, see below). Figure 3b illustrates this
trade-off, where we evaluate DPDP on 100 validation instances for VRP, with
different beam sizes from 10K to 2.5M. We also report the trade-off curve for
LKH(U), which is the strongest baseline that can also solve different problems.
We vary the runtime using 1, 2, 5 and 10 runs (returning the best solution).
LKHU(nlimited) is the version which allows an unlimited number of routes (see
Sect. 4.2). It is hard to compare GPU vs CPU, so we report (estimated) runtimes
for different hardware, i.e. 1 or 4 GPUs (with 3 CPUs per GPU) and 16 or 32
CPUs. We report the difference (i.e. the gap) with HGS, analogous to how results
are reported in Table 1. We emphasize that in most related work (e.g. [36]), the
strongest baseline considered is one run of LKH, so we compare against a much
stronger baseline. Also, our goal is not to outperform HGS (which is SOTA and
specific to VRP) or LKH, but to show DPDP has reasonable performance, while
being a flexible framework for other (routing) problems.

Graph Sparsity. Using the heatmap threshold, the DP algorithm uses a sparse
graph to define feasible expansions, which reduces the runtime but may also
sacrifice solution quality. For most edges, the model confidently predicts close to
0, such that they are ruled out, even using the default (low) heatmap threshold
of 10−5. We may rule out even more edges by increasing the threshold, which
can be seen as a secondary way (besides varying the beam size) to trade off the
performance and computational cost of DPDP. While this can be seen as a form
of learned problem reduction [58], we also consider a heuristic alternative of using
the K-nearest neighbor (knn) graph.9 In Fig. 3c, we experiment with different
heatmap thresholds from 10−5 to 0.9 and different values for knn from 5 to 99
(fully connected). The heatmap threshold strategy clearly outperforms the knn

strategy as it yields the same results using sparser graphs (and lower runtimes).
This illustrates that the heatmap threshold strategy is more informed than the
knn strategy, confirming the value of the neural network predictions.

5 Discussion

In this paper we introduced Deep Policy Dynamic Programming, which combines
machine learning and dynamic programming for solving vehicle routing prob-
lems. The method yields close to optimal results for TSPs with 100 nodes and is
competitive to the highly optimized LKH [27] solver for VRPs with 100 nodes.
On the TSPTW, DPDP also outperforms LKH, being significantly faster, as
well as GVNS [12], the best open source solver we could find. Given that DPDP
was not specifically designed for TSPTW, and thus can likely be improved, we
consider this an impressive and promising achievement.

9 For the symmetric TSP and VRP, we add knn edges in both directions. For the
VRP, we also connect each node to the depot (and vice versa) to ensure feasibility.

Deep Policy Dynamic Programming for Vehicle Routing Problems 203

The constructive nature of DPDP (combined with search) naturally supports
hard constraints such as time windows, which are typically considered challeng-
ing in neural combinatorial optimization [6,36] and are also difficult for local
search heuristics (as they need to maintain feasibility while adapting a solu-
tion). Given our results on TSP, VRP and TSPTW, and the flexibility of DP as
a framework, we think DPDP has great potential for solving many more variants
of routing problems, and possibly even other problems that can be formulated
using DP (e.g. job shop scheduling [23]). We hope that our work brings machine
learning research for combinatorial optimization closer to the operations research
(especially vehicle routing) community, by combining machine learning with DP
and evaluating the resulting new framework on different data distributions used
by different communities [8,12,50,60].

Scope, Limitations and Future Work. Deep learning for combinatorial optimiza-
tion is a recent research direction, which could significantly impact the way
practical optimization problems get solved in the future. Currently, however, it
is still hard to beat most SOTA problem specific solvers from the OR community.
Despite our success for TSPTW, DPDP is not yet a practical alternative in gen-
eral, but we do consider our results as highly encouraging for further research. We
believe such research could yield significant further improvement by addressing
key current limitations: (1) the scalability to larger instances, (2) the depen-
dency on example solutions and (3) the heuristic nature of the scoring function.
First, while 100 nodes is not far from the size of common benchmarks (100–1000
for VRP [60] and 20–200 for TSPTW [12]), scaling is a challenge, mainly due
to the ‘fully-connected’ O(n2) graph neural network. Future work could reduce
this complexity following e.g. [40]. The dependency on example solutions from
an existing solver also becomes more prominent for larger instances, but could
potentially be removed by ‘bootstrapping’ using DP itself as we, in some sense,
have done for TSPTW (see Sect. 3.4). Future work could iterate this process to
train the model ‘tabula rasa’ (without example solutions), where DP could be
seen analogous to MCTS in AlphaZero [57]. Lastly, the heat + potential score
function is a well-motivated but heuristic function that was manually designed
as a function of the predicted heatmap. While it worked well for the three prob-
lems we considered, it may need suitable adaption for other problems. Training
this function end-to-end [13,65], while keeping a low computational footprint,
would be an interesting topic for future work.

