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Abstract

High dynamic range (HDR) imaging is an important task in image processing

that aims to generate well-exposed images in scenes with varying illumination.

Although existing multi-exposure fusion methods have achieved impressive re-

sults, generating high-quality HDR images in dynamic scenes is still difficult.

The primary challenges are ghosting artifacts caused by object motion between

low dynamic range images and distorted content in under and overexposed re-

gions. In this paper, we propose a deep progressive feature aggregation network

for improving HDR imaging quality in dynamic scenes. To address the issues

of object motion, our method implicitly samples high-correspondence features

and aggregates them in a coarse-to-fine manner for alignment. In addition,

our method adopts a densely connected network structure based on the discrete

wavelet transform, which aims to decompose the input features into multiple fre-

quency subbands and adaptively restore corrupted contents. Experiments show

that our proposed method can achieve state-of-the-art performance under dif-

ferent scenes, compared to other promising HDR imaging methods. Specifically,

the HDR images generated by our method contain cleaner and more detailed

content, with fewer distortions, leading to better visual quality.
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1. Introduction

Most modern imaging systems, e.g., digital cameras, often fail to capture

the full range of natural light, because of the hardware, e.g., camera sensors,

capacities. These limitations have led to the development of high dynamic

range (HDR) imaging technologies, which is essential for generating high-quality

images in challenging lighting conditions. The practical applications of HDR

imaging are numerous and diverse, such as photography, film, video production,

etc. Given its potential for high industrial value, HDR imaging has received

significant attention from researchers over the past decades.

In the early stages, researchers attempted to design specialized hardware

devices for generating high-quality HDR images [1, 2]. However, due to their

high cost, these devices have not been widely adopted in commercial products.

As an alternative, many researchers have turned to methods based on multi-

exposure fusion, which take a sequence of low-dynamic range (LDR) images

with different exposures and merge them to generate the corresponding HDR

images. Although some HDR imaging algorithms can effectively adjust the

illumination range based on static images and achieve promising results [3–

8], these methods are primarily suitable for static scenes and less effective when

applied to dynamic scenes. Unlike static scenes, HDR imaging in dynamic scenes

is more challenging because object motion between input images can result in

ghosting artifacts. Additionally, the under and overexposed regions may contain

corrupted content that can lead to distortions. To address these issues, motion-

removal-based methods [9–20] and alignment-based methods [11, 21–24] have

shown their effectiveness in recent years.

Motion-removal-based methods first detect motion regions and then remove

them in the merging stage, so object motion is disregarded in the reconstruction,

resulting in reduced ghosting artifacts in the generated images. To accurately

detect motion regions, researchers have proposed several methods, including

threshold-based methods [10, 11, 14, 15], gradient-based methods [25, 26], and

low-rank and sparsity-based methods [16–18]. Firstly, inaccurate motion detec-
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tion can easily introduce ghosting artifacts, which severely degrade the quality

of the generated HDR images. Secondly, when the input LDR images contain

large-scale motion, a significant number of pixels are removed in the merging

process, leading to information loss and poor performance. Recently, Yan et al.

[19] proposed a deep learning-based model with the spatial attention mechanism

to avoid information loss in moving regions. The model uses a soft suppression

method to eliminate unnecessary pixels before the merging stage. However,

ghosting artifacts still appear in the generated images, as illustrated in [13].

Alignment-based methods for HDR imaging involve aligning input LDR im-

ages with a reference image, and then merging them to generate the corre-

sponding HDR images. Unlike motion-removal-based methods, alignment-based

methods handle object motions using optical flow, which can better preserve

information in motion regions. Therefore, they typically achieve better per-

formance. For example, Kalantari et al. [22] used optical flow [27] to align

the input LDR images and then, adopted a deep convolutional neural network

(CNN) to merge the aligned LDR images for reconstruction. Their model has

demonstrated remarkable performance in producing high-quality HDR images

in dynamic scenes. However, the brightness constancy condition required by

optical flow is difficult to satisfy in real-world situations [28–30], resulting in

inaccurate optical-flow etimation, which further deteriorates the quality of the

generated HDR images. Instead of optical flow, Wu et al. [24] adopted a ho-

mography transformation to globally register LDR images in the pre-processing

stage. Then, they used a deep CNN model with the U-Net shape structure to

extract multi-scale features for reconstruction. However, this method fails to

consider local information, which limits its ability to compensate for corrupted

image content in saturated regions. Pu et al. [31], inspired by deformable con-

volution [32], adopted a pyramid, cascaded and deformable (PCD) alignment

module [33] to hierarchically align LDR images for reconstruction. Additionally,

Liu et al. [34] proposed a dual-branch network for HDR imaging in dynamic

scenes, which respectively adopts the spatial attention mechanism and the PCD

module in the two branches. However, deformable convolution suffers from un-
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stable training [35], and its receptive field is restricted by its kernel size, making

it difficult to handle large-scale motions.

