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Abstract

Multiple myeloma is an incurable and fatal cancer of immunoglobulin-secreting plasma cells. Most conventional therapies

aim to induce apoptosis in myeloma cells but resistance to these drugs often arises and drives relapse. In this study, we

sought to identify the best adjunct targets to kill myeloma cells resistant to conventional therapies using deep profiling by

mass cytometry (CyTOF). We validated probes to simultaneously detect 26 regulators of cell death, mitosis, cell signaling,

and cancer-related pathways at the single-cell level following treatment of myeloma cells with dexamethasone or

bortezomib. Time-resolved visualization algorithms and machine learning random forest models (RFMs) delineated putative

cell death trajectories and a hierarchy of parameters that specified myeloma cell survival versus apoptosis following

treatment. Among these parameters, increased amounts of phosphorylated cAMP response element-binding protein (CREB)

and the pro-survival protein, MCL-1, were defining features of cells surviving drug treatment. Importantly, the RFM

prediction that the combination of an MCL-1 inhibitor with dexamethasone would elicit potent, synergistic killing of

myeloma cells was validated in other cell lines, in vivo preclinical models and primary myeloma samples from patients.

Furthermore, CyTOF analysis of patient bone marrow cells clearly identified myeloma cells and their key cell survival

features. This study demonstrates the utility of CyTOF profiling at the single-cell level to identify clinically relevant drug

combinations and tracking of patient responses for future clinical trials.

Introduction

Evasion of apoptosis is a key feature of cancer cells [1].

The intrinsic (also called the BCL-2-regulated or mito-

chondrial) pathway of apoptosis is regulated by interac-

tions amongst three main factions of the BCL-2 family

of proteins: the apoptosis-initiating BH3-only proteins
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(e.g., BIM and PUMA), the pro-survival proteins (e.g.,

BCL-2, MCL-1 and BCL-XL) and the apoptosis effectors,

BAK and BAX [2]. Cellular stressors, such as cytotoxic

drugs, cause the pro-apoptotic BH3-only proteins to

overcome inhibition by the pro-survival proteins, leading

to the activation of BAX and/or BAK which permeabilize

the mitochondrial outer membrane [3, 4]. This event is

considered “the point of no return” for apoptosis as it

induces the activation of caspases that demolish the cell

[3, 5, 6]. The intrinsic apoptotic pathway can also be

directly activated by BH3-mimetic drugs [7, 8], such as

ABT-199/venetoclax, which selectively inhibits the pro-

survival protein BCL-2 and is an effective new treatment

for chronic lymphocytic leukemia [9]. Recent experience

with venetoclax suggests that the best outcomes occur

when BH3 mimetics are combined with additional antic-

ancer agents [7–9]. The challenge now is to determine

which BH3-mimetic drugs can kill which cancers and

identify the most effective combinations with standard or

emerging targeted therapies.

Multiple myeloma (MM) is an incurable cancer of

plasma cells [10]. Corticosteroids (e.g., dexamethasone),

immunomodulatory drugs (e.g., lenalidomide), and pro-

teasome inhibitors (e.g., bortezomib) are cornerstones of

MM therapy [11]. Despite their widespread use, many

questions remain about the precise mechanisms of action

of these drugs [10]. Moreover, how resistance to these

therapies arises and how best to overcome this problem

remains unclear [12]. Many studies have found that the

intrinsic apoptotic pathway plays a critical role in the

efficacy of MM treatments. The proteasome inhibitor,

bortezomib, has been shown to induce apoptosis in

myeloma cells by causing a reduction in the amount of the

pro-survival protein, MCL-1, and the upregulation of pro-

apoptotic BIM [13, 14]. Furthermore, myeloma cells

readily undergo apoptosis upon genetic deletion of the

pro-survival proteins MCL-1 and/or BCL-2 [15] or use of

the BH3 mimetics ABT-737 (inhibiting BCL-2, BCL-XL,

and BCL-W) [16, 17], ABT-199 (inhibiting BCL-2)

[18], or S63845 (inhibiting MCL-1) [7]. Therefore,

detailed understanding of the expression dynamics of the

various BCL-2 family members in myeloma upon treat-

ment could guide the design of optimal drug regimens

that more effectively kill myeloma cells with BH3

mimetics.

Here we used mass cytometry, or CyTOF [19–23], to

profile the dynamics of the apoptosis pathway in the

MM.1S cell line treated with two standard-of-care drugs,

dexamethasone or bortezomib. We resolve the major BCL-2

family proteins, key signaling pathways and cancer-relevant

cellular states at the single-cell level to provide a detailed

picture of apoptosis induced by these drugs, revealing dis-

tinct cellular trajectories to death. Machine learning

approaches identified MCL-1 as a key feature of cells sur-

viving dexamethasone or bortezomib treatment. Consistent

with this finding, potent synergistic killing of primary

patient myeloma cells was observed after treatment with

dexamethasone and an inhibitor of MCL-1. Our results

demonstrate the utility of mass cytometry single-cell pro-

filing of apoptosis in identifying promising combination

therapy for MM.