Acknowledgement. We would like to thank Jelke van Hoorn and Johan van Rooij
for helpful discussions. Also we would like to thank anonymous reviewers for helpful
suggestions. This work was carried out on the Dutch national e-infrastructure with the
support of SURF Cooperative.

Appendix 1 The Graph Neural Network Model

For the TSP, we use the exact model from [32], which we describe here for
self-containment. The model uses node input features and edge input features,

204 W. Kool et al.

which get transformed into initial representations of the nodes and edges. These
representations then get updated sequentially using a number of graph convolu-
tional layers, which exchange information between nodes and edges, after which
the final edge representation is used to predict whether the edge is part of the
optimal solution.

Input Features and Initial Representation. The model uses input features for
the nodes, consisting of the (x, y)-coordinates, which are then projected into H-
dimensional initial embeddings x0

i (H = 300). The initial edge features e0ij are
a concatenation of a H

2 -dimensional projection of the cost (Euclidean distance)
cij from i to j, and a H

2 -dimensional embedding of the edge type: 0 for normal
edges, 1 for edges connecting K-nearest neighbors (K = 20) and 2 for self-loop
edges connecting a node to itself (which are added for ease of implementation).

Graph Convolutional Layers. In each of the L = 30 layers of the model, the node
and edge representations x�

i and e�
ij get updated into x�+1

i and e�+1
ij [32]:

x�+1
i = x�

i + ReLU

⎛

⎝BN

⎛

⎝W �
1x

�
i +

∑

j∈N (i)

σ(e�
ij)∑

j′∈N (i) σ(e�
ij′)

� W �
2x

�
j

⎞

⎠

⎞

⎠ (2)

e�+1
ij = e�

ij + ReLU
(
BN

(
W �

3e
�
ij + W �

4x
�
i + W �

5x
�
j

))
. (3)

Here N (i) is the set of neighbors of node i (in our case all nodes, including i,
as we use a fully connected input graph), � is the element-wise product and
σ is the sigmoid function, applied element-wise to the vector e�

ij . ReLU(·) =
max(·, 0) is the rectified linear unit and BN represents batch normalization [31].
W1,W2,W3,W4 and W5 are trainable parameter matrices, where we fix W4 = W5

for the symmetric TSP.

Output Prediction. After L layers, the final prediction hij ∈ (0, 1) is made inde-
pendently for each edge (i, j) using a multi-layer perceptron (MLP), which takes
eL

ij as input and has two H-dimensional hidden layers with ReLU activation and
a 1-dimensional output layer, with sigmoid activation. We interpret hij as the
predicted probability that the edge (i, j) is part of the optimal solution, which
indicates how promising this edge is when searching for the optimal solution.

Training. For TSP, the model is trained on a dataset of 1 million optimal solu-
tions, found using Concorde [2], for randomly generated TSP instances. The
training loss is a weighted binary cross-entropy loss, that maximizes the predic-
tion quality when hij is compared to the ground-truth optimal solution. Gener-
ating the dataset takes between half a day and a few days (depending on number
of CPU cores), and training the model takes a few days on one or multiple GPUs,
but both are only required once given a desired data distribution.