In this paper, we propose a deep progressive feature aggregation network

for HDR imaging in dynamic scenes. Unlike alignment-based methods, our

proposed method does not use optical flow to align input images. Instead,

we introduce a cross-scale feature aggregation strategy to implicitly align the

input LDR images in a coarse-to-fine manner. In each scale space, our model

samples similar features around unaligned pixels and then aggregates them for

implicit alignment. These similar features have a high correlation with the

unaligned features and, thus, contribute more to alignment. Then, our model

progressively fuses the aligned features from coarse to fine scales, which reduces

ghosting artifacts caused by small and large motions. To further improve the

performance, we propose a densely connected network module based on discrete

wavelet transform to effectively compensate for corrupted content in saturated

regions. The proposed module decomposes the input features into several non-

overlapping frequency subbands and separately restores the corrupted content

in these frequency subbands. As shown in Fig. 1, the low-frequency subband

mainly contains coarse image content, while the high-frequency subbands have

rich structural information, which is beneficial for HDR imaging. The main

contributions of this paper are summarized as follows:

1. We propose a novel progressive feature aggregation network for HDR imag-

ing in dynamic scenes. Our method employs intra-scale and inter-scale

aggregation schemes to implicitly align LDR images from coarse to fine

scales.

2. We propose a densely connected network based on discrete wavelet trans-

form to effectively compensate for corrupted content in saturated regions.

3. Experiments demonstrate that our proposed method significantly outper-

forms other state-of-the-art HDR imaging methods, generating remarkable

results with higher visual quality and more structural information.
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Figure 1: Illustration of an HDR image (the first row) and the corresponding LDR image

(the second row) in the wavelet domain. LL, LH, HL, and HH represent the low-low band,

low-high band, high-low band, and high-low band, respectively. The region marked by a red

box in an image is enlarged and placed at the bottom-left corner.

2. Related Works

2.1. Motion Removal-based Methods

Motion removal-based methods typically involve two stages: a motion-detection

stage and a merging stage. Bogoni [9] applied a non-parametric model to detect

under and overexposed regions before merging LDR images. In [15], unaligned

regions are rejected according to the error map of aligned pixels. Khan et

al. [10] proposed an iterative method that implicitly detects moving regions,

leading to reduced artifacts. Jacobs et al. [11] assumed that moving objects

cause large intensity variations in overexposed regions, and proposed a motion-

detection method based on measuring variance [12]. Gallo et al. [14] assumed

that irradiance values of the background are linear to the exposure time, and

proposed a method for detecting ghosting regions based on the irradiance devi-

ation. All these methods also explode local information in regular patch grids.

In contrast, Raman and Chaudhui [36] proposed a superpixel-based bottom-up

framework to detect ghosting regions, which can effectively handle irregular ob-

jects in saturated regions. Heo et al. [37] proposed a coarse-to-fine pipeline that

applies a joint probability model to different images to roughly detect motion
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regions, and then refines these regions with graph cuts. Zhang and Cham [25]

proposed a motion-detection method based on the assumption that gradient val-

ues change significantly in motion regions. However, this method struggles to

obtain gradient information in saturated regions, which harms its performance.

Lee et al. [18] formulated the motion-detection problem as a rank-minimization

problem, which considers misalignment errors, moving objects, noise, and non-

linear artifacts as sparse outliers. Oh et al. [16] extended the low-rank model

in [18] by introducing user control for moving objects under different exposure

settings, leading to better results. Yan et al. [19] proposed a deep CNN-based

model, where the spatial attention mechanism is used to suppress unaligned

regions at the feature level, so their model excludes the motion regions in the

reconstruction.

Despite their effectiveness, motion removal-based methods have several in-

herent limitations. First, when there are large-scale motions between LDR im-

ages, a large number of pixels may be removed in the merging process, resulting

in distorted content. Second, the quality of the generated HDR images is very

sensitive to detection accuracy and is not robust to varying illumination.

2.2. Alignment-based Methods

Alignment-based methods can be divided into three categories: flow-based

methods, deformable-based methods, and patch-based methods.

2.2.1. Flow-based methods

Flow-based methods mainly adopt optical flow to align LDR images and

then merge the aligned LDR images to generate the corresponding HDR images.

Tomaszewska and Mantiuk [38] proposed a global registration method for LDR

images using a homography transform before merging them for HDR imaging.

However, the condition of brightness constancy is easily violated because of

illumination variations. To address this issue, Zimmer et al. [39] proposed an

optical flow estimation method in the gradient domain, ensuring consistency of

gradients. Although this method is effective, it treats flow estimation and HDR
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image generation separately, potentially resulting in a sub-optimal solution. To

further improve overall performance, Hafner et al. [23] proposed a method for

jointly estimating optical flow and reconstructing HDR images. Recently, deep

learning-based models have achieved remarkable success in many vision tasks,

which inspired Kalantari and Ramamoorthi [22] to propose a deep learning-

based network, called DeepHDR, for HDR imaging. Their method first aligns

LDR images using optical flow [27], and then forwards the aligned LDR images

to a deep CNN network for fusion. Instead of using dense motion fields, Wu et

al. [24] proposed a deep translation-based method that globally registers LDR

images with a homography function and then extracts multi-scale features for

reconstruction. However, flow-based methods are highly sensitive to varying

illumination and rely heavily on the accuracy of optical flow estimation. This

sensitivity can result in ghosting artifacts in the generated HDR images.

