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Abstract

Motivation: Deep profiling the phenotypic landscape of tissues using high-throughput flow cytom-

etry (FCM) can provide important new insights into the interplay of cells in both healthy and dis-

eased tissue. But often, especially in clinical settings, the cytometer cannot measure all the desired

markers in a single aliquot. In these cases, tissue is separated into independently analysed sam-

ples, leaving a need to electronically recombine these to increase dimensionality. Nearest-neigh-

bour (NN) based imputation fulfils this need but can produce artificial subpopulations. Clustering-

based NNs can reduce these, but requires prior domain knowledge to be able to parameterize the

clustering, so is unsuited to discovery settings.

Results: We present flowBin, a parameterization-free method for combining multitube FCM data

into a higher-dimensional form suitable for deep profiling and discovery. FlowBin allocates cells to

bins defined by the common markers across tubes in a multitube experiment, then computes ag-

gregate expression for each bin within each tube, to create a matrix of expression of all markers

assayed in each tube. We show, using simulated multitube data, that flowType analysis of flowBin

output reproduces the results of that same analysis on the original data for cell types of >10%

abundance. We used flowBin in conjunction with classifiers to distinguish normal from cancerous

cells. We used flowBin together with flowType and RchyOptimyx to profile the immunophenotypic

landscape of NPM1-mutated acute myeloid leukemia, and present a series of novel cell types asso-

ciated with that mutation.

Availability and implementation: FlowBin is available in Bioconductor under the Artistic 2.0 free

open source license. All data used are available in FlowRepository under accessions: FR-

FCM-ZZYA, FR-FCM-ZZZK and FR-FCM-ZZES.

Contact: rbrinkman@bccrc.ca.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Flow cytometry (FCM) immunophenotyping is a powerful and high-

throughput analytical technique allowing the rapid quantification of

proteins on cells in suspension on a per-cell basis (Craig and Foon,

2008). Today, it is a critical step in both research and clinical deci-

sion making for leukemias (Craig and Foon, 2008; Swerdlow et al.,

2008; Wood et al., 2007), human immunodeficiency virus (HIV;

De Rosa et al., 2001) and a host of other diseases. However, a major

limitation is that data are typically analysed manually. Although the

combinatorial space in FCM data are often vast, investigators rely

primarily on intuition to guide their analysis, which may be error-

prone and difficult to reproduce (Aghaeepour et al., 2013; O’Neill

et al., 2013). Many prominent users of the technology have called

for improved techniques and software for automating FCM data
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analysis (Chattopadhyay et al., 2008; Finn, 2009; Robinson et al.,

2012).

In answer, the bioinformatics community has developed tools

for computational deep profiling of high-dimensional FCM data

(Bendall and Nolan, 2012; Bendall et al., 2012). One example is

flowType (Aghaeepour et al., 2012a; O’Neill et al., 2014), which ex-

haustively stratifies all combinations of markers, and its sister pack-

age RchyOptimyx (Aghaeepour et al., 2012b; O’Neill et al., 2014),

which finds those cell types most important to external outcomes

such as disease state or patient survival, and distills these to their

simplest possible form. Another example is Spanning-tree

Progression Analysis of Density-normalized Events (SPADE), which

clusters cells multidimensionally, then maps those clusters into a 2D

representation using a minimum spanning tree algorithm (Qiu et al.,

2011). These and other approaches have recently been compared

and found to be extremely effective as part of a classification pipe-

line predicting acute myeloid leukemia (AML) from healthy patients

based on FCM data (Aghaeepour et al., 2013).

However, in many cases, the number of proteins needing to be

assayed exceeds the number that the cytometer available can meas-

ure in a single run. Furthermore, it is often essential, especially in

clinical testing, to use negative controls (either unstained or isotype)

to counteract technical variation across samples (Maecker and

Trotter, 2006). As a solution to this problem, standard practice is to

aliquot a sample into multiple tubes, each of which is run to assay

overlapping subsets of the total set of desired of proteins. This pro-

cess is common for modern clinical diagnostic FCM data; especially,

when immunophenotyping leukemias, where the standard method is

to include the pan-leukocyte marker (CD45) in each tube, and use

this in combination with right angle scattered light (side-scattered

light; SSC) to identify leukemic blasts in each tube separately

(Lacombe et al., 1997). For example, the current standard for leuke-

mia diagnosis established by the EuroFlow consortium recommends

an 8-colour multitube panel of overlapping reagents (van Dongen

et al., 2012).