Deep Policy Dynamic Programming for Vehicle Routing Problems 205

1.1 Predicting Directed Edges for the TSPTW

The TSP is an undirected problem, so the neural network implementation10 by
[32] shares the parameters W l

4 and W l
5 in Eq. (3), i.e. W l

4 = W l
5, resulting in

el
ij = el

ji for all layers l, as for l = 0 both directions are initialized the same.
While the VRP also is an undirected problem, the TSPTW is directed as the
direction of the route determines the times of arrival at different nodes. To allow
the model to make different predictions for different directions, we implement W l

5

as a separate parameter, such that the model can have different representations
for edges (i, j) and (j, i). We define the training labels accordingly for directed
edges, so if edge (i, j) is in the directed solution, it will have a label 1 whereas
the edge (j, i) will not (for the undirected TSP and VRP, both labels are 1).

1.2 Dataset Generation for the TSPTW

We found that using our DP formulation for TSPTW, the instances by [8] were
all solved optimally, even with a very small beam size (around 10). This is
because there is very little overlap in the time windows as a result of the way
they are generated, and therefore very few actions are feasible as most of the
actions would ‘skip over other time windows’ (advance the time so much that
other nodes can no longer be served)11. We conducted some quick experiments
with a weaker DP formulation, that only checks if actions directly violate time
windows, but does not check if an action causes other nodes to be no longer
reachable in their time windows. Using this formulation, the DP algorithm can
run into many dead ends if just a single node gets skipped, and using the GNN
policy (compared to a cost based policy as in Sect. 4.4) made the difference
between good solutions and no solution at all being found.

We made two changes to the data generation procedure by [8] to increase the
difficulty and make it similar to [12], defining the ‘large time window’ dataset.
First, we sample the time windows around arrival times when visiting nodes in
a random order without any waiting time, which is different from [8] who ‘prop-
agate’ the waiting time (as a result of time windows sampled). Our modification
causes a tighter schedule with more overlap in time windows, and is similar to
[12]. Secondly, we increase the maximum time window size from 100 to 1000,
which makes that the time windows are in the order of 10% of the horizon12.
This doubles the maximum time window size of 500 used by [12] for instances
with 200 nodes, to compensate for half the number of nodes that can possibly
overlap the time window.

To generate the training data, for practical reasons we used DP with the
heuristic ‘cost heat + potential’ strategy and a large beam size (1M), which in
many cases results in optimal solutions being found.
10 https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn layers.py.
11 If all time windows are disjoint, there is only one feasible solution. Therefore, the

amount of overlap in time windows determines to some extent the ‘branching factor’
of the problem and the difficulty.

12 Serving 100 customers in a 100 × 100 grid, empirically we find the total schedule
duration including waiting (the makespan) is around 5000.

https://github.com/chaitjo/graph-convnet-tsp/blob/master/models/gcn_layers.py

206 W. Kool et al.

Appendix 2 Implementation

We implement the dynamic programming algorithm on the GPU using PyTorch
[53]. While mostly used as a Deep Learning framework, it can be used to speed
up generic (vectorized) computations.

2.1 Beam Variables

For each solution in the beam, we keep track of the following variables (storing
them for all solutions in the beam as a vector): the cost, current node, visited
nodes and (for VRP) the remaining capacity or (for TSPTW) the current time.
As explained, these variables can be computed incrementally when generating
expansions. Additionally, we keep a variable vector parent, which, for each solu-
tion in the current beam, tracks the index of the solution in the previous beam
that generated the expanded solution. To compute the score of the policy for
expansions efficiently, we also keep track of the score for each solution and the
potential for each node for each solution incrementally.

We do not keep past beams in memory, but at the end of each iteration, we
store the vectors containing the parents as well as last actions for each solution
on the trace. As the solution is completely defined by the sequence of actions,
this allows to backtrack the solution after the algorithm has finished. To save
GPU memory (especially for larger beam sizes), we store the O(Bn) sized trace
on the CPU memory.

For efficiency, we keep the set of visited nodes as a bitmask, packed into
64-bit long integers (2 for 100 nodes). Using bitwise operations with the packed
adjacency matrix, this allows to quickly check feasible expansions (but we need to
unpack the mask into boolean vectors to find all feasible expansions explicitly).
Figure 4a shows an example of the beam (with variables related to the policy
and backtracking omitted) for the VRP.

2.2 Generating Non-dominated Expansions

A solution a can only dominate a solution a′ if visited(a) = visited(a′) and
current(a) = current(a′), i.e. if they correspond to the same DP state. If this is
the case, then, if we denote by parent(a) the parent solution from which a was
expanded, it holds that

visited(parent(a)) = visited(a) \ {current(a)}
= visited(a′) \ {current(a′)}
= visited(parent(a′)).