Materials and methods

Antibody conjugates and validation

Details on the antibody conjugates used in this study and

the generation of CRISPR cell lines, western blot and flow

cytometry analysis for validation are described in the Sup-

plementary Methods and Supplementary Table 4.

Cell lines

All cell lines used were obtained from ATCC and are

described in Supplementary Table 2. MM.1S cell line

CyTOF experiments were performed in triplicate using the

conditions outlined in Supplementary Table 3. Controls

were DMSO (0.1%) treated cells.

Mass cytometry

Cells were stained for viability with cisplatin [22] and

then fixed with 1.6% paraformaldehyde (PFA: Electron

Microscopy Sciences, PA, USA) for 10 min at room

temperature. Cells were pelleted and washed once with

cell staining medium (CSM, PBS with 0.5% BSA and

0.02% sodium azide). Cells were stored in CSM at

−80 °C. Thawed cells were barcoded using 20-plex pal-

ladium barcoding as described [24]. Following barcoding,

cells were pelleted and washed three times with CSM, and

stained with antibodies against surface markers (Supple-

mentary Table 4) for 1 h at room temperature. Cells were

permeabilized at 4 °C with methanol for 10 min and

subsequently stained with antibodies against intracellular

markers (Supplementary Table 4). Cells were stained with

125 nM 191Ir/193Ir DNA intercalator (Fluidigm, CA, USA)

in PBS with 1.6% PFA at 4 °C overnight. Cells were

washed once with CSM, three times with double-distilled

water, filtered, and resuspended with EQ normalization

beads immediately before analysis using a CyTOF2 or

Helios CyTOF (Fluidigm, CA, USA). All FCS files gen-

erated by CyTOF were concatenated, normalized [25],

and debarcoded [24] using algorithms in Supplementary

Table 5. Single cells were gated using the Cytobank

software [26] based on event length and 191Ir/193Ir DNA
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content to exclude debris and doublets. Following single-

cell gating, live (i.e., cisplatinlow) cells were used for

subsequent analysis from Fig. 2c onwards.

Generation of heatmaps, FLOW-MAPs, and random
forest model (RFM)

Mean expression values for all proteins were calculated in

Cytobank and exported into R. These values were asinh

transformed and plotted in a heatmap in R. CyTOF data

were visualized using the FLOWMAPR package [23] with

all code to generate heatmaps and FLOW-MAPs available

at https://github.com/mesako/BCL2-Publication. Random

forest modeling was performed using the randomForest

package in R. Details are provided in Supplementary

Methods and code has been made available: https://github.

com/mesako/BCL2-Publication.

Tests for drug synergy

MM.1S, OPM2, AMO1, U266, KMS-12-BM, or H929 cells

were seeded in 96-well plates at 1 × 105 cells/well and

treated with five-point 1:8 serial dilutions (0.002–10 μM) of

dexamethasone and either S63845, ABT-199, or

A-1331852. Cell viability was determined by PI/Annexin V

staining after 24 h. The predicted additive effect was

calculated using the BLISS model of fractional indepen-

dence [27].

Patient recruitment, cells, and analysis

Bone marrow samples were obtained from MM patients

from the Royal Melbourne Hospital and Monash Health

(both in Melbourne, Australia) (Supplementary Table 6).

All patients provided written informed consent and the

study was approved by Human Research Ethics Commit-

tees/Institutional Review Boards: RMH (2005.008,

2012.244, 2016.305), Monash Health (HREC, project

number 14406A) and the Walter and Eliza Hall Institute

(G15/05).

Fresh bone marrow mononuclear cells were isolated by

Ficoll density gradient centrifugation. Cells (500,000)

were isolated and stained with anti-CD45 V450 (BD clone

HI30), anti-CD38 PE-Cy7 (BD clone HIT2), and anti-

CD138-APC (BD clone MI15) antibodies, with counting

beads added to determine a myeloma cell count (CD45
−CD38+CD138+/−). Total bone marrow mononuclear

cells containing at least 1000 CD45−CD38+ myeloma

cells were then treated with 100 nM S63845 or/and 100

nM dexamethasone. Cell viability was determined by PI/

Annexin V staining after 24 h. Representative staining is

shown in Supplementary Fig. 4 and sample calculation in

Supplementary Table 7.

Results

CyTOF resolution of BCL-2 family members

To develop probes enabling single-cell quantification of

major BCL-2 family members, we identified antibodies

against BCL-2, MCL-1, BCL-XL, BIM, BAX, and BAK

that were compatible with PFA/methanol-based fixation and

permeabilization conditions in myeloma cell lines. Anti-

body specificity was initially assessed by comparing flow

cytometry signals in parental cell lines with negative con-

trols rendered genetically deficient by CRISPR/Cas9-tar-

geting (Figs. 1a, b and S1a, b). BAK and BAX exist in an

inert conformation until an apoptotic stimulus activates

them to permeabilize the mitochondrial outer membrane

[28–30]. To identify antibodies that distinguish these states,

we compared the detection of BAK and BAX in cells before

and after activation with truncated (t)BID [31]. The anti-

BAK antibody G317–2 specifically resolved activated

forms of BAK (aBAK), while anti-BAX antibody 3 detec-

ted both inert and activated forms of the BAX (Fig. 1b).