Without some means of combining tubes together, existing tech-

niques for deep profiling can only be applied serially to each tube in

a multitube FCM assay, which results in a substantial loss in depth.

This can be illustrated with an example: consider an assay with six

tubes containing six markers each, with two of those markers over-

lapping (being present) in every tube. The complete number of dis-

tinct markers will be 2þ 4� 6 ¼ 26. When examining a binary

division of each marker into positive and negative expression, the

total number of possible cell types present is 326 � 2:5� 1012

(Aghaeepour et al., 2012a). However, working one tube at a time,

only 36 cell types can be elucidated in each tube, for a total of

36 � 6 ¼ 4374. For this example, serial analysis can only explore

approximately one hundred millionth of the complexity of the

phenotype space.

Per-cell nearest-neighbour (NN) merging of tubes attempts to

address this. This method is founded on making the assumption that

a cell in one tube is identical to its NN in another tube in terms of

the common population markers (Pedreira et al., 2008b). The ex-

pression vectors of all the NNs across tubes are merged, creating a

single, high-colour matrix of cellular expression across all tubes.

NN merging has proven effective as part of classification pipelines

(da Costa et al., 2010; Pedreira et al., 2008a; van Dongen et al.,

2012). However, as others have shown (Lee et al., 2011), and we

show later in this article, populations defined in terms of population

markers are frequently made up of a mixture of cell types, and NN

consequently tends to produce spurious combinations of markers.

This makes the merged output from NN poorly suited for applying

the deep profiling techniques, such as flowType and SPADE, as it

tends to skew the counts of cell types. One proposed solution to this

is to constrain the NNs mapping with clustering incorporating do-

main knowledge (Lee et al., 2011). However, this latter method re-

quires that all cell types expected to be present be prespecified in

order to parameterize the clustering step. So, although well suited to

diagnostic pipelines where the goal is to quantify known cell types,

it is poorly suited for discovery of new cell types. There remains a

need for a multitube combination method for FCM data that pro-

duces conservative, non-imputed data suitable for deep profiling. In

this article, we describe flowBin, an R/Bioconductor package that

we developed to fulfil this need.

2 Approach

FlowBin is designed to accept multiple FCM assays from the same

multitube assay and combine these into a complete matrix of meas-

urements for all the markers. To this end, flowBin consists of four

stages: (i) normalization, (ii) binning, (iii) bin matching across tubes

and (iv) expression measurement (Supplementary Fig. S1).

2.1 Population marker normalization
A consideration in combining multitube FCM is that variations be-

tween staining patterns across the aliquots need to be minimized

(Pedreira et al., 2008b). In opposition to this are a host of sources of

technical variation, ranging from slight differences in sample han-

dling and preparation to instrument drift between runs. Although

great pains are taken by operators to reduce these, small variations

may still exist. To counteract this, we included a feature in flowBin

to quantile normalize overlapping markers across tubes.

Beacause tubes contain physical samples drawn from a common

population, their true distributions in terms of overlapping markers

are expected to be identical, and any deviations to represent tech-

nical variation. Quantile normalization transforms two samples so

that they have identical distributions and has been used extensively

in gene expression analysis (Bolstad et al., 2003). FlowBin uses

quantile normalization to bring similar cells into good registration,

using the quantile normalization implementation from the Limma

Bioconductor package (Smyth, 2005). The Limma implementation

is capable of normalizing in the presence of missing values, and

hence can normalize data where the number of cells per tube varies.

2.2 Binning of population markers
In order to bin cells in terms of the overlapping markers present in

all tubes, flowBin provides two methods: K-means clustering and

probability binning. K-means clustering with a high value for K and

NN joining has been used successfully in the past for identifying cell

populations in FCM data (Aghaeepour et al., 2011). Probability bin-

ning is a binary space partitioning method for FCM data in which

each partitioning step maintains equal probability density within

both partitions created (Roederer et al., 2001). Probability binning

has been developed for use as a ‘micro-gating’ algorithm in the form

of the flowFP Bioconductor package (Rogers et al., 2008). Either

method is typically used to partition the cells in a sample into bins

containing enough cells to be able to extract average expression val-

ues; in our examples, we chose this to be around 200 cells per bin.