This means that only expansions from solutions with the same set of visited
nodes can dominate each other, so we only need to check for dominated solutions
among groups of expansions originating from parent solutions with the same
set of visited nodes. Therefore, before generating the expansions, we group the

Deep Policy Dynamic Programming for Vehicle Routing Problems 207

Fig. 4. Implementation of DPDP for VRP (Color figure online)

current beam (the parents of the expansions) by the set of visited nodes (see
Fig. 4). This can be done efficiently, e.g. using a lexicographic sort of the packed
bitmask representing the sets of visited nodes13.

Travelling Salesman Problem. For TSP, we can generate (using boolean
operations) the B ×n matrix with boolean entries indicating feasible expansions

13 For efficiency, we use a custom function similar to torch.unique, and argsort the
returned inverse after which the resulting permutation is applied to all variables in
the beam.

208 W. Kool et al.

(with n action columns corresponding to n nodes, similar to the B × 2n matrix
for VRP in Fig. 4), i.e. nodes that are unvisited and adjacent to the current
node. If we find positive entries sequentially for each column (e.g. by calling
torch.nonzero on the transposed matrix), we get all expansions grouped by
the combination of action (new current node) and parent set of visited nodes, i.e.
grouped by the DP state. We can then trivially find the segments of consecutive
expansions corresponding to the same DP state, and we can efficiently find the
minimum cost solution for each segment, e.g. using torch scatter

14.

Vehicle Routing Problem. For VRP, the dominance check has two dimen-
sions (cost and remaining capacity) and additionally we need to consider 2n
actions: n direct and n via the depot (see Fig. 4). Therefore, as we will explain,
we check dominances in two stages: first we find (for each DP state) the sin-
gle non-dominated ‘via-depot’ expansion, after which we find all non-dominated
‘direct’ expansions (see Fig. 4b).

The DP state of each expansion is defined by the expanded node (the new
current node) and the set of visited nodes. For each DP state, there can be only
one15 non-dominated expansion where the last action was via the depot, since all
expansions resulting from ‘via-depot actions’ have the same remaining capacity
as visiting the depot resets the capacity (see Fig. 4b). To find this expansion, we
first find, for each unique set of visited nodes in the current beam, the solution
that can return to the depot with lowest total cost (thus including the cost to
return to the depot, indicated by a dashed green rectangle in Fig. 4). The single
non-dominated ‘via-depot expansion’ for each DP state must necessarily be an
expansion of this solution. Also observe that this via-depot solution cannot be
dominated by a solution expanded using a direct action, which will always have
a lower remaining vehicle capacity (assuming positive demands) as can bee seen
in Fig. 4b. We can thus generate the non-dominated via-depot expansion for each
DP state efficiently and independently from the direct expansions.

For each DP state, all direct expansions with cost higher (or equal) than the
via-depot expansion can directly be removed since they are dominated by the via-
depot expansion (having higher cost and lower remaining capacity, see Fig. 4b).
After that, we sort the remaining (if any) direct expansions for each DP state
based on the cost (using a segmented sort as the expansions are already grouped
if we generate them similarly to TSP, i.e. per column in Fig. 4). For each DP
state, the lowest cost solution is never dominated. The other solutions should be
kept only if their remaining capacity is strictly larger than the largest remaining
capacity of all lower-cost solutions corresponding to the same DP state, which
can be computed using a (segmented) cumulative maximum computation (see
Fig. 4b).

14 https://github.com/rusty1s/pytorch scatter.
15 Unless we have multiple expansions with the same costs, in which case can pick one

arbitrarily.

https://github.com/rusty1s/pytorch_scatter

Deep Policy Dynamic Programming for Vehicle Routing Problems 209

TSP with Time Windows. For the TSPTW, the dominance check has two
dimensions: cost and time. Therefore, it is similar to the check for non-dominated
direct expansions for the VRP (see Fig. 4b), but replacing remaining capacity
(which should be maximized) by current time (to be minimized). In fact, we could
reuse the implementation, if we replace remaining capacity by time multiplied
by −1 (as this should be minimized). This means that we sort all expansions for
each DP state based on the cost, keep the first solution and keep other solutions
only if the time is strictly lower than the lowest current time for all lower-cost
solutions, which can be computed using a cumulative minimum computation.