The mean intensities detected by CyTOF metal con-

jugates were compared with the protein expression levels

detected in western blots in 12 myeloma cell lines (Fig. 1c,

d). Overall, good correlation between the two detection

methods was observed for MCL-1, BCL-2, BCL-XL, and

BIM, but poor correlation for BAK and especially BAX

(Fig. 1e). These discrepancies likely reflect the different

antibody clones used, with the western blot analysis

detecting both inactive and active forms of these proteins,

while the conjugates used for CyTOF were optimized for

the active forms of BAX/BAK. Overall, these data

demonstrate specific and robust detection of key BCL-2

family member proteins at the single-cell level by CyTOF.

Dynamic changes in myeloma cell state following
drug treatment

We then sought to profile apoptotic, cell cycle, and sig-

naling states in myeloma cells following treatment with the

standard-of-care cytotoxic drugs, bortezomib or dex-

amethasone. MM.1S cells were chosen because they

express high levels of all major pro-survival BCL-2 family

proteins. Cells were treated with drugs or vehicle, then

harvested in triplicate at early (6 h for bortezomib and 24 h

for dexamethasone) or late (24 h for bortezomib and 72 h

for dexamethasone) timepoints to capture the major transi-

tions during cell death [32, 33]. Fixed and permeabilized

cells were analyzed by CyTOF for expression of BCL-2

family members, activated apoptotic mediators (active

caspase-3 and cleaved PARP), cell cycle proteins, the

apoptosis-related signaling pathways NF-κB, ERK/p38,

mTOR, JAK/STAT, transcription factors (pCREB), or
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cancer-related proteins (p53 and c-MYC) at a single-cell

level. Cisplatin was used to distinguish live (cisplatinneg)

from dead (cisplatinpos) cells and, as expected, both treat-

ments induced substantial cell death over time. Accord-

ingly, the drugs also induced high levels of early apoptotic

parameters (aCASP3poscPARPpos cells) in cisplatinneg cells

(Fig. 2a).

A heatmap of the levels of various parameters in all cells

showed concordance in key markers of apoptotic states and

other dynamic changes over the time course (Fig. 2b).

Fig. 1 CyTOF probes for detection of BCL-2 family members.

a Representative histograms of the expression of the pro-survival proteins

MCL-1, BCL-2, and BCL-XL in U266B1 cells (shaded gray histograms)

versus isogenic CRISPR/Cas9-knockout control cells lacking these pro-

survival proteins (black lines) analyzed by intracellular flow cytometry.

b Representative histograms of the expression of pro-apoptotic BIM and

BAX in untreated KMS-12-PE cells (shaded gray histograms) or BAK in

KMS-12-PE cells treated with 100 nM tBid (aBAK) (shaded gray his-

tograms) versus isogenic CRISPR/Cas9-knockout controls (black lines)

analyzed by intracellular flow cytometry. c Immunoblotting of cell lysates

from 12 different myeloma cell lines for the indicated BCL-2 family

proteins and the loading control HSP70. d Histograms of the expression

of pro-survival and pro-apoptotic proteins in the same myeloma cell lines

assayed by CyTOF. e Dot-plot comparisons of western blot values

quantified using densitometry and median expression value by CyTOF

for each BCL-2 family protein. Pearson correlation values (r) are cal-

culated for each marker using all 12 multiple myeloma cell lines. Data

from c, d, and e are representative of two independent experiments.
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Histograms of the various proteins gated on cisplatinneg

cells following bortezomib or dexamethasone treatment also

showed clear changes in multiple pathways (Fig. 2c),

suggesting that many of these changes preceded apoptosis

and were involved in the life or death “decision”. The pro-

survival proteins BCL-2, BCL-XL, and MCL-1 and the

Deep profiling of apoptotic pathways with mass cytometry identifies a synergistic drug combination for. . . 2221



pro-apoptotic protein, BIM were all decreased to varying

extents (Fig. 2b, c). In addition, both drugs decreased cell

cycle proteins, activation of the CREB pathway (phospho-

CREB), RAS-RAF-MEK-ERK pathway (phospho-p38,

phospho-ERK), PI3K/AKT pathway (phospho-S6, phos-

pho-AKT), NF-κB transcription factor pathway (increased

IκBα), and c-MYC (Fig. 2b, c). A distinguishing feature

between the two treatments was the induction of p53 upon

treatment with bortezomib but not dexamethasone (Fig. 2b,

c). These data reveal dynamic changes in myeloma cells

after drug treatment at the population level (e.g., phospho-

S6 and MYC), but also changes restricted to subpopulations

of cells (e.g., MCL-1, phospho-CREB, phospho-p38, and

cell cycle regulators) (Fig. 2c). These observations prompt

the question—can single-cell analysis of these features

resolve the decisive step in the apoptotic response?