2.3 Bin matching across tubes
To enable expression to be combined accurately across tubes, the

bins must be spatially as close to identical as possible in each tube.

This is easier for flowFP, because the partitions have linear edges,
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which can easily be mapped directly to individual tubes. K-means, in

contrast, produces approximately spherical clusters, with more diffi-

cult to describe boundaries. Rather than attempt to extract the

boundaries of K-means clusters, flowBin draws on the idea of NN

mapping, except that bin membership is mapped, rather than cellu-

lar identity. FlowBin’s K-means clusters the first tube in the set, and

then for each subsequent tube, labels each cell according to the label

of the closest cell in the first tube. Once all the cells in each tube

have been assigned to cross-tube bins, flowBin moves on to calculat-

ing the expression of each bin in terms of the tube-specific expres-

sion markers.

2.4 Expression measurement
FlowBin provides three methods for determining expression in each

bin, modelled on common practice by FCM analysts. Two make use

of a negative control tube (i.e. one that has been stained for the over-

lapping markers but has no antibodies or non-reactant antibodies in

the expression channels). First, normalized median fluorescent inten-

sity (MFI) can be computed (by subtracting the untransformed MFI

in terms of negative control from that of the expression marker).

Second, a threshold may be set at the 98th percentile of the negative

control, and the proportion of cells exceeding that threshold in the

expression marker channel reported, as is common practice in many

studies (Colburn et al., 2009; Garrido et al., 2001; Hensor et al.,

2014). Finally, if negative controls are not available, simple median

fluorescent intensity can be computed as the expression measure.

2.5 Downstream analysis
The final output of flowBin is a high-dimensional matrix of expres-

sion values for each bin (Supplementary Fig. S1). This can provide a

useful overview of the makeup of a sample, for example by plotting

a heatmap of bin expression values. However, far greater utility

comes in downstream analysis. FlowBin output can be treated as

though it were FCM data with a low number of events but a high

number of markers. Then, methods for deep profiling, such as

flowType and RchyOptimyx, can be applied.

3 Validation

3.1 Validation of quantile normalization
To validate flowBin’s quantile normalization, we used an AML

dataset (Flow Repository:FR-FCM-ZZYA) used in FCM: critical as-

sessment of population identification methods (FlowCAP;

Aghaeepour et al., 2013). FlowCAP is a set of challenges in which

automated FCM analysis methods are compared. FlowCAP-II com-

pared classification pipelines, and one dataset included multitube

data for AML. This dataset contains flow cytometry standard (FCS)

files for 359 patients (normal¼316, AML¼43) with eight tubes

each, with six markers assayed in each tube. Every tube had an assay

for CD45 as well as forward-scattered light (FSC) and SSC.

FlowBin’s normalization was evaluated by applying it to each of

these markers.

An example result is shown in Supplementary Figure S3. In a sin-

gle dimension, all tubes are made to have identical cumulative distri-

bution functions. This is as expected for quantile normalization. To

achieve a quantitative, n-dimensional assessment of registration, we

used cytometric fingerprinting (Rogers et al., 2008). In the example

case shown, there was substantial deviation across tubes before nor-

malization, which was almost completely removed after.

To measure this objectively over the whole dataset, we applied

flowFP to measure the standard deviation (SD) before and after

normalization for each tube of all 359 samples. Of a total 2513

tubes, 2207 (88%) showed improvement, 39 (1.6%) showed no

change and 267 (11%) showed a wider (worse) SD following

normalization.

3.2 Comparison of binning methods
To aid users in choosing between the two binning methods flowBin

provides, we compared them on a representative sample from the

same AML dataset as for the quantile normalization

(FlowRepository: FR-FCM-ZZYA). This is shown in Supplementary

Figure S4.