2.2.2. Deformable-based methods

Deep deformable-based methods have recently garnered significant attention

in HDR imaging research, following the success of deformable convolution [32].

Pu et al. [31] proposed a progressive alignment and reconstruction approach

for HDR imaging, utilizing the PCD module [33], and achieved promising re-

sults. Building on this work, Liu et al. [34] introduced a dual-branch structure

comprising the PCD module and spatial attention mechanism, which further

improved the overall performance. However, deformable-based methods can-

not effectively handle large-scale motions, because the receptive field of the

deformable convolutions is restricted by its kernel size. In addition, deformable

convolution suffers from unstable training [35].

2.2.3. Patch-based methods

Compared to flow-based and deformable-based methods, patch-based meth-

ods implicitly align the motion regions by aggregating similar image patches.

For instance, Sen et al. [40] introduced a patch-based HDR imaging method

that identifies similar image patches and combines them for reconstruction. Sim-
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ilarly, Yan et al. [41] utilized a non-local attention mechanism in a deep CNN

model to capture pixel-wise correspondence for image reconstruction. Addi-

tionally, Chen et al. [42] proposed a hybrid method for HDR imaging that

first reduces the motion effect using the spatial attention mechanism and then

aggregates the most comparable patch in a coarse-to-fine manner. However,

patch-based methods incur high computational complexity, which limits their

application in commercial products. To address this challenge, Ye et al. [13]

were motivated by RAFT [30] and proposed a progressive feature selection ap-

proach that implicitly aligns LDR images in the feature space for HDR image

reconstruction. Furthermore, Niu et al. [43] proposed a generative adversarial

network (GAN)-based model to effectively compensate for corrupted content in

saturated regions. However, GAN models are susceptible to model collapse and

unstable training [44–46], which can lead to artifacts and degrade performance.

Compared with the above methods, our proposed multi-scale sampling and

aggregation model has several advantages. Firstly, flow-based methods rely on

optical flow for global alignment, whereas our proposed method samples multiple

neighboring positions around the unaligned pixels in a coarse-to-fine manner,

leading to more accurate and robust alignment. Secondly, our proposed method

adaptively aggregates the sampled features that are most similar to the reference

features, effectively reducing ghosting artifacts. Thirdly, unlike deformable-

based methods which are limited by kernel size, the number of sampled features

in our proposed method is flexible, enabling greater adaptability to various

image sizes and structures.

3. The Proposed Methods

In this section, we present our proposed progressive feature aggregation net-

work, which consists of two crucial components: the multi-scale feature align-

ment sub-network and the dense wavelet sub-network. An overview of the

network architecture is illustrated in Fig. 2. Before delving into the details

of these two modules, we first describe the pre-processing techniques that we
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Figure 2: The overall structure of the proposed progressive feature aggregation network, which

consists of a multi-scale feature alignment sub-network and a dense wavelet sub-network. F
(i)
j

denotes the features extracted from Xi in the j-th scale space, where i, j = 1, 2, 3.

have employed for the input LDR images. Then, we provide a comprehensive

explanation of the multi-scale correspondence alignment sub-network and the

dense wavelet sub-network. The former computes the high-correspondence fea-

tures to implicitly align motion regions in a coarse-to-fine manner. The latter

utilizes discrete wavelet transform to decompose the input features into sev-

eral non-overlapping frequency subbands for compensating corrupted content

in saturated regions. Finally, we discuss the loss function used for training our

proposed model.

3.1. The Pre-processing Stage

Given a sequence of LDR images {I(1)L , I
(2)
L , · · · , I(N)

L } with N different ex-

posure times, our model aims to reconstruct a clean and ghost-free HDR image

I
(r)
H , which is aligned to the reference image I

(r)
L , where r ∈ {1, 2, · · · , N}. To

simplify the problem, we consider a sequence of three LDR images with differ-

ent exposure conditions: low, medium, and high, denoted as {I(1)L , I
(2)
L , I

(3)
L }.

We take the LDR image I
(2)
L , captured with a medium exposure time, as our

reference. As HDR imaging involves manipulating illumination values, we first

linearize the input LDR images with gamma correction, where γ > 1 is a hyper-

parameter. Specifically, the linearized LDR image Î
(i)
L of the i-th input LDR
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Figure 3: The overall structure of (a) the encoder, (b) Multi-Scale SAM, and (c) Group

WaveNet. In the encoder, XL denotes the input 6-channel tensor, and Fi represents the

extracted features of different scales, for i = 1, 2, 3. In the Multi-scale SAM, F̂i and Fi denote

the reference and non-reference features, respectively, where i = 1, 2, 3.

image I
(i)
L is computed as follows:

Î
(i)
L =

(
I
(i)
L

)γ

ti
, i = 1, 2, 3, (1)

where ti denotes the exposure time of the LDR image I
(i)
L . We set γ to 2.2,

as suggested in [22]. Then, we concatenate each LDR image I
(i)
L with its cor-

responding linearized image Î
(i)
L to form a 6-channel tensor Xi = [I

(i)
L , Î

(i)
L ], for

i = 1, 2, 3, which is the input to the model.