2.3 Finding the Top B Solutions

We may generate all ‘candidate’ non-dominated expansions and then select the
top B using the score function. Alternatively, we can generate expansions in
batches, and keep a streaming top B using a priority queue. We use the latter
implementation, where we can also derive a bound for the score as soon as we
have B candidate expansions. Using this bound, we can already remove solutions
before checking dominances, to achieve some speedup in the algorithm.16

2.4 Performance Improvements

There are many possibilities for improving the speed of the algorithm. For exam-
ple, PyTorch lacks a segmented sort so we use a much slower lexicographic sort
instead. Also an efficient GPU priority queue would allow much speedup, as we
currently use sorting as PyTorch’ top-k function is rather slow for large k. In
some cases, a binary search for the k-th largest value can be faster, but this
introduces undesired CUDA synchronisation points.

References

1. Accorsi, L., Vigo, D.: A fast and scalable heuristic for the solution of large-scale
capacitated vehicle routing problems. Transp. Sci. 55(4), 832–856 (2021)

2. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP Solver (2006).
http://www.math.uwaterloo.ca/tsp/concorde

3. Bai, R., et al.: Analytics and machine learning in vehicle routing research. arXiv
preprint arXiv:2102.10012 (2021)

4. Bellman, R.: On the theory of dynamic programming. Proc. Natl. Acad. Sci. U.S.A.
38(8), 716 (1952)

5. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM (JACM) 9(1), 61–63 (1962)

6. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

16 This may give slightly different results if the scoring function is inconsistent with
the domination rules, i.e. if a better scoring solution would be dominated by a worse
scoring solution but is not since that solution is removed using the score bound
before checking the dominances.

http://www.math.uwaterloo.ca/tsp/concorde
http://arxiv.org/abs/2102.10012
http://arxiv.org/abs/1611.09940

210 W. Kool et al.

7. Bertsekas, D.: Dynamic Programming and Optimal Control, vol. 1. Athena Scien-
tific (2017)

8. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.: Com-
bining reinforcement learning and constraint programming for combinatorial opti-
mization. In: AAAI Conference on Artificial Intelligence (AAAI) (2021)

9. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. In: Advances in Neural Information Processing Systems (NeurIPS), pp.
6281–6292 (2019)

10. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J.
Comput. 15(3), 233–248 (2003)

11. da Costa, P.R.d.O., Rhuggenaath, J., Zhang, Y., Akcay, A.: Learning 2-opt heuris-
tics for the traveling salesman problem via deep reinforcement learning. In: Asian
Conference on Machine Learning (ACML) (2020)

12. Da Silva, R.F., Urrutia, S.: A general VNS heuristic for the traveling salesman
problem with time windows. Discret. Optim. 7(4), 203–211 (2010)

13. Daumé, H., III., Marcu, D.: Learning as search optimization: approximate large
margin methods for structured prediction. In: International Conference on Machine
Learning (ICML), pp. 169–176 (2005)

14. Delarue, A., Anderson, R., Tjandraatmadja, C.: Reinforcement learning with com-
binatorial actions: an application to vehicle routing. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS), vol. 33 (2020)

15. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.-M.: Learning
heuristics for the TSP by policy gradient. In: van Hoeve, W.-J. (ed.) CPAIOR
2018. LNCS, vol. 10848, pp. 170–181. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93031-2 12

16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959)

17. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for
the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371
(1995)

18. Falkner, J.K., Schmidt-Thieme, L.: Learning to solve vehicle routing problems with
time windows through joint attention. arXiv preprint arXiv:2006.09100 (2020)

19. Fu, Z.H., Qiu, K.B., Zha, H.: Generalize a small pre-trained model to arbitrarily
large tsp instances. In: AAAI Conference on Artificial Intelligence (AAAI) (2021)

20. Gao, L., Chen, M., Chen, Q., Luo, G., Zhu, N., Liu, Z.: Learn to design the heuris-
tics for vehicle routing problem. In: International Workshop on Heuristic Search
in Industry (HSI) at the International Joint Conference on Artificial Intelligence
(IJCAI) (2020)