K-means produces spheroid bins that are more likely to follow

the contours of the underlying data. FlowFP, in contrast, produces

bins with strictly horizontal–vertical borders, which are grid-like

and less likely to follow the underlying contours of the data. In

terms of variation in number of cells per bin, flowFP produces bins

with little variation (SD of means¼0.07). In contrast, K-means pro-

duces bins with a much wider variation (SD of means¼255), with

the largest bins containing up to 20-fold as many cells as the

smallest.

3.3 Comparison to NNs and Choice of k
To compare flowBin to the per-cell NN merging of Pedreira et al.,

we created a small, synthetic example using real data containing per-

ipheral blood mononuclear cells stained for CD3, CD4 and CD8.

For the source data, we used data from US Military HIV Natural

History Study (FlowRepository: FR-FCM-ZZZK). We first removed

doublets, debris, dead cells and monocytes, as per Aghaeepour et al.

(2012a), leaving only CD14– live cells. We then created two artifi-

cial tubes by randomly sampling two sets of 5000 cells from the ori-

ginal sample. Both tubes contained CD3 as the overlapping marker

through which they were recombined, while one tube contained

CD4, and the other CD8.

We repeated this resampling of the cells 100 times each for

flowBin (using K-means clustering and median fluorescent intensity

without negative controls), with k 2 f23 . . . 211g and for NNs. To

evaluate performance, we set quadrant gates at the thresholds of

CD4þ and CD8þ based on the raw data. For each sampling, we

computed the root mean square deviation (RMSD) of the proportion

of cells (or flowBin bins) falling within each quadrant compared

with the raw data.

The results are shown in Figure 1 and Supplementary Figure S5.

The RMSD for flowBin formed a curve, decreasing from low values

of k, to a trough at k¼128 and k¼256, then increasing as k ap-

proached the number of cells. For higher values of k, and for NNs, a

spurious CD4þCD8þ population was produced (Fig. 1c and d),

which is absent from the original data, and occurs only rarely in na-

ture (Parel and Chizzolini, 2004). FlowBin, with k¼128, produced

a spectrum of values in a hyperbolic curve between the two ‘true’

populations.

3.4 Validation on simulated multitube data from

polychromatic FCM
To assess the abilities and limitations of flowBin, we again took data

from US Military HIV Natural History Study. We preprocessed the

data as per Aghaeepour et al. (2012a), screening out debris, doublets

and non-viable cells, then finally gating for CD3þ cells (T cells).

Patients with fewer than 3000 events remaining were removed, leav-

ing 426 patients, with 12 fluorescent and two scatter channels.

To create simulated tubes, we chose CD3, CD4 and CD8 to use

as common markers, then divided the remaining nine among three

Deep profiling of multitube flow cytometry data 1625
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tubes. We divided the events for each patient randomly into three,

and discarded all the markers for each that were not to be included

in that tube. A summary of all the markers present in each tube is

shown in Supplementary Table S1.

We then ran flowBin on each patient’s three tubes, using FSC,

SSC, CD3, CD4 and CD8 as binning markers, with 128 bins and

flowFP as the binning method. We ran flowType on the flowBin

output (excluding CD3), and carried out survival analysis (Cox-PH

and the log-rank test) on the flowType data as per Aghaeepour et al.

(2012a). We also ran flowType and the subsequent survival analysis

on the original, full-colour FCM data, again as per Aghaeepour

et al. (2012a).

We compared the cell counts of individual cell types between the

true counts from the flowType run on the original high-colour data,

and the flowType run on the flowBin data, in terms of their Pearson

correlation. We also compared the P-values of the log-rank test for

each cell type.

Running flowType with 11 markers and two partitions per

marker gives a total of 311¼177, 147 possible cell types. We

excluded those with 0% abundance across all patients, leaving 119

479. Examining the three characteristic survival-associated cell types

found in Aghaeepour et al. (2012a), more abundant cell types (espe-

cially KI-67þCD127–) appear to have better correlation, while rarer

cell types (especially CD45ROþCD8þCCR5– CD27þCCR7–

CD127–) have much poorer correlations (Fig. 2a). Importantly, the

flowBin results for KI-67þCD127– show a strong correlation with

the true data, despite KI-67 and CD127 being in separate tubes.