Visualizing drug-induced temporal changes in cell
state at the single-cell level

To visualize the high-dimensional changes in the proteins

measured at a single-cell level over time, we used FLOW-

MAP [23]. Each FLOW-MAP in Fig. 3 is representative of

10,000 individual cisplatinneg cells clustered to form 2000

nodes in a single graph. Within each timepoint, cells are

organized such that nodes with similar protein expression

profiles are near while dissimilar nodes lie further apart in

two-dimensional space. Each timepoint is clustered, then

data from adjacent timepoints are connected to build the

graph. The final FLOW-MAP displays putative trajectories

of cellular responses over time with untreated, early and late

timepoints denoted by blue, yellow, and pink, respectively

(Fig. 3a, d). Differences in the expression of individual

markers can be overlaid on these graphs (e.g., Fig. 3b, c, e,

f), with high expression indicated by red and low expression

by blue.

Following drug treatment, cells clustered into three

groups assigned as apoptotic, viable, or viable dividing

based on expression of key markers (Fig. 3). The apoptotic

group was aCASP3high and cPARPhigh, and this group

increased at later timepoints (Fig. 3a, b, d, e). Viable cells,

identified as aCASP3negcPARPlow, segregated into two

groups, with dividing cells distinguished as phospho-H3high,

a characteristic of cells in M phase (Fig. 3c, f). Other stages

of cell cycle were discerned by the levels of Cyclin A (S/G2

phase), Cyclin B1 (G2/M transition), and pRb (G1/S tran-

sition phase) [19]. Consistent with the heatmap and histo-

gram analyses (Fig. 2), this group decreased with time

following treatment with either drug (Fig. 3a, c, d, f). Thus,

FLOW-MAP visualizations identified three cell states and

intermediate nodes among them, suggestive of different

survival or death trajectories.

Machine-learning approaches with CyTOF data
identify determinants of cell survival

To identify features that distinguish viable from apoptotic

cells following drug treatment in an unbiased manner, we

developed single-cell classification RFMs. The models

were developed using a “training dataset” that consisted

of 80% of the data from one of our three treatment

replicates (80% Run 3 data). We classified cells from the

last timepoints (24 h for bortezomib and 72 h for dex-

amethasone) into two possible outcomes: “viable”

(aCASP3neg) or “apoptotic” (aCASP3pos) (Fig. 4a, S2a).

The RFM utilizes an ensemble of decision trees, whereby

each tree consists of a series of decisions aiming to

accurately sort each cell into a “viable” or “apoptotic”

class. Each decision is based on the expression levels of a

single marker from the CyTOF data (excluding definitive

apoptosis markers, aCASP3 or cPARP) (Fig. 4a, S2a),

analogous to a series of hierarchical-gating steps on one

marker at a time to arrive at a pure population of interest.

In the first model, termed the “BCL-2 family” model,

decisions were based on sequential cut-offs of MCL-1,

BCL-2, BCL-XL, BIM, BAX, and aBAK levels per cell.

In the second “most features” model, pAKT, p53,

pSTAT5, MYC IκBα, pS6, pCREB, p-p38, and pERK

were added to the BCL-2 family proteins. The RFM

produces a final classification based on popular vote

across many decision trees (Fig. 4a, S2a). The best model

was selected through tenfold cross-validation on the

training dataset. The relative effectiveness of each marker

in separating the two classes was ranked according to the

mean decrease in the Gini impurity index across all trees

in the ensemble (Fig. 4a). This index reflects how accurate

the groupings are (i.e., to what extent the “apoptotic”

group might contain “impurities” (viable cells)), assessed

by the aCASP3 status. The parameter that is most dis-

criminating between “apoptotic” versus “viable” cells

would provide the greatest reduction in impurity index.

Fig. 2 Substantial changes in cell cycle and signaling states

accompany apoptotic cell death following treatment of multiple

myeloma cells with cytotoxic drugs. a Representative histograms of

cisplatin levels (upper panels) and dot plots of cPARP versus aCASP3

levels (lower panels) in MM.1S cells over the time course of borte-

zomib or dexamethasone treatment. b Heatmap summary of relative

protein expression levels measured by mass cytometry in MM.1S cells

over time with the indicated treatments. The color scale indicates

z-score values after z-score normalization across rows of the asinh ratio

of change in expression levels for each marker relative to untreated

cells. c Representative histograms of protein expression or phosphor-

ylation states in MM.1S cells analyzed by mass cytometry before and

after treatment with dexamethasone or bortezomib. The levels of the

indicated parameters in MM.1S cells are shown following drug

treatment at early (yellow histograms) or late (pink histograms)

timepoints following drug treatment, or in untreated cells (blue his-

tograms). Data are representative of three independent experiments.
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In “most features” RFMs, pCREB, and MCL-1 were

clearly the most informative markers for distinguishing

apoptotic from viable myeloma cells following exposure to

either bortezomib or dexamethasone (Fig. 4b). There were

also some drug-specific features. For bortezomib treated

myeloma cells, p-p38, BIM, and p53 levels were ranked

highly, while in dexamethasone-treated cells, IκBα, pS6,

and BIM were also discriminating (Fig. 4b). RFMs trained

using the “BCL-2 family” parameter set reinforced the

finding that MCL-1 was the most informative feature

distinguishing viable and apoptotic myeloma cell popula-

tions (Fig. 4c).