Given a number of HDR-LDR image pairs, our model attempts to learn

a highly nonlinear illumination mapping from the LDR domain to the HDR

domain. The estimated HDR image ÎH is generated as follows:

ÎH = fθ(X1, X2, X3), (2)

where fθ(·) denotes the proposed model with parameters θ.

3.2. The Multi-scale Feature Alignment Sub-network

The multi-scale feature alignment sub-network plays a crucial role in our

proposed model, which implicitly aligns the input LDR images from coarse to

fine levels. The overall architecture of this sub-network is illustrated in Fig. 2,
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which comprises two components: an encoder and a multi-scale sampling and

aggregation module (Multi-scale SAM).

3.2.1. Encoder

The encoder takes {X1, X2, X3} as input and extracts the corresponding

multi-scale features. As shown in Fig. 3, the encoder in our method contains

three scale spaces. In each scale space, two convolutional layers with a kernel size

of 3×3 are used to generate features. The downsampling operator is a convolu-

tional layer with a stride of 2. In our method, the kernel weights of the encoders

are shared among the three inputs to avoid increasing the model parameters.

The generated multi-scale features are denoted as Fi = {F (1)
i , · · · , F (S)

i }, for

i = 1, 2, 3, where S is the number of scales. Then, these multi-scale features are

forwarded to multi-scale SAM.

3.2.2. Multi-scale SAM

The responsibility of Multi-scale SAM is to implicitly align the LDR im-

ages in feature spaces, and the overall structure of this module is shown in

Fig. 3(b). As observed, multi-scale SAM involves two important parts, namely,

the intra-scale sampling and aggregation module (Intra-SAM) and the inter-

scale aggregation module (Inter-AM).

Intra-SAM. Intra-SAM takes features from each scale space as the input for

alignment. Its primary function is to align pixels in the non-reference features

by sampling neighboring features, and then, adaptively aggregating the features

according to their correspondence with the reference features. As illustrated in

Fig. 4, the proposed Intra-SAMmodule comprises three parts: sample generator,

correspondence computation, and sample aggregation.

Given two input features in the s-th scale space, denoted as Fs and F̂s,

which are the features extracted from the non-reference image and the reference

image, respectively, the sample generator takes these two features, as well as

the sampling map Ps−1 from the previous scale space, as input, to generate the

sampling map of the s-th scale space Ps. The sampling map Ps−1 contains the
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coarse sampling information of the (s− 1)-st scale space, which can be used as

prior information to guide the generation of the sampling map or matrix of the

s-th scale space. In our method, the sample generator is a small convolutional

network with four convolutional layers, and the sampling map Ps is computed,

as follows:

Ps = g(Fs, F̂s, P̂s−1), (3)

where g(·) denotes the sampling generator and Ps = [p
(1)
s , · · · ,p(N)

s ] represents a

set contains N sampling matrices in the s-th scale space, where the dimension of

the sampling matrix p
(i)
s is H×W ×2, for i = 1, · · · , N . H and W represent the

height and width of the input features, respectively. These sampling matrices

provide the location information of the corresponding sampled feature. Specif-

ically, for the s-th scale space, the element of the i-th sampling matrix at the

position (m,n) is a two-dimensional vector, denoted as p
(i)
s,m,n = [x

(i)
s,m,n, y

(i)
s,m,n].

This vector contains displacement information between the sampled feature and

the reference feature in the horizontal and vertical directions. Based on the

sampling matrices, the sampled feature of pixel position (m,n) is obtained as

follows:

F̄ (i)
s (m,n) = Fs(m+ x(i)

s,m,n, n+ y(i)s,m,n), (4)

where F̄
(i)
s (m,n) denotes the i-th sampled feature corresponding to the un-

aligned pixel at the position (m,n) of the s-th scale space, for i = 1, · · · , N . For

fractional positions (i.e., m + x
(i)
s,m,n, n + y

(i)
s,m,n /∈ Z), bilinear interpolation is

used to compute the positions. In the s-th scale space, intra-SAM samples the

neighboring features for all unaligned pixels according to the location informa-

tion provided by the sampling map Ps.

However, not all the sampled features are beneficial for reconstructing HDR

images, especially in saturated regions. To address this issue, we propose an

adaptive aggregation method that performs over the sampled features. Specifi-

cally, based on dot product, we first calculate the correspondence between the

sampled features and the reference features at each pixel position. Then, we

compute the correspondence weights for aggregation. For position (m,n), the
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weight is computed as follows:

w(i)
m,n =

exp(F̄
(i)
s (m,n) · F̂s(m,n))∑N

j=1 exp(F̄
(j)
s (m,n) · F̂s(m,n))

, (5)

where · denotes the dot product, and 0 ≤ w
(i)
m,n ≤ 1, for i = 1, · · · , N .