Based on Pearson’s r for all cell types, this pattern holds for those

with high abundance (Fig. 2b). Although some low-abundance cell

types show strong correlations, it is likely that this was by chance,

due to their having very low values in all patients. Because the

flowBin results for the majority of cell types with a median

abundance of 10% or more had a strong Pearson correlation with

the true data, we chose to only do further analysis on those, leaving

1896 cell types.

Comparing P-values, these showed a relatively good correlation

(R2 ¼ 0:65), with the P-values resulting from flowBin being slightly

higher than the true P-values (Fig. 2c). Following Bonferroni correc-

tion, the cell types that were called as significant were matched be-

tween the true high-colour analysis and flowBin. FlowBin called

only 58 of the 592 (9.8%) the cell types that would be significant in

the true data. However, of the 66 flowBin called significant, 58

(88%) were correctly called.

4 Applications

4.1 Separation of AML and normal cells
It is frequently desirable to isolate dysplastic cells from healthy tis-

sue in order to characterize the dysplasia; we demonstrate here how

flowBin can be used to achieve this using the same multitube AML

dataset (Flow Repository:FR-FCM-ZZYA). Theoretically, the sam-

ples from the AML patients should contain a mixture of normal and

leukemic blast cells, while the healthy patient samples should only

contain normal cells. The problem of separating abnormal from nor-

mal cells is thus one of novelty detection, for which techniques, such

as single-class support vector machines (SVMs), are available (Chen

et al., 2001). We applied flowBin to both the normal and AML pa-

tients using K-means binning. We pooled all bins from the normal

samples, and trained a single-class SVM on these using the kernlab

package (Karatzoglou et al., 2004). We then applied the trained

SVM to the bins from the AML patients to predict which were nor-

mal and which dysplased.

The bins predicted to be normal fall mainly into well-clustered

populations showing expression patterns typical of healthy myeloid,

(a) (b) (d)

(c)

Fig. 1. Comparison between NNs merging and flowBin for two tubes computationally sampled from a real dataset. (a) Raw data (compensated, transformed

and filtered for debris), gated for CD3þ cells, and showing the true CD4 and CD8 distribution. (b) Example of merging by NNs. (c) Examples of merging by

flowBin, with varying bin size. (d) Results of merging 100 times each for NNs and flowBin. The best result (lowest RMSD) was for 128 bins, whereafter increasing

bin number caused RMSD to tend towards that of NN
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lymphoid and erythroid cells, respectively (Supplementary Fig. S6).

In contrast, the bins predicted to be abnormal show much greater

variance, and expression patterns typical of AML such as CD34 and

CD117 expression, and co-expression of the lymphoid markers CD4

and CD7 with myeloid markers.

4.2 FlowCAP-II
We entered a pipeline using flowBin for feature extraction along

with a voting classifier method. Binning within patients raised the

problem of linking features across patients for classification. To

solve this, we took each bin from each sample as a separate training

instance, labelled with the sample label, and then trained a SVM

classifier. For class prediction, we took the majority vote of the pre-

dicted labels for a given sample’s bins. Classification with parameter

optimization and 3-fold cross-validation was implemented using the

ksvm R package, but could in theory be made to work with any

modern classification method (Supplementary Fig. S7).

In the original FlowCAP-II competition, this pipeline performed

poorly in comparison with other algorithms, with an F-measure of

0.46 (Aghaeepour et al., 2013). In dissecting this performance,

it emerged that the classifier was vulnerable to class imbalance

(43 of 359 patients had AML). To address this issue, we added

bagging with down sampling to the classifier (Breiman, 1996).

This improved classifier, produced an F-measure of 0.96 when eval-

uated using the same methodology as was used in FlowCAP

(Supplementary Fig. S8).

4.3 FlowBin with flowType and RchyOptimyx to find cell

types in AML correlated with NPM1 mutation
To demonstrate the utility of flowBin, we applied it to a novel data-

set of 129 de novo AML cases (FlowRepository: FR-FCM-ZZES).

Each of these cases had multitube FCM data available from the time

of diagnosis. In addition, each had been genotyped for clinically

relevant frameshift mutations in the 12th exon of the NPM1 gene.