To determine whether the RFMs derived from our

training dataset were robust across multiple experiments, we

tested the models against “test datasets”; 20% of Run 3 and

two complete, independent technical replicates (Runs 1 and

2). The model predictions of each cell being apoptotic or

viable were compared with its actual state based on the

levels of aCASP3 (Figs. 4d, S2a). Receiving operating

characteristic (ROC) curves had area under the curve

Fig. 3 FLOW-MAP visualizations demonstrate the cell state

dynamics of multiple myeloma cells following cytotoxic drug

treatment. a FLOW-MAP visualization of the response of live (i.e.,

cisplatinneg) MM.1S cells to bortezomib treatment at 0, 6, and 24 h,

colored according to timepoint, or b expression of activated Caspase-3

(aCASP3) and cleaved PARP (cPARP), or c Cyclin A, Cyclin B, pH3,

and pRB. d FLOW-MAP visualization of the response of MM.1S cells

to dexamethasone treatment at 0, 24, and 72 h, colored according to

timepoint, or e expression of activated Caspase-3 (aCASP3) and

cleaved PARP (cPARP), or f Cyclin A, Cyclin B, pH3, and pRB.

FLOW-MAPs used 10,000 cells randomly subsampled and merged

into 2000 clusters from each timepoint of treatment.
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(AUC) values that exceeded 96% for all models, indicating

that the models are highly sensitive, specific and robust,

despite any experimental variations (Fig. 4e). Performance

was comparable between the bortezomib- and

dexamethasone-treatment models. The “BCL-2 family”

model utilizing only the six BCL-2 family proteins as

2224 C. E. Teh et al.



features was only marginally less accurate than the “most

features” model across all datasets (Fig. 4e). These findings

indicate that the RFMs are highly accurate and robust,

identifying that reduced amounts of MCL-1 within indivi-

dual myeloma cells treated with cytotoxic drugs may be

highly predictive of apoptosis.

Identification of apoptotic trajectories in myeloma
cells following drug treatment

To visualize the features identified by RFM as decisive in

the apoptotic response of myeloma cells treated with dex-

amethasone and/or bortezomib, we produced a single

FLOW-MAP incorporating CyTOF data from both time

courses (Fig. 5a, b). By filtering the FLOW-MAP graph to

show only one treatment time course at a time, we could

directly compare features present in bortezomib- versus

dexamethasone-treated cells (Fig. 5a, b). Overall, FLOW-

MAPs of the two treatments overlapped substantially

(Fig. 5a, b). This outcome suggests that both drugs induced

a similar trajectory to apoptosis in myeloma cells. Con-

sistent with this finding, RFMs trained on data from cells

treated with bortezomib or dexamethasone could predict the

apoptotic response of cells treated with the other drug with

relatively high accuracy (AUC > 80%) (Fig. 5c).

Overlay of pCREB and MCL-1 levels on these FLOW-

MAPs demonstrated higher amounts of these species in

viable cells relative to their apoptotic counterparts after

treatment with either drug (Fig. 5a, b). Interestingly, cells

with low amounts of MCL-1 and pCREB were apparent in

nonapoptotic (aCasp3neg) population on the FLOW-MAPs

(FP1; aCASP3negpCREBlowMCL-1low), revealing a putative

common trajectory to apoptosis provoked by both drugs

(Fig. 5a, b). However, an alternative population (FP2;

p53highBIMhighMCL-1high) was unique to bortezomib treat-

ment (Fig. 5a). This population accounted for the relatively

higher discrimination provided by p53 in the bortezomib

RFM than observed with dexamethasone treatment (Fig. 4b)

and suggests an additional apoptotic trajectory in cells

treated with the proteasome inhibitor.

Loss of MCL-1 precedes apoptosis in
dexamethasone-treated myeloma cells

We next sought to determine whether the apoptotic trajectory

identified by reduced MCL-1 and pCREB (FP1) causes

apoptosis or is a consequence of death in other cells. We

performed CyTOF analysis of dexamethasone-treated wild-

type or BAK
−/−

BAX
−/− MM.1S cells to inhibit apoptosis

downstream of MCL-1 pro-survival function. As expected,

the aCASP3poscPARPpos apoptotic population was absent

from dexamethasone-treated BAK
−/−

BAX
−/− myeloma cells

(Fig. 6a–c), confirming that all of the killing observed in these

cells operated via the intrinsic apoptotic pathway. Overlaying

the resulting FLOW-MAP graph with the expression of key

features showed that FP1 (highlighted by dashed ellipse, right

panels) was maintained in BAK
−/−

BAX
−/− cells, despite not

progressing to the final stages of apoptosis (Fig. 6a, b). These

data indicate that the features identified by the RFMs occur in

the same cells and are not a consequence of BAX/BAK-

mediated apoptosis following dexamethasone treatment, but

rather, likely to be the critical initiating event.