21. Gasse, M., Chetelat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial
optimization with graph convolutional neural networks. In: Advances in Neural
Information Processing Systems (NeurIPS) (2019)

22. Gromicho, J., van Hoorn, J.J., Kok, A.L., Schutten, J.M.: Restricted dynamic
programming: a flexible framework for solving realistic VRPs. Comput. Oper. Res.
39(5), 902–909 (2012)

23. Gromicho, J.A., Van Hoorn, J.J., Saldanha-da Gama, F., Timmer, G.T.: Solving
the job-shop scheduling problem optimally by dynamic programming. Comput.
Oper. Res. 39(12), 2968–2977 (2012)

24. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://
www.gurobi.com

25. van Heeswijk, W., La Poutré, H.: Approximate dynamic programming with neural
networks in linear discrete action spaces. arXiv preprint arXiv:1902.09855 (2019)

https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12
http://arxiv.org/abs/2006.09100
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/1902.09855

Deep Policy Dynamic Programming for Vehicle Routing Problems 211

26. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
J. Soc. Ind. Appl. Math. 10(1), 196–210 (1962)

27. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for con-
strained traveling salesman and vehicle routing problems: Technical report (2017)

28. van Hoorn, J.J.: Dynamic programming for routing and scheduling. Ph.D. thesis
(2016)

29. Hottung, A., Bhandari, B., Tierney, K.: Learning a latent search space for routing
problems using variational autoencoders. In: International Conference on Learning
Representations (ICML) (2021)

30. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. In: European Conference on Artificial Intelligence (ECAI)
(2020)

31. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning
(ICML), pp. 448–456 (2015)

32. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network
technique for the travelling salesman problem. In: INFORMS Annual Meeting
(2019)

33. Joshi, C.K., Laurent, T., Bresson, X.: On learning paradigms for the travelling
salesman problem. In: Graph Representation Learning Workshop at Neural Infor-
mation Processing Systems (NeurIPS) (2019)

34. Kim, M., Park, J., Kim, J.: Learning collaborative policies to solve NP-hard rout-
ing problems. In: Advances in Neural Information Processing Systems (NeurIPS)
(2021)

35. Kok, A., Hans, E.W., Schutten, J.M., Zijm, W.H.: A dynamic programming heuris-
tic for vehicle routing with time-dependent travel times and required breaks. Flex.
Serv. Manuf. J. 22(1–2), 83–108 (2010)

36. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (ICLR) (2019)

37. Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: policy opti-
mization with multiple optima for reinforcement learning. In: Advances in Neural
Information Processing Systems (NeurIPS) (2020)

38. Laporte, G.: The vehicle routing problem: an overview of exact and approximate
algorithms. Eur. J. Oper. Res. (EJOR) 59(3), 345–358 (1992)

39. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

40. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a
framework for attention-based permutation-invariant neural networks. In: Interna-
tional Conference on Machine Learning (ICML), pp. 3744–3753. PMLR (2019)

41. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. In:
Advances in Neural Information Processing Systems (NeurIPS) (2021)

42. Li, Z., Chen, Q., Koltun, V.: Combinatorial optimization with graph convolutional
networks and guided tree search. In: Advances in Neural Information Processing
Systems (NeurIPS), p. 539 (2018)

43. Lu, H., Zhang, X., Yang, S.: A learning-based iterative method for solving vehicle
routing problems. In: International Conference on Learning Representations (2020)

44. Ma, Q., Ge, S., He, D., Thaker, D., Drori, I.: Combinatorial optimization by
graph pointer networks and hierarchical reinforcement learning. In: AAAI Inter-
national Workshop on Deep Learning on Graphs: Methodologies and Applications
(DLGMA) (2020)

212 W. Kool et al.

45. Ma, Y., et al.: Learning to iteratively solve routing problems with dual-aspect
collaborative transformer. In: Advances in Neural Information Processing Systems
(NeurIPS) (2021)

46. Malandraki, C., Dial, R.B.: A restricted dynamic programming heuristic algorithm
for the time dependent traveling salesman problem. Eur. J. Oper. Res. (EJOR)
90(1), 45–55 (1996)

47. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for
combinatorial optimization: a survey. arXiv preprint arXiv:2003.03600 (2020)