These mutations (hereafter referred to as NPM1-mt) indicate a good

prognosis and have a marked correlation with the absence of CD34

on the AML blast cells (Grisendi and Pandolfi, 2005; Schnittger

et al., 2005; Thiede et al., 2006; Verhaak et al., 2005) and, in certain

cases, HLA-DR (Syampurnawati et al., 2008).

Although high-level, single marker studies have been performed

to find other recurrent immunophenotypic characteristics of NPM1-

mt AML (Dalal et al., 2012; Syampurnawati et al., 2008), deep

(a)

(b) (c) (d)

Fig. 2. Performance on flowBin in reproducing a high-colour FCM analysis on simulated FCM data. (a) Comparison of counts of selected phenotypes between

actual data and simulated multitube data recombined by flowBin, with linear regression fit lines. Ki-67þ was selected as being representative of a phenotype with

the full range of abundance across patients. The remaining three phenotypes are the representative phenotypes of the three classes found in the original study

(Aghaeepour et al., 2012a). More abundant phenotypes show a good, though imperfect fit. Less abundant phenotypes show a poorer fit. (b) Pearson correlations

for all phenotypes between actual values and flowBin-recombined values, versus median abundance of the phenotype. Below an abundance of �0.1 (10% of all

cells in the sample), the correlation becomes decoupled from abundance. (c) Comparison of P-values between actual and flowBin-recombined data, for only

those phenotypes with >10% abundance. The P-values show a good correlation (R2 ¼ 0:65). (d) Cell types called as being significant for d. Cell types called as

being significant on flowBin-recombined simulated multitube data (blue) and the raw data (purple). Just fewer than 10% of the phenotypes that were called as

significant in the actual data were also called as such in the flowBin-processed data (high Type II error). Eight phenotypes were inappropriately called as signifi-

cant (very low Type I error)
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profiling of the condition’s immunophenotypic landscape has yet to

be undertaken. We performed such an analysis using flowBin and

flowType, with the hypothesis that within the immunophenotypic

landscape of AML, there may be additional cell types that are more

strongly correlated with NPM1 mutation than CD34þ/� alone.

To this end, we first used flowBin to combine tubes for each

sample and measure the expression of the mapped bins. We then

used flowType to delineate and count all cell types present, defined

over all combinations of up to six markers. We filtered out all cell

types not present in any patient, leaving 616 285. We then tested for

differences in abundance of each of these cell types between NPM1-

mt and wild-type patients using the Mann–Whitney U test with

Bonferroni–Holm correction for multiple testing (Supplementary

Fig. S2).

We then performed exploratory analysis using RchyOptimyx to

visualize the hierarchies within the 801 significant cell types. We

found that adding CD19�, CD20� and CD10� had little to no ef-

fect on the P-value of a cell type (Supplementary Fig. S9). This is

likely due to these (B-lymphoid) markers being extremely rare in

AML (Swerdlow et al., 2008), and hence not being expressed on the

important cell types at all, so that a negative gate for any of them

did not change which cells had that cell type. We consequently

excluded all cell types involving CD19�, CD20� or CD10�, bring-

ing the total cell types to 272.

These 272 cell NPM1 mutation-associated types are illustrated

in Figure 3. The cell types cluster into four main groups, two of

which are characteristically CD34þ and associated with the NPM1-

wt patient group, and two of which are characteristically CD34�
and associated with the NPM1-mt patient group.

Relative abundance of four groups of cell types with stronger

P-values, chosen by further exploration using RchyOptimyx, are

shown in Supplementary Figure S10. Gating for the presence of mye-

loid lineage markers CD13 and CD33 within the CD34� compart-

ment yields much stronger differences in abundance between

NPM1-wt and NPM1-mt than CD34� alone. Gating for CD2�
within the CD34� compartment yields a slightly better separation

than CD34� alone, but gating down further to CD4� and CD13þ
is a cell type that, while present in most NPM1-mt, is absent or

below 20% abundance in nearly all NPM1-wt. Gating for CD61�
and CD14� within the CD34þ compartment leads to a cell type

which is common in NPM1-wt but almost entirely absent in NPM1-

mt. Gating for HLA-DRþ and CD64� within the CD34þ compart-

ment leads to a cell type that occurs in a subset of NPM1-wt but is

entirely absent in NPM1-mt.