MCL-1 inhibition synergizes with dexamethasone to
induce apoptosis in myeloma cells

Our data show that high levels of pCREB and MCL-1

coincide in viable cells and discriminate them from cells

undergoing dexamethasone-induced apoptosis. CREB can

control Mcl1 transcription [34]; therefore, we hypothesized

that selective inhibition of MCL-1 alone would enhance the

apoptotic response of myeloma cells to dexamethasone. To

test this hypothesis, we compared apoptosis in MM.1S cells

using dexamethasone combined with the BCL-2 inhibitor,

ABT-199 [35], the BCL-XL inhibitor, A-1331852 [8], or

the MCL-1 inhibitor, S63845 [7]. Limited apoptosis was

induced by dexamethasone treatment combined with BCL-2

inhibition for 24 h (Fig. 7a). The BCL-XL inhibitor alone

induced substantial apoptosis at high doses (>0.1 μM) and

some synergistic killing when combined with dex-

amethasone (Fig. 7a). However, the combination of

Fig. 4 Random forest models trained on mass cytometry time

course data identify the key features of cytotoxic drug-induced

apoptosis. a Schematic representation of random forest model-

learning using single-cell CyTOF data. MM.1S cells at late time-

points after drug treatment are separated into “apoptotic” or “viable”

cells based on aCASP3 levels. Random forest models are trained to

correctly classify cells into these two groups based on other features,

through tenfold cross-validation on training data. Markers that con-

sistently improve the purity of the two populations when used are

reflected by a larger mean decrease in Gini impurity index. b Mean

decreases in Gini impurity index for all markers included in random

forest models, using “most features” measured by CyTOF in single

cells, in the bortezomib-specific and dexamethasone-specific models.

c Mean decreases in Gini impurity index for “BCL-2 family” proteins

included in random forest models for bortezomib- or dexamethasone-

treated multiple myeloma cells. d Schematic diagram of the assess-

ment of random forest models using set-aside test data or data from

independent CyTOF analyses. Similar to the data used to train the

models, MM.1S cells from the last timepoint of drug treatment are

gated on aCASP3 levels and designated as “viable” or “apoptotic.”

The drug-specific random forest models are then tested against these

states and accuracy is assessed across the cell population. e Receiving

operating characteristic (ROC) curves illustrating the accuracy of each

drug-specific model (bortezomib or dexamethasone) using “most

features” or restricted to only the “BCL-2 family” parameters. Results

are shown for two independent runs (technical replicates Run 1 in red

and Run 2 in green) as well as the set-aside test data (Run 3 in blue).

The area under the curve (AUC) is shown for each model and each

separate dataset.
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dexamethasone and the MCL-1 inhibitor S63845 caused

marked cell death at low concentrations, with 1.25 μM

dexamethasone and 0.02 μM S63845 inducing apoptosis in

90% of MM.1S cells (Fig. 7a, b). The interaction landscape

for the drug combinations [36] indicated synergism between

dexamethasone and the MCL-1 inhibitor over the whole
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dose-response matrix, with the strongest effect (BLISS

scores ~50–60) found when the dose of S63845 was fixed at

0.156 μM (Fig. 7b). All combinations of BH3-mimetic

drugs with dexamethasone achieved some level of coop-

erativity in cell killing at the highest drug concentration

tested (10 μM); however, the highest delta BLISS score and

cell death was observed in the dexamethasone/S63845

combination (Fig. 7b). The sensitivity of MM.1S cells to

this drug combination was also observed to some extent in a

xenograft model (Supplementary Fig. 3a, b). Furthermore,

the combination of S63845 with bortezomib induced greater

apoptosis of MM.1S cells than either drug alone, although

the relatively high levels of cell death induced by bortezo-

mib limited the capacity to resolve further synergy (Sup-

plementary Fig. 3c). Hence, these comparisons of the

synergism of BH3-mimetic drugs with dexamethasone or

bortezomib were consistent with the RFM ranking of MCL-

1 as the pivotal pro-survival protein following treatment

(Fig. 4).

To determine whether this synergy between dex-

amethasone and the MCL-1 inhibitor S63845 was a com-

mon feature in myeloma cells, we also generated interaction

landscapes for five other cell lines following treatment with

drugs for 24 h. We found that dexamethasone and S63845

induced synergistic killing of OPM2 and AMO1 cells but

had minimal or no synergy in KMS-12-BM, U266, and

H929 cells (Fig. 7c).