Figure 4: The overall structure of the sampling and aggregation module (SAM). Fs and F̂s

denote the non-reference and reference features of the s-th scale space. Ps and Ps−1 are the

sets of sampling positions. p
(i)
s denotes the i-th sampling position in the s-th scale space,

where i = 1, · · ·N and the N is the number of samples. F̄
(i)
s denotes the i-th sample feature

in the s-th scale space. {wi, · · · , wN} are N aggregation weights. F
(out)
s is the output feature

associated with Fs.

Next, the non-reference features are aligned by aggregating the sampled fea-

tures according to the computed weights, and the corresponding aligned feature

F̂s(m,n) is computed as follows:

F̂s(m,n) = w(1)
m,nF̄

(1)
s (m,n) + · · ·+ w(N)

m,nF̄
(N)
s (m,n). (6)

As observed, aligned features are generated by a linear combination of the sam-

pled features. Intuitively, the sampled features having higher correspondence

mean that they are more similar to the reference features, so they can contribute

more to alignment and should be given more weight in the aggregation.This can
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effectively alleviate undesirable effects caused by dissimilar features in aggrega-

tion and avoid ghosting artifacts.

Inter-AM. To tackle the challenges of small and large-scale motion in dy-

namic scenes present in LDR images, the proposed Inter-AM aims to progres-

sively aggregate the features generated by Intra-SAM in different scale spaces.

The overall network architecture of Inter-AM is illustrated in Fig. 5.

Given two output features F̂s and F̂ ′
s−1 from the s-th and (s− 1)-st scales,

average pooling and max pooling are applied to these two features to extract

local features. Then, the local features are concatenated along the channel

dimension. A convolutional layer is applied to the concatenated features to

generate a fusion mask M . Each element of the fusion mask M is in [0, 1]. The

two input features from adjacent scales are adaptively aggregated based on this

fusion mask to produce the corresponding multi-scale feature F
(out)
s , which is

computed as follows:

F (out)
s = (1−M)⊙ Fs +M ⊙ F ′

s−1, (7)

where ⊙ denotes the Hadamard product. The two input features are spatially

fused by linear combination, based on the computed fusion maskM . The coarse-

scale features contain more contextual information, while the finer-scale features

have more detailed information. The fusion mask performs feature selection

between the two input features from adjacent scales in a soft manner. Benefiting

from this multi-scale structure, the negative impacts of small and large-scale

motions in LDR images are eliminated in a coarse-to-finer manner.

3.3. Dense Wavelet Sub-network

3.3.1. Network Structure

As illustrated in Fig. 2, the dense wavelet sub-network is responsible for

merging aligned features and generating corresponding HDR images. Specifi-

cally, the dense wavelet sub-network first concatenates the aligned features (i.e.,

F 1→2
1 and F 3→2

1 ) and the reference feature F 2
1 along the channel dimension,

where F i→2
1 denotes the features generated by aligning F i

1 with the reference
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Figure 5: The overall structure of the inter-scale aggregation module (Inter-AM). Fs and F ′
s−1

denote the input from the s-th and (s − 1)-th scale spaces, respectively. “Avg” and “ Max”

represent average pooling and max pooling, respectively. F out
s is the output feature of the

s-th scale space.

feature F 2
1 , where i = 1 or 3. Then, a convolutional layer with a kernel size of

3× 3 is applied to compress and fuse the concatenated features. The resulting

fused feature is forwarded to three group-wavelet modules (Group WaveNets)

for feature extraction in the wavelet domain. As shown in Fig. 3(c), a Group

WaveNet, which is composed of two small, cascaded dense wavelet networks

(D-WaveNets), plays a significant role in feature extraction and HDR image

reconstruction. In our method, the output of the second D-WaveNet is con-

catenated with the input, followed by a convolutional layer for feature fusion.

Furthermore, the output of the three Group WaveNets are concatenated, fol-

lowed by two convolutional layers for fusion. Therefore, the proposed dense

wavelet sub-network has a structure with local-global dense connections. This

can significantly increase information interaction and fully utilize the features

from different layers. At the output of the network, the estimated HDR ÎH

image is computed, as follows:

ÎH = F ′ +Conv(F 2
1 ), (8)
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where F ′ denotes the fused feature generated by the two convolutional layers

and Conv(·) represents a convolutional layer with a kernel size of one.

3.3.2. Dense Wavelet Network (D-WaveNet)

D-WaveNet, based on discrete wavelet transform (DWT), decomposes input

features into several non-overlapping frequency subbands for feature extraction.