5 Discussion

5.1 Validation of quantile normalization
The results of the comparison between non-normalized and

normalized data suggest that quantile normalization can improve

the registration of cells in terms of their population markers. This

suggests that it should be considered in general before applying tube

combination methods, including flowBin.

5.2 Comparison of binning methods
For binning, flowFP gives much less numerically dispersed results

than K-means, which is essential for accurate flowType counts

(Supplementary Fig. S4). FlowFP binning may thus be a better

choice for downstream applications that depend on accurate cell

counts. For example, if flowFP is used for binning, the assumption

can be made that each data point in the flowBin results has the same

Fig. 3. Overview of cell types which showed significant differences in abundance between NPM1-mt and NPM1-wt. The cell types cluster into four main groups,

two of which are characteristically CD34þ and associated with the NPM1-wt patient group, and two of which are characteristically CD34� and associated with the

NPM1-mt patient group
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number of cells contained within it. If flowType is then applied to

that data, the counts of cell types which flowType produces can be

considered to be relatively accurate representations of the true

counts.

K-means, in contrast, gives better fitted bins, but with greater

variation. K-means binning thus may be a more attractive choice if

later back gating of interesting populations is desired. K-means may

also be the only feasible choice in cases where there are many popu-

lation markers, as flowFP’s binary space partitioning runs into com-

binatorial difficulties.

5.3 Comparison to NNs and choice of k
The comparison (Fig. 1) showed that flowBin with 128 or 256 bins

produced a distribution across quadrants and overall that more

closely approximated the true distribution, while NNs and flowBin

with higher bin numbers produced an artificial CD4þCD8þ popula-

tion. For all cases, including NNs, the deviation was relatively small,

never exceeding 0.15. This is likely due to the CD4þ and CD8þ

populations being slightly separated in terms of their CD3 expres-

sion (Supplementary Fig. S5b), allowing them to be separated in a

way better than random by both methods. The appearance of the

spurious population as bin number increases is likely due to cells

with similar values of CD3 expression but opposite CD4 and CD8

expression being mismatched. This is likely due to flowBin, espe-

cially at lower bin numbers, having a smoothing effect, causing ex-

pression levels to be weighted towards the centres of each

population, and thus better separated in terms of CD3.

These results suggest that flowBin, with 128 or 256 bins, is a bet-

ter choice for situations where it is desirable to recover the underly-

ing cell types accurately, such as cell type discovery. NNs merging,

due to its tendency to produce spurious combinations of marker ex-

pression, is poorly suited to techniques which require precise counts

of particular cell types, such as flowType, or manual analysis.

However, NNs has proven extremely effective when used as part of

a classification pipeline (da Costa et al., 2010; van Dongen et al.,

2012), whereas flowBin loses some information as a result of aver-

aging. As such, the two methods can be complementary to each

other.

5.4 Validation on simulated multitube data from

polychromatic FCM
When compared with simulated multitube data in a complete ana-

lysis pipeline with flowType, flowBin reproduced the true underly-

ing trends in the data, but with lowered statistical power and

sensitivity. The individual correlations (Fig. 2a and b) show that cell

type counts based on flowBin recombination of tubes reproduce the

true counts for most cell types of >10% abundance. This suggests

that while flowBin may not be suitable for analysis efforts examining

rare cell populations (such as minimal residual disease in leukemia

or T cell subsets), it is a useful tool for examining more abundant

cell types (e.g. the gross heterogeneity among tumour types).

For reproducing the results over the entire pipeline, flowBin per-

formed well once cell types of <10% average abundance were fil-

tered out. P-values of the survival analysis were close to those of the

pipeline run on the true data, but slightly raised. This resulted in

increased Type II error, but minimal Type I error. This suggests that

while flowBin introduces some noise, the final effect is only to lower

the statistical sensitivity of analyses performed on flowBin expres-

sion data, but to produce few false positives.

Interestingly, KI-67þ showed a slightly sigmoidal distribution in

Figure 2a. The likely reason for this is because flowBin produces

averages, while flowType uses a threshold (Fig. 1c). Thus, bins with

fewer positive cells will tend to have an average (flowBin) expression

which falls below the flowType threshold, it may be an avenue for

future investigation to attempt to mitigate this, for example by apply-

ing a logit transformation to flowBin expression data before passing it

to flowType. However, fitting logit transforms would be challenging

for most cell types, as their distributions would be a mixture of the sig-

moidal distributions of their component markers. Indeed, for KI-

67þCD127– in Figure 2a, the sigmoidal curve is partially cancelled

out, most likely by such mixing.