48. Mingozzi, A., Bianco, L., Ricciardelli, S.: Dynamic programming strategies for the
traveling salesman problem with time window and precedence constraints. Oper.
Res. 45(3), 365–377 (1997)

49. Nair, V., et al.: Solving mixed integer programs using neural networks. arXiv
preprint arXiv:2012.13349 (2020)

50. Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solv-
ing the vehicle routing problem. In: Advances in Neural Information Processing
Systems (NeurIPS), pp. 9860–9870 (2018)

51. Novoa, C., Storer, R.: An approximate dynamic programming approach for the
vehicle routing problem with stochastic demands. Eur. J. Oper. Res. (EJOR)
196(2), 509–515 (2009)

52. Nowak, A., Villar, S., Bandeira, A.S., Bruna, J.: A note on learning algorithms
for quadratic assignment with graph neural networks. In: Principled Approaches
to Deep Learning Workshop at the International Conference on Machine Learning
(ICML) (2017)

53. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems (NeurIPS), vol.
32, pp. 8026–8037 (2019)

54. Peng, B., Wang, J., Zhang, Z.: A deep reinforcement learning algorithm using
dynamic attention model for vehicle routing problems. In: Li, K., Li, W., Wang,
H., Liu, Y. (eds.) ISICA 2019. CCIS, vol. 1205, pp. 636–650. Springer, Singapore
(2020). https://doi.org/10.1007/978-981-15-5577-0 51

55. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

56. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking
optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2),
139–171 (2000)

57. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

58. Sun, Y., Ernst, A., Li, X., Weiner, J.: Generalization of machine learning for prob-
lem reduction: a case study on travelling salesman problems. OR Spectr. 43(3),
607–633 (2020). https://doi.org/10.1007/s00291-020-00604-x

59. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM
(2014)

60. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. (EJOR) 257(3), 845–858 (2017)

61. Vesselinova, N., Steinert, R., Perez-Ramirez, D.F., Boman, M.: Learning combi-
natorial optimization on graphs: a survey with applications to networking. IEEE
Access 8, 120388–120416 (2020)

62. Vidal, T.: Hybrid genetic search for the CVRP: open-source implementation and
swap* neighborhood. arXiv preprint arXiv:2012.10384 (2020)

http://arxiv.org/abs/2003.03600
http://arxiv.org/abs/2012.13349
https://doi.org/10.1007/978-981-15-5577-0_51
https://doi.org/10.1007/s00291-020-00604-x
http://arxiv.org/abs/2012.10384

Deep Policy Dynamic Programming for Vehicle Routing Problems 213

63. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3),
611–624 (2012)

64. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems (NeurIPS), pp. 2692–2700 (2015)

65. Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search opti-
mization. In: Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1296–1306 (2016)

66. Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics
for solving routing problems. IEEE Trans. Neural Netw. Learn. Syst. (2021)

67. Xin, L., Song, W., Cao, Z., Zhang, J.: Step-wise deep learning models for solving
routing problems. IEEE Trans. Ind. Inform. (2020)

68. Xin, L., Song, W., Cao, Z., Zhang, J.: NeuroLKH: combining deep learning model
with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem.
In: Advances in Neural Information Processing Systems (NeurIPS) (2021)

69. Xu, S., Panwar, S.S., Kodialam, M., Lakshman, T.: Deep neural network approxi-
mated dynamic programming for combinatorial optimization. In: AAAI Conference
on Artificial Intelligence (AAAI), vol. 34, pp. 1684–1691 (2020)

70. Yang, F., Jin, T., Liu, T.Y., Sun, X., Zhang, J.: Boosting dynamic program-
ming with neural networks for solving np-hard problems. In: Asian Conference
on Machine Learning (ACML), pp. 726–739. PMLR (2018)

	Deep Policy Dynamic Programming for Vehicle Routing Problems
	1 Introduction
	2 Related Work
	3 Deep Policy Dynamic Programming
	3.1 The Graph Neural Network
	3.2 Travelling Salesman Problem
	3.3 Vehicle Routing Problem
	3.4 Travelling Salesman Problem with Time Windows

	4 Experiments
	4.1 Travelling Salesman Problem
	4.2 Vehicle Routing Problem
	4.3 TSP with Time Windows
	4.4 Ablations

	5 Discussion
	References