The overall structure of D-WaveNet is illustrated in Fig. 6. Given an input fea-

ture map F , DWT is applied to F along the channel dimension, and then four

frequency subbands are obtained, i.e., one low-frequency subband and three

high-frequency subbands. These four frequency subbands are computed as fol-

lows:

WLL = LFLT ,WLH = HFLT (9)

WHL = LFHT ,WHH = HFHT (10)

whereWLL denotes the low-frequency subband and {WLH ,WHL,WHH} rep-

resent the high-frequency sub-bands in the horizontal, vertical, and diagonal di-

rections, respectively. L denotes the matrix containing all the low-frequency fil-

ters {ℓi}i∈Z and H is the matrix containing all the high-frequency filters {hi}i∈Z

for decomposition, where

L =


· · · · · · · · ·

· · · ℓ−1 ℓ0 ℓ1 · · · · · ·

· · · ℓ−1 ℓ0 ℓ1 · · ·

· · · · · ·

 , (11)

and

H =


· · · · · · · · ·

· · · h−1 h0 h1 · · · · · ·

· · · h−1 h0 h1 · · ·

· · · · · ·

 . (12)

In our method, Haar wavelets are adopted for feature decomposition, because

Haar wavelets have orthogonal and biorthogonal properties. These two proper-

ties guarantee that the input features can be perfectly reconstructed, without
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Figure 6: The overall structure of D-WaveNet. The dilated rates of the three dilated convo-

lutional layers are set to 1, 2, and 3, respectively.

concerns about introducing distortions. After decomposition, all frequency sub-

bands are concatenated along the channel dimension and forwarded to three

dilated convolutional layers with dense connections for feature extraction over

the wavelet domain. The dilated rate of these three convolutional layers is set

to 1, 2, and 3, respectively, in our method.

At the output of D-WaveNet, the extracted features are transferred from the

wavelet domain to the spatial domain with the inverse DWT (IDWT), which is

computed, as follows:

F̂ = LT ŴLLL+HT ŴLHL+ LT ŴHLH+HT ŴHHH, (13)

where {ŴLL, ŴLH , ŴHL, ŴHH} denote four output wavelet subbands, and F̂

is the corresponding output feature in the spatial domain. Then, we use a

residual connection and the channel attention mechanism [47] to generate the

output feature Fout as follows:

Fout = CA(F̂ ) + F, (14)

where CA(·) is the channel attention mechanism, which scales features along

the channel dimension.
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3.4. Loss Function

As HDR images are typically displayed on screens after tone mapping, we cal-

culate the loss in tone-mapped images. Although many effective tone-mapping

methods have been proposed in the past, they are typically not differentiable

and, therefore, cannot be used as a loss function for training deep neural net-

works. In our method, we apply the µ-law function to compress the output

of our network, because the µ-law function is a widely used range compressor

in audio processing and is differentiable. Specifically, given an image I in the

linear domain, the corresponding tone-mapped image is computed, as follows:

T (I) =
log(1 + µI)

log(1 + µ)
, (15)

where µ is a hyper-parameter defining the extent of compression, set to 5000

in our method. We use the L1 norm to compute the distance between the

output ÎH and the ground-truth image IH after tone mapping. Formally, the

loss function is defined as follows:

L(ÎH , IH) = ∥T (ÎH)− T (IH)∥1. (16)

In our method, the range of the output is restricted to [0, 1] by using the sigmoid

function.

3.4.1. Implementation details

To accommodate the large size of the training images, we partitioned the

input images into patches of size 200 × 200 pixels for training. To augment

the training dataset, all training samples are randomly flipped vertically or

horizontally, as well as rotated by 90◦, 180◦, or 270◦. We adopt the AdamW

algorithm, with β1 = 0.9 and β2 = 0.999, to adaptively update the parameters

of the proposed model during training. The batch size is set to 16, and the

initial learning rate is set to 2.0× 10−4. To adjust the learning rate, we employ

the cosine annealing strategy, which gradually reduces the learning rate to 1.0×

10−6. Our proposed model was implemented using the Pytorch framework, with

two Nvidia 3090 GPUs, and we trained the model for a total of 300 epochs. The

training process took approximately two days to complete.
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Table 1: The average PSNR-µ, SSIM-µ, PSNR-L, SSIM-L, and HDR-VDP-2 of different

methods on the Kalantari dataset. The best results are highlighted in bold.

Methods PSNR-µ PSNR-L SSIM-µ SSIM-L HDR-VDP-2

Sen [40] 40.9689 38.3425 0.9859 0.9764 60.3463

DeepHDR [22] 42.7177 41.2200 0.9889 0.9829 61.3139

Wu [24] 41.9977 41.6593 0.9878 0.9860 61.7981

AHDRNet [19] 43.7013 41.1782 0.9905 0.9857 62.0521

PANet [31] 43.8487 41.6452 0.9906 0.9870 62.5495

PSFNet [13] 44.0613 41.5736 0.9907 0.9867 63.1550

PFANet (Ours) 44.3847 42.1704 0.9887 0.9887 64.5038

3.5. Experiments on the Kalantari Dataset

In this experiment, we compare PFANet with other state-of-the-art HDR

methods, including Sen [40], DeepHDR [22], Wu [24], AHDRNet [19], PANet

[31], and PSFNet [13]. We utilized the open-source code provided by the re-

spective authors for implementation, with the exception of PANet, which has

no publicly available code. Instead, we referred to the results presented in the

original paper. The average PSNR-µ, PSNR-L, SSIM-µ, SSIM-L, and HDR-

VDP-2 of different HDR methods on the Kalantari dataset are tabulated in

Table 1. The results show that PFANet outperforms all other HDR methods in

all evaluation metrics. Compared to the second-best method (PSFNet), PFANet

achieves a gain of 0.3dB and 1.3488, in terms of PSNR-µ and HDR-VDP-2, re-

spectively. These results indicate that our proposed method can better generate

high-quality HDR images in both tone-mapped and linear domains than other

HDR methods.