Also importantly, in this simulation, all three of the cell types of

interest found in the original study (Aghaeepour et al., 2012a),

Figure 2a, were defined by markers spanning multiple tubes. Thus,

none of those cell types could be found using flowType on the

uncombined single tubes. For multitube FCM data, there is a defi-

nite benefit in combining tubes using flowBin and then running

flowType, rather than just running flowType alone. However, it

may still be useful to apply flowType to the single tubes for a lower

dimensional but higher sensitivity search in parallel with the

flowBin–flowType analysis.

5.5 Separation of AML and normal cells
We have shown how flowBin in combination with one-class SVM

can be useful for separating normal from aberrant cells where a

good training set of normal cells is available. This can have applica-

tions for later AML studies where the ratio of normal cells to leu-

kemic is a confounding factor.

5.6 Identifying AML patients (FlowCAP 2)
We have shown that, despite poor performance in the initial

FlowCAP-II competition, a voting classifier used in conjunction with

flowBin can separate AML from normal cells, when balanced bagging

is added. On the AML dataset from FlowCAP, balanced bagging im-

proved performance substantially, with the F-measure increasing from

0.46 to 0.96, a number roughly in the middle of the field compared

with the other pipelines entered. This could be improved further by

incorporating other machine learning best practices, such as feature

selection. However, there are two levels of recursion already: the vot-

ing classifier and the bagging. Adding another layer of recursion

would likely increase the computational complexity prohibitively.

Instead, it would be better to recommend that flowBin be used in con-

junction with the best-performing techniques from FlowCAP, most

notably flowType and SPADE (Aghaeepour et al., 2013).

5.7 FlowBin with flowType and RchyOptimyx to find cell

types in AML correlated with NPM1 mutation
The overall pattern of association between CD34 expression and

NPM1 mutation shown in Figure 3 fits with previous reports

(Dohner et al., 2005; Thiede et al., 2006; Verhaak et al., 2005).

However, flowBin with flowType was able to find a multitude of

immunophenotypes within those classes (CD34þ and CD34–).

Referring to the groups examined in more detail in

Supplementary Figure S10, the first group, CD34�CD13þCD33þ,

fits with observations that blasts often express CD13 and CD33 in

NPM1-mt AML (Swerdlow et al., 2008). The second and third

groups, involving CD34�CD2� and CD34þCD2þ, are both cell

types which have been reported before in acute promyelocytic leuke-

mia (Albano et al., 2006), but not associated with NPM1. For the

cell types in the second and third groups, CD4 has been recently re-

ported to be associated with NPM1-mt, along with t(9;11) and

monocytoid AML (van Dongen et al., 2012). In the third group,
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CD61, a marker of megakaryoblasts, may fit with the observation

of dysmegakaryopoeisis in NPM1-mt AML (Falini et al., 2010).

6 Conclusion

FlowBin is a complete pipeline for combining multitube FCM data

via markers shared across tubes. Quantile normalization of those

markers to reduce technical variation is included. Of the two forms

of binning included, flowFP is most suitable for later flowType ana-

lysis, while K-means fits the contours of the data better. Compared

with NNs merging of tubes, flowBin produces cleaner data, with far

fewer false double-positive marker combinations. FlowBin with

flowType can reproduce true data for more abundant cell types, and

this data are suitable for statistical testing, albeit with lowered statis-

tical power (increased Type II error). Also, importantly, this is only

true for cell types of >10% abundance, suggesting that flowBin, and

potentially recombining of multitube FCM in general, is not suitable

for analyses involving rarer cell types.

We have found a series of cell types associated with NPM1 mu-

tation in AML. Although many of these cell types fit with previously

reported trends, most represent new, previously unreported cell

types associated with NPM1 mutation. Importantly, we have also

demonstrated that flowBin output can be used for downstream dis-

covery analysis using tools such as flowType and RchyOptimyx.
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