These findings were recapitulated in primary myeloma

cells. Cells from bone marrow samples isolated from 12

different MM patients at diagnosis were incubated for 24 h

with 100 nM dexamethasone and/or 100 nM S63845 and

apoptosis was quantified relative to the level of spontaneous

death observed in vehicle-treated cells. Consistent with the

MM.1S cell line data, synergistic killing with dex-

amethasone and S63845 was observed in primary myeloma

cells from 10 of 12 of patients, with four patients displaying

very strong synergy (BLISS scores > 16) (Fig. 8a, b). These

results indicate that combining an MCL-1 inhibitor with

dexamethasone has the potential to enhance killing mye-

loma cells, yet that there is also substantial heterogeneity in

the response. To probe this observation further and test the

capacity for mass cytometry to detect cell survival para-

meters of primary patient cells, we subjected two samples to

CyTOF analysis with an expanded panel of probes,

designed to resolve myeloma cells. Visualization of these

data using t-distributed stochastic neighbor embedding

(tSNE), with overlay of the expression of key markers,

resolved a putative myeloma cell population defined as

CD45lowCD38highCD138pos/neg and IRF4pos in bone marrow

cells from both patients (Fig. 8c). Interestingly, the amounts

of MCL-1 in these myeloma cell populations differed.

Relatively high amounts were observed in myeloma cells

from patient #12, which exhibited strong synergistic killing

by dexamethasone and S63845, compared with those from

patient #11, in which this drug combination low synergy

(Fig. 8b, d). These data demonstrate the capacity of CyTOF

to resolve myeloma cells in bone marrow samples from

patients and their expression of key pro-survival proteins.

Discussion

The importance of the BCL-2 protein family in the control

of cell survival makes them attractive drug targets in MM.

The BH3-mimetic drugs navitoclax (inhibitor of BCL-2,

BCL-XL, and BCL-W) and venetoclax (a specific inhibitor

of BCL-2) can induce apoptosis in primary patient-derived

myeloma cells in vitro and ex vivo [16, 17, 37–40].

Accordingly, venetoclax monotherapy in patients with

relapsed/refractory MM has demonstrated efficacy, but thus

far has yielded only a modest overall response (21%)

relative to chronic lymphocytic leukemia or mantle cell

lymphoma [9, 18]. Although this outcome highlights the

potential for BH3-mimetic drugs in treating MM, it also

demonstrates that heterogeneity among MM patients and

therapeutic resistance are important problems. Studies have

shown that myeloma cells with the t(11;14) chromosomal

translocation exhibit heightened responses to venetoclax

[38, 41], with evidence that these cancerous cells have

higher expression of BCL-2 relative to BCL-XL and MCL-

1 [18]. Coadministration of standard-of-care therapies, such

as dexamethasone, may also change this interaction land-

scape. Heterogeneous responses to dexamethasone can alter

the balance of the BCL-2 family of proteins at the popu-

lation level in myeloma cells [42, 43]. The approaches in

our study could be used to monitor the relative expression

of BCL-2 family members and other pathways at the single-

cell level in myeloma cells from patients at diagnosis and

during therapy to inform optimal therapeutic combinations,

including BH3-mimetic drugs.

It is clear that the interplay amongst members of the

BCL-2 family of proteins can engender resistance to navi-

toclax or venetoclax (e.g., [44–46]). However, it has been

challenging to determine the critical events in the small

fraction of cells that, at any point in time, are engaged in

making the decision to live or die. Mass cytometry is well

Fig. 5 FLOW-MAP comparison of key model features following

bortezomib or dexamethasone treatment. FLOW-MAP visualiza-

tion comparing response with (a) bortezomib or (b) dexamethasone

treatment in MM.1S cells. A single FLOW-MAP was produced with

data from both treatment time courses using the same markers as

clustering variables as listed in Fig. 3, colored by time and levels of

aCASP3, pCREB, MCL-1, IκBα, pS6, BIM, and p53. c ROC curve

showing the accuracy of cross-testing drug-specific models, with

random forest models using “most features” or restricted to only the

“BCL-2 family” proteins. The AUC is shown for each model and each

pair of drug-specific model and drug data.
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suited to this endeavor because it allows high-throughput,

high-parameter resolution at the single-cell level. Our vali-

dated panel of antibodies specific for the major apoptotic

regulators and key-signaling states could resolve the pivotal

parameters in myeloma cell apoptosis induced by dex-

amethasone or bortezomib. Machine-learning approaches

and visualization algorithms that interrogate the data at the

single-cell level, rather than analysis of summaries of

population behavior (e.g., mean or aggregate expression

levels), were most revealing in this regard. The utility of this

analytical paradigm was demonstrated by the identification

and exploitation of a pCREB/MCL-1 axis that maintains the

survival of myeloma cells following dexamethasone or

bortezomib treatment.

Fig. 6 FLOW-MAP visualization of the key features in the apop-

totic response to dexamethasone in multiple myeloma cells reveals

a transitional population. FLOW-MAP visualization of response

to dexamethasone treatment comparing (a) parental MM.1 S and (b)

BAK
−/−

BAX
−/−MM.1S cell line. A single FLOW-MAP was produced

with data from both cell lines, using 6000 cells randomly subsampled

and merged into 1200 clusters from each timepoint of treatment in

each cell line. The FLOW-MAP was constructed using the same

markers as clustering variables as listed in Fig. 3, and colored

according to time or levels of aCASP3, pCREB, pS6, MCL-1, BIM,

and IκBα. c Dot plot of cPARP and aCASP3 levels for WT MM.1S

and BAK
−/−

BAX
−/− MM.1S cells.
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BCL-2, BCL-XL, or MCL-1 have each been implicated

in myeloma cell survival and some studies have employed

putative BH3 mimetics in an effort to target these proteins.