To further evaluate the performance of the compared methods, we selected

two images from the Kalantari dataset and visually compare the results, as

shown in Fig. 7. We zoom into two local regions marked by red and blue rect-

angles, which contain moving objects, for better comparison. As observed, the

results generated by DeepHDR, Wu, AHDRNet, and PSFNet exhibit undesir-
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Figure 7: Visual comparison of different HDR imaging methods. “-2”, “0”, and “+2” denote

three different exposure settings. In the experiment, “0” represents the reference image.

able ghosting artifacts and distorted contents in the motion and overexposed

regions. Although Sen is successful in restoring the corrupted content in sat-

urated regions, it fails to handle motion regions and produces severe ghosting
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artifacts. These results reveal that the compared methods struggle to simul-

taneously compensate for corrupted content in saturated regions and overcome

object motions. In contrast, PFANet effectively alleviates ghosting artifacts

caused by object motions and adequately compensates for the corrupted regions

in under and overexposed regions. As a result, the HDR images generated by

PFANet contain less distorted image content, leading to the best visual quality.

3.6. Experiments on the Sen and Tursun Datasets

In this experiment, we evaluated our proposed PFANet against other state-

of-the-art HDR methods on two challenging datasets, i.e., the Sen and Tur-

sun datasets. However, since these two datasets do not contain ground-truth

images for quantitative comparison, we rely on visual results to compare the

performance of different HDR imaging models. To ensure a fair comparison, we

selected one image from each dataset and cropped two local regions marked by

red and blue rectangles. These regions are then enlarged for better compari-

son, as shown in Fig. 8. As observed, the HDR images generated by Sen and

DeepHDR are noisy and contain unpleasant artifacts caused by object motion.

Although AHDRNet and PSFNet are able to produce satisfactory results for

the first dataset, severe ghosting artifacts are easily observed in underexposed

regions containing object motion in the second dataset. Moreover, PSFNet fails

to preserve object shapes, thus losing details. This implies that AHDRNet and

PSFNet are vulnerable to changes in exposure conditions and have limited gen-

eralization capabilities. In contrast, our proposed model demonstrated excellent

performance in reducing ghosting artifacts caused by object motion and preserv-

ing structural information in the generated HDR images. As a result, the HDR

images generated by our model were cleaner, richer in detail, and less distorted,

with the best perceptual quality.
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Figure 8: Visual comparison of different HDR imaging methods. The image illustrated in (a)

is selected from the Sen dataset, and the image shown in (b) is from the Tursun dataset.
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Figure 9: The PSNR-µ of the model with different numbers of sampled features.

3.7. Model Analysis

3.7.1. Different numbers of sampled features

We have derived a novel method that utilizes similar features around un-

aligned features to implicitly align input LDR images in the feature space. To

evaluate the effectiveness of our method, we conducted an experiment on the

Kalantari dataset to investigate the impact of the number of sampled features

on the performance. We vary the number of sampling features N from 2 to

10 and evaluate the corresponding performance of the model. Fig. 9 shows the

PSNR-µ of the models with different numbers of sampling features. Our results

demonstrate that the proposed method achieves the best performance when

N = 3. Interestingly, increasing the number of sampled features from 3 to 10

leads to a decrease in PSNR-µ by 0.15dB. This result is due to the inclusion of

inaccurate sampled features in the aggregation process, which negatively affects

performance.

3.7.2. Modules in the Multi-scale Feature Alignment Sub-network

The multi-scale feature alignment sub-network is a critical component in our

proposed model, which implicitly aligns LDR images in a coarse-to-fine manner.

To assess its performance, we conducted an experiment with different settings.

Specifically, we evaluate our model performance with and without using the

multi-scale structure, and compare the performance of different fusion methods
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across scales, including addition, concatenation, and our proposed inter-scale

aggregation scheme. All other model configurations remain unchanged. The

average PSNR-µ, SSIM-µ, and HDR-VDP-2 of our model with different set-

tings on the Kalantari dataset are shown in Table 2. The best performance is

highlighted in bold. The multi-scale structure based on our proposed inter-scale

aggregation scheme yields the most significant improvement, increasing PSNR-µ

by 0.55dB. The proposed aggregation scheme adaptively suppresses unnecessary

pixels across scales, leading to superior performance compared to the addition

and concatenation methods. Furthermore, Fig. 10 demonstrates the images gen-

erated by our model with different settings for visual comparison. The model

with our proposed multi-scale structure generates images with richer and more

detailed information, such as tree branches, compared to the model without it.

This result confirms that the multi-scale structure can effectively capture local

details, resulting in better reconstruction. In contrast, models using addition

and concatenation fusions produce images with color deviations, whereas our

proposed inter-scale aggregation scheme significantly reduces these distortions

and produces better images.

Table 2: Average PSNR-µ, SSIM-µ, and HDR-VDP-2(VDP-2) of our proposed model

(PFANet) with different settings on the Kalantari dataset. “MS” represents the multi-scale

structure. “A”, “C”, and “M” denote the addition, concatenation, and our proposed masking

method in inter-scale aggregation, respectively. “"” represents the corresponding method

used in PFANet, while “%” means that the method is not used.

Models MS
Fusion

PSNR-µ SSIM-µ VDP-2
A C M

PFANet % % % % 44.0933 0.9910 63.6499

PFANet " " % % 44.2538 0.9912 64.3989

PFANet " % " % 44.1815 0.9911 64.1025

PFANet " % % " 44.3847 0.9912 64.5038
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Figure 10: HDR images generated by our method (i.e.,MASNet) with different settings.

“w/o MS” represents the model without using the multi-scale structure. “MS+C”,“MS+A”,

and “MS+M” represent that the model adopts concatenation, addition, and the proposed

progressive masking method for fusion, respectively.
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3.7.3. Study on the Dense Wavelet Sub-network

Our proposed dense wavelet sub-network utilizes DWT to decompose input

features into several non-overlapping frequency subbands for better feature ex-

traction and reconstruction. Additionally, we employ the group strategy and

densely concatenate the outputs of the three Group WaveNets to fully utilize

the information from intermediate layers. To evaluate the effectiveness of DWT

in our method, we conducted an experiment comparing the performance of our

model with and without DWT. In the model without DWT, feature extraction

is simply performed over the spatial domain. All other configurations remain

the same. Moreover, we study the impact of the number of groups. In our

model, the total number of groups is set to 3, and we vary this number from

1 to 3. The average PSNR-µ, SSIM-µ, and HDR-VDP-2 of our model with

different settings on the Kalantari dataset are tabulated in Table 3. The re-

sults show that our model with DWT achieves PSNR 0.13dB higher than the

model without DWT, indicating that extracting features in the wavelet domain

is more effective, since different frequency subbands provide distinct information

for HDR image reconstruction. Furthermore, our model performance improves

significantly with an increase in the number of groups, since having more groups

enhances the interaction between different layers.

Table 3: Average PSNR-µ, SSIM-µ, and HDR-VDP-2 of the models with different settings on

the Kalantari dataset. The best results for different settings are highlighted in bold.

PSNR-µ SSIM-µ HDR-VDP-2

Domain
w DWT 44.3847 0.9912 64.5038

w/o DWT 44.1566 0.9910 64.0267

Group

G = 1 44.1203 0.9911 63.8058

G = 2 44.2136 0.9910 64.3134

G = 3 44.3847 0.9912 64.5038
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3.7.4. Study on Different Types of Wavelets

The DWT-based subnetwork is a critical component for feature extraction

in our model. To comprehensively study the impact of DWT, we investigate

the performance of our model with different types of wavelets. Specifically,

we compare the performance of our model with Haar wavelets, two symmetry

wavelets, and two biorthogonal wavelets. Other configuration settings remain

unchanged. The average PSNR-µ and SSIM-µ of our model with different types

of wavelets on the Kalantari dataset are tabulated in Table 4. As observed,

different wavelets used in our model will significantly affect the performance.

The performance of the model with symmetry wavelets is lower than that with

Haar and biorthogonal wavelets. Compared with biorthogonal wavelets, the

model with Haar wavelets can achieve slightly better performance because Haar

wavelets are orthogonal. These results show that orthogonal and biorthogonal

wavelets are more beneficial for reconstruction.

Table 4: Average PSNR-µ and SSIM-µ of our model with different wavelets on the Kalantari

dataset. The best results are highlighted in bold.

Haar
Symmetry Biorthogonal

sym2 sym5 bio1.1 bio3.5

PSNR-µ 44.38 44.29 44.08 44.35 44.18

SSIM-µ 0.9912 0.9913 0.9911 0.9912 0.9912

4. Conclusion

High dynamic range (HDR) imaging in dynamic scenes remains a challenging

problem in image processing and computer vision. In this paper, we propose

a deep progressive feature aggregation network for HDR imaging in dynamic

scenes, which implicitly aligns LDR images by sampling and aggregating sim-

ilar features around unaligned pixels in different scale spaces. The aggregated

features are then progressively fused in a coarse-to-fine manner, resulting in re-

duced ghosting artifacts caused by object motion. To further enhance the qual-
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ity of the generated HDR images, we introduce a dense wavelet sub-network,

which decomposes the input feature into non-overlapping frequency subbands

for feature extraction. Different frequency subbands contain distinct informa-

tion for reconstruction, enabling our method to effectively compensate for cor-

rupted content in saturated regions. Experimental results demonstrate that our

proposed method outperforms existing HDR methods, achieving state-of-the-

art results with fewer distortions and more detailed content, leading to superior

visual quality.
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