However, some presumptive BH3-mimetic compounds do

not specifically kill via the intrinsic pathway but induce cell

death in an entirely nonspecific manner (e.g., [47]),
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therefore the utility of pharmacological targeting these pro-

survival proteins in myeloma remains an important ques-

tion. We recently reported that MCL-1 was critical in many

common myeloma cell lines using gene editing and BH3

peptide variants [15] or validated MCL-1-specific BH3

mimetics [7]. Furthermore, MCL-1 is highly expressed in

primary myeloma cells from patients and higher levels of

expression were associated with a propensity to early

relapse and shorter patient survival with standard therapy

[48]. Our finding that the MCL-1 inhibitor, S63845,

synergized with dexamethasone to kill myeloma cells

extends upon these studies and highlights the importance of

this pro-survival protein in determining response versus

resistance to dexamethasone. A direct mechanism is likely,

whereby glucocorticoid receptor activation inhibits CREB

activity [49], which in turn curtails Mcl1 transcription [50]

and diminishes the amounts of this short-lived pro-survival

protein to induce apoptosis via the intrinsic pathway. Why

only a fraction of the cells exposed to dexamethasone

activate this cascade at any point in time remains an inter-

esting question. A deeper understanding of how these

mechanisms operate in individual cells may guide dosing

regimens for the combination of dexamethasone with MCL-

1 inhibitors, and the concentrations of the latter that best

balance efficacy and safety.

Fig. 7 Synergistic killing of multiple myeloma cells with MCL-1

inhibition combined with dexamethasone. a Mean (±SEM) viability

of the MM.1S cell line as measured by flow cytometric analysis of

propidium iodide (PI) versus Annexin V staining following treatment

with the combination of 1.25 μM of BH3-mimetic drugs as inhibitors

(i) of iBCL-2, iBCLXL, or iMCL-1 (S63845) and titration of dex-

amethasone (0–10 μM) compared with each treatment alone for 24 h.

The dotted horizontal line represents 50% loss of viability. b The

interaction landscapes identified from combination treatments in a. For

each combination, the landscapes are shown in 3D where the BLISS

scores represent the excess percentage inhibition beyond that expected

from additive interaction. c The interaction landscapes of OPM2,

AMO1, U266, KMS-12-BM, and H929 cell lines after combination

treatments with S63845 and dexamethasone for 24 h. Data from a and

b are representative of three independent experiments. Data from c are

representative of two independent experiments.

Fig. 8 Synergistic killing of myeloma cells from patients by com-

bining MCL-1 inhibition with dexamethasone. a Viability of bone

marrow cells isolated from multiple myeloma patients assessed after

24 h of treatment with dexamethasone, the combination of dex-

amethasone and S63845, and S63845 alone, relative to DMSO control.

b Box and whisker plot showing BLISS scores for ex vivo drug

synergy in primary myeloma cells from patients. c tSNE analysis of

treatment naive multiple myeloma patients 11 and 12 to represent the

higher dimensional relationships among bone marrow cells. Ellipse

highlights putative myeloma populations with the phenotype

CD45lowCD38posCD138pos/negIRF4pos. d MCL-1 protein levels mea-

sured by CyTOF gated on CD45lowCD38highCD138pos/neg and IRF4pos

treatment naive myeloma cells from patients 11 and 12.
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Beyond mechanistic studies of cell death, the mass

cytometry panel reported here may also be useful for pro-

filing cancer cell subpopulations in patients to identify

predictors of responses to treatment, particularly with BH3-

mimetic drugs. Previous mass cytometric analysis of MM

with cell surface markers delineated the aberrant B cell

phenotype in detail and identified substantial heterogeneity

among patients [34]. Similarly, a study in chronic myeloid

leukemia also incorporated CyTOF profiling of some BCL-

2 family proteins and found high expression of BCL-2 in a

population with stem cell-like characteristics that could be

targeted with venetoclax in preclinical models and primary

patient samples [51]. The ability to identify and characterize

subpopulations is especially valuable in MM as intraclonal

heterogeneity has gained significant interest, whereby dif-

ferent clones within an individual patient can predominate

depending on the pressure exerted by therapeutic interven-

tions [52]. Our preliminary data in two patients demon-

strates that an expanded CyTOF panel built around our

probes for cell death proteins can resolve functionally

relevant changes in myeloma cell heterogeneity. The

capacity to follow the response of myeloma cells from

patients following treatment with standard-of-care therapies

and/or BH3-mimetic drugs may identify predictors of

treatment response and mechanisms of resistance that could

influence therapy; an approach that has had value in other

settings [45, 46].

Taken together, these findings provide a strong rationale

for further investigation of dexamethasone and MCL-1

inhibitor combinations in the clinic. Several compounds,

including S64315 (a derivative of S63845 used in this study

[7] and AMG 176 [53, 54]) are now under investigation in

early phase clinical trials (e.g., ClinicalTrials.gov identifier

NCT02992483).